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Abstract 

This paper firstly measures the super-elasticity of SMA through the mechanical property test of 

austenite SMA wire. On the basis of the SMA material property test, it establishes a genetic 

optimized BP network constitutive model for SMA by considering the effect of loading/unloading 

rate on the mechanical properties of SMA, and using the experimental data as the training data of 

neural network. Then, the author processes the constitutive model in MATLAB, uses the improved 

genetic algorithm to optimize the location and number of SMA in a spatial model structure, and 

makes seismic response analysis of the optimal configuration. The results show that: the prediction 

curve of the genetic optimized BP network constitutive model is better agreement with the 

experimental curve and more stable than that of non-optimized BP network; the BP network 

constitutive model is easy to invoke, high in precision and beneficial to the MATLAB simulation 

analysis of SMA control system. Moreover, optimized by the genetic algorithm, the SMA control 

system can more effectively reduce the seismic response of the structure. For example, the seismic 

response of the controlled structure is lower than that of the uncontrolled structure by more than 

15%, and the control effect of the interlayer displacement response of the structure is more obvious 

than that of the acceleration response. 
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1. Introduction 

As an excellent smart metal sensing and actuating material, shape memory alloy (SMA) boasts 

such two unique features as shape memory effect and super-elasticity and advantages like high 

damping, fatigue resistance, corrosion resistance, etc. Thus, the SMA is a favorite choice of civil 

engineers [1-6]. The constitutive model is the basis of the theoretical analysis and experimental 

study of SMA. However, it is very difficult to establish an accurate mathematic constitutive model 

due to the large variability of mechanical properties and the presence of numerous external 

influencing factors. Major progress had not taken place until Muller et al. proposed a SMA 

constitutive model in late 1970s. Since then, researchers have come up with various SMA 

constitutive models based on material property tests [7-9]. The constitutive model is a 

one–dimensional strain-gradient continuum model of an SMA wire element, including two internal 

field variables, possible unstable mechanical behavior, and the relevant thermo-mechanical 

couplings resulting from latent heat effects [10]; Zhu proposed a new model which was recoverable 

shape memory Strain during different phase transformation, reflect the action of martensite 

reorientation and overcome the defect of Tanaka's model when the SMAs' microstructure was fully 

martensite [11]; Zhou and Liu establish a precise constitutive model which includes the equations 

describing the phase transformation behaviors and thermo-mechanical processes of shape memory 

alloy [12]; Thamburaja and Nikabdullah develop a non-local and thermo-mechanically-coupled 

constitutive model for poly-crystalline shape-memory alloys (SMAs) capable of undergoing 

austenite  martensite phase transformations [13] ; The most widely used SMA constitutive model 

is the Brinson constitutive model, a phenomenological constitutive model featuring 

thermodynamics constitutive relation and plasticity theory [14-15]. All of the above constitutive 

models have apparent limitations because they simulate the mechanical behavior of the material by 

mathematical methods. There are many factors influencing the constitutive curve of composite 

materials similar to SMA. It is impossible to establish an accurate mathematical model to express 
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the effect of factors on the constitutive model, leaving artificial simplification and approximation as 

the only options. In recent years, intelligent algorithms are playing an increasingly important role in 

building constitutive models of materials. As a nonlinear modeling method, the artificial neural 

network intelligent algorithm does not need to predict the constitutive form of material, and can 

intelligently analyze the influence degree of each influencing factor on the constitutive equation, 

thereby creating a favorable condition for the establishment of a precise constitutive model [16-17]. 

However, the results of artificial neural network are greatly affected by variation in the initial 

threshold and the weight of the neuron. Therefore, it is necessary to optimize the initial threshold 

and the weight of the neuron so as to select the appropriate threshold and weight, and to improve 

the accuracy and stability of the constitutive model. 

The damper is designed to reduce the impact of earthquake on structure. Its effect is mainly 

determined by three factors: the performance of the device, the installation location and the number 

of devices being arranged. Even if the damper has a good damping effect and a big actuating force, 

it is difficult to achieve the desired damping if the location or number of devices is inappropriate. 

Therefore, in order to improve the efficiency and cost effectiveness of SMA control system, the 

author optimizes the installation location and number of SMA wire by the optimization algorithm 

which is suitable for SMA control system. In this paper, the author firstly carries out mechanical 

property test of austenite SMA wire and establishes a genetic optimized BP network constitutive 

model in reference to the material property test. Based on the constitutive model, the author uses the 

improved genetic algorithm to optimize the configuration of SMA control system in a spatial model 

structure, and performs the simulation analysis of the dynamic response of the optimal 

configuration by MATLAB, aiming at verifying the feasibility of applying the genetic optimized BP 

network constitutive model and the improved genetic algorithm in the SMA control system. 

 

2. Material characteristic test of SMA 

The chemical composition of the SMA wire tested is Ti-51% atNi alloy with a diameter of 

1.0mm. See Figure 1, Test equipment for Taiwan Hungta HT-2402 computer servo control materials 

testing machine. The test pieces are 300mm long and 100mm in terms of effective length. Before 

the load is applied each time, apply tensile stress to the test pieces. The loading rate is 10mm/min, 
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30mm/min, 60m/min and 90mm/min respectively. Both loading and unloading are carried out at a 

constant rate. In each cycle, the loading continues until the wire material reaches the strain 

amplitude, which is 3%, 6% and 8% respectively, and the unloading terminates when the axial force 

of the wire material falls below 5N. Carry out 30 cyclic loadings under each working condition. See 

Figure 2 for the stress-strain curve of the tensile test performed when the strain amplitude is 6% and 

the mechanical properties of the SMA are stable. It can be seen that the stress-strain curve of the 

SMA wire has obvious changes with the increase of loading rate but the mechanical properties of 

the SMA wire remain largely unchanged.  
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       Fig.1 Austenitic Ni - Ti SMA       Fig.2 Stress-strain curve at different loading rate 

 

3. GA optimized BP network constitutive model 

3.1 BP network algorithm 

The BP neural network is a feed-forward network trained with error back propagation method. It 

consists of multiple layers, including the input layer, hidden layer and output layer [18]. The 

weight/threshold of the neural network is assigned by the system randomly. As the initial 

weight/threshold is different for each round of training, the final weight/threshold and the model of 

the neural network varies from round to round. In particular, if only a limited amount of data is 

available, it is possible to generate two completely different neural network models in two rounds of 

training. On the contrary, sufficient and widely available training data narrows the difference 

between trained models but slows down the training convergence of the network. 



48 

 

The genetic algorithm adopts the probabilistic parallel global search, while the artificial neural 

network is capable of self-learning. To make full use of the advantages of the two methods, the two 

algorithms are integrated into a new algorithm featuring both the robustness and self-learning 

ability of the neural network and the global search ability of the genetic algorithm. The integration 

avoids the variation of the BP network trained with different initial weighs/thresholds, and prevents 

the fluctuation and non-convergence caused by improper initial weight/ threshold value. See Figure 

3 for the initial weight/threshold of genetic optimized BP network. 
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Fig.3 BP network flow chart of genetic algorithm optimization 

 

3.2 Neural network constitutive model 

According to the BP theorem, Kolmogorov theorem and Robert Hechi Nielson, approximation 

with arbitrary accuracy can be achieved with a BP network with one hidden layer [19]. This paper 

uses a three-layer BP network to establish the constitutive model of SMA. On the input layer, there 

are 6 neurons, namely rate, strain at this moment, and stress and strain at the previous moment and 

at the moment before the previous moment. On the output layer, there is only one neuron, i.e. the 

stress at this moment. On the hidden layer, the number of neurons is set as 20 by estimation. The 
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neuron activation function is logsig for the hidden layer and purelin for the output layer.  

 

3.3 Simulation results contrast of two kinds of constitutive model 

Using MATLAB, the author sets up the BP network constitutive model and the genetic 

optimized BP network model for austenite SMA. For the un-optimized BP network, the initial 

weight/threshold is assigned randomly by the system. For the optimized BP network, the initial 

weight/threshold is optimized by the genetic algorithm. The last cycle data of the material property 

test is taken as the training sample of BP network. The training function is trainlm, the maximum 

number of training is 1,000, the target error is 10-5, and the learning rate is 0.1. The neural network 

constitutive model of SMA can be obtained by writing the code of simulation program with the 

toolbox of neural network and genetic algorithm in MATLAB. When the diameter is 1.0mm, the 

loading rate is 60mm/min, and the strain amplitude is 6%, the comparison and error of stabilized 

stress-strain curves of SMA wire, respectively generated by the two models, are displayed in Figure 

4. As shown in the figure, the genetic optimized BP neural network constitutive model makes a 

better prediction of the mechanical behavior of SMA because its prediction curve is in better 

agreement with the experimental curve, its average absolute error is smaller and its model accuracy 

is higher. Thus, the genetic optimized BP neural network constitutive model is a highly accurate rate 

dependent constitutive model that can explicitly demonstrate the effect of loading rate on the 

super-elasticity of SMA. 
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Fig.4 The comparison of two BP networks’ prediction errors 

 



50 

 

4．Improved GA 

In traditional genetic algorithm, the location of SMA cable is often optimized through binary 

coding. If the genetic value of the locus of an individual equals 0, there is no SMA wire at the 

corresponding location of the structure; if the genetic value of the locus of an individual equals 1, 

there is a SMA wire at the corresponding location of the structure. After genetic crossover, the 

genetic value (0/1) of the new individual in traditional genetic algorithm would inevitably change, 

resulting in alterations to the number of SMA wires during the optimization process. In other words, 

the traditional genetic algorithm cannot solve the optimization issue when the number of SMA wire 

is fixed. Therefore, it is necessary to improve the traditional genetic algorithm so that it can 

optimize the configuration of SMA control system efficiently. This paper mainly improves the 

algorithm from three aspects: coding mode, crossover operator and mutation operator. 

The coding method is modified as follows: floating-point coding is used, but the variables are 

integer-constrained. The length of an individual indicates the number of SMA wires to be arranged, 

and the genetic value of an individual locus is the position number of the SMA wire. As the genetic 

value reflects all possible placement positions, the genetic values of the same individual should be 

different from each other so that only one SMA wire is arranged at the same location in the structure. 

The crossover operator is improved as follows: carry out crossover with the traditional genetic 

crossover operator to generate a new individual, and find out the loci of the same genetic value in 

the new individual; keep the genetic value of one locus, and take the genetic values of other loci as 

random and unique integers. The mutation operator is modified as follows: When the mutation is 

defined, the genetic value of the mutated locus can only be taken as the allele which is not the same 

as other genes. 

 

5. Optimal control of the structure under genetic optimized BP network 

constitutive model 

5.1 Model structure 

The model has a 2-span, 3-layer spatial structure. There are 2 spans along X-direction, both of 

which are 500mm in length, and 1-span along Z-direction. The entire structure is 600mm long. 

Vertically, the structure has three layers, each of which is 500mm in height. On each layer, a 12kg 
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steel plate is placed as floor counterweight. There are 6 nodes on each layer. Each node is provided 

with a 1kg steel cube and a fixed spiral hole reserved for fixing SMA wire. All rod pieces are Q235 

round pipes (wall thickness: 1mm; outside diameter: 10mm; elastic modulus: 206GPa; Poisson's 

ratio: 0.3; density: 7.85*103kg/m). The following assumptions are made to analyze the seismic 

response of the model structure: (1) All mass is concentrated at the nodes of each floor; (2) The 

initial operating temperature of each SMA wire is constant in its cross section and on the length 

direction. See Figure 5 for the nodes and rod pieces of the spatial model structure. 
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5.2 Optimization criteria and parameter setting 

To study the vibration control effect of SMA wire on the spatial model structure, the sum of 

lateral interlayer displacements of the structure is taken as the objective function of optimization. 

The optimization criterion is: 

1i i i

i i

J s s −=  = −                                                               (1) 

ijj
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s
s

j
=



                                                                      (2) 

Where, J is the value of the objective function; i  is the interlayer displacement of the i-th 

layer; si is the absolute lateral displacement of the its layer, which equals the average lateral 

displacement of all nodes of the i-th layer; sij is the absolute lateral displacement of the j-th node of 
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the i-th layer. 

According to the basic principle of genetic algorithm, the fitness function can be designed as 

follows: 

1

1 1

i i

i

Fit
J s s −

= =
−

                                                             (3) 

As required, this function is single-valued, continuous, non-negative, and maximized. The 

larger the Fit value of the individual of the genetic algorithm, the smaller the objective function 

value, the greater the fitness of the individual, and the better the configuration of the corresponding 

SMA control system. 

The operating parameters of the improved genetic algorithm are as follows: the initial 

population size is 40, the maximum number of generations is 50, and the crossover probability 

Pc=0.8. When the number of generations for which the optimal individual is invariant in the 

population does not exceed 5, the mutation probability Pm is 0.05. When the number of generations 

for which the optimal individual is invariant in the population surpasses 20, the mutation probability 

Pm is 0.2. When the number of generations for which the optimal individual is invariant in the 

population falls between 5 and 20, the mutation probability is linearly interpolated between Pm and 

GPm. 

 

5.3 Optimal control result and analysis 

The EL-Centro earthquake wave is selected as the seismic excitation for the optimization of 

austenitic SMA control system and the simulation of structural vibration response. The excitation 

lasts 20s at an interval of 0.02s. The peak acceleration amplitude is 200gal. The loading is 

unidirectional along the X direction. To realize a larger deformation of the SMA cable and to 

consume more energy, SMA wires are arranged only at oblique locations in the X-Y plane, that is, 

there are 24 possible locations to place SMA cable in the optimized configuration. The MATLAB is 

used to write a program to analyze the vibration control of the system. 

Table 1 lists the optimal placement location, objective function value, and corresponding 

damping effect of different number of SMAs in the spatial model structure. As shown in the table, 

the optimized SMA can suppress the seismic response of the spatial model structure. The improved 
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genetic algorithm has a smaller objective function value and better vibration control effect. With the 

increase of the number of generations, both the optimal value and the mean value of the objective 

function decrease gradually, indicating that the optimal value and the mean value are in a gradually 

converging and the range ability of the objective function value keeps shrinking. The damping 

effect is not necessarily direct proportional to the number of SMA cables. When the number of 

SMA exceeds a certain number, the damping effect is reduced. Therefore, the only way to 

economically and effectively reduce the seismic effect is to reasonably configure the number and 

location of the SMA cables. 

According to the optimization results, the damping effect is optimal when 4 SMA cables are 

arranged and configured by the genetic algorithm. In this case, the sum of interlayer displacements 

of the structure is 26.8mm, down by 44.51% from 48.3m in the uncontrolled condition. Figure 6-8 

and Figure 9-11 show the curves of displacement and acceleration time-history curves for each 

layer of the model structure under the uncontrolled, random and optimized conditions when 4 SMA 

cables are arranged and controlled by MATLAB simulation. As shown in the figures, the genetic 

optimized SMA control system is more effective in reducing the seismic response of the structure 

than the uncontrolled or random arrangements. On the whole, the seismic response of the controlled 

structure is more than 15% lower than that of the uncontrolled structure, and the control effect of 

the interlayer displacement response of the structure is more obvious than that of the acceleration 

response. Moreover, the damping effects of the first and second layers are more obvious than that of 

the third layer. On the bottom two layers, the inter-story displacement can be reduced by more than 

40%, and the acceleration response can be reduced by more than 20%. 

Tab.1 SMA optimal layout location 

Number of 

austenite SMA 

Location optimization 

results 

Objective function value 

(m) 

 Damping effect 

(%) 

 
Un-improv

e 
Improve 

0(Uncontrolled) ---------------------------- 0.0483 0.0483 ------------------- 

2 4,15 0.0352 0.0337 
30.2

3 

4 4,6,12,14 0.0285 0.0268     44.51 

6 2,6,7,13,14,20 0.0254 0.0235 51.35 

8 4,7,8,13,14,15,21,24 0.0231 0.0216 55.28 

12 2,8,9,10,11,13     0.0228 0.0212  56.11 
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14,15,19,20,22,23 

16 
2,3,4,5,9,10,11,12,13 

14,15,16,17,19,21,24 
0.0239 0.0228 

52.8

0 

20 
1,3,4,5,6,9,10,11,12,13,14 

15,16,17,19,20,21,22,23,24 
0.0269 0.0263 

45.5

5 

24 Suffusion 0.0271 0.0271  43.89 
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Fig.6 Displacement time history curve      Fig.7 Displacement time history curve  

at first layer                          at second layer   

0 2 4 6 8 10 12 14 16 18 20
-8

-6

-4

-2

0

2

4

6

8

10

Time(s)

In
te

r-
s
to

ry
 d

is
p

la
c
e

m
e

n
t(

m
m

)

 

 

Uncontrolled

Optimal control

 
0 2 4 6 8 10 12 14 16 18 20

-5

-4

-3

-2

-1

0

1

2

3

4

5

Time(s)

A
c
c
e

le
ra

ti
o

n
(m

/s
2
)

 

 

Uncontrolled

Optimal control

 

Fig.8 Displacement time history curve        Fig.9 Acceleration-time history curve 

   at third layer                            at first layer  
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Fig.10 Acceleration-time history curve      Fig.11 Acceleration-time history curve  

at second layer                          at first layer 

 

Conclusions  

On the basis of the SMA material property test, this paper establishes a genetic optimized BP 

network constitutive model for SMA by applying the intelligent algorithm. The prediction curve of 

the genetic optimized model has a better agreement with the experimental curve and smaller 

average absolute error than that of non-optimized BP network, indicating that the optimized model 

is a highly accurate rate dependent constitutive model that can explicitly demonstrate the effect of 

loading rate on the super-elasticity of SMA. 

As it ensures the number of SMAs is always as desired in the process of optimization, which 

is the precondition for obtaining better locations of SMA cables, the improved genetic algorithm 

boasts higher global searching efficiency and better damping effect. 

The structural vibration control analysis shows that: The damping effect is not necessarily 

direct proportional to the number of SMA cables. When the number of SMA exceeds a certain 

number, the damping effect is reduced. Therefore, the only way to economically and effectively 

reduce the seismic effect is to reasonably configure the number and location of the SMA cables. 

The genetic optimized BP network constitutive model is taken as the constitutive model of 

SMA cable. Optimized by the genetic algorithm, the SMA control system can more effectively 

reduce the seismic response of the structure. The damping effect is optimal when 4 SMA cables 

are arranged. In this case, the sum of interlayer displacements is down by 44.51%. Besides, the 

seismic response of the controlled structure is more than 15% lower than that of the uncontrolled 
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structure, and the control effect of the interlayer displacement response of the structure is more 

obvious than that of the acceleration response. 
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