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Abstract  

Kernel function, the centrepiece of Support Vector Machine (SVM), is classified into local 

kernel function and global kernel function. The features of the local and global kernel functions 

can be demonstrated all at once in a combined kernel function. This paper analyses the local 

capability of SVM kernel function through comparative analysis. Specifically, the local capability 

of combined kernel function was defined and analysed for the first time; the local capability 

features of typical kernel functions and combined kernel function were detailed and compared with 

each other. Finally, the correctness and rationality of the analysis was verified through simulation. 
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1. Introduction 

In 1995, Corinna Cortes and Vapnik et al. created the concept of Support Vector Machine 

(SVM), a general learning method based on the theory of statistical learning [1]. With strong 

nonlinear processing and generalization capacities, the method offers a desired solution to such 

problem as small sample set, non-linearity and high-dimension pattern recognition. Over the years, 

the SVM has been successfully utilized to tackle various non-linear and non-separable machine 
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learning problems, and thus classification and regression problems. At present, the SVM is 

attracting extensive attention from academia and being introduced to fault diagnosis. Its role in 

fault diagnosis is increasingly prominent thanks to the continuous development of SVM technology. 

As the core of the SVM, the kernel function can greatly enhance the nonlinear processing 

capability of the SVM without sacrificing the intrinsic linearity in high-dimensional space. Owing 

to its major impact on the performance of the SVM, the kernel function has become a focal point 

in the current SVM research. Scholars at home and abroad have explored the construction, type 

selection and parameter identification of the kernel function. The construction of the kernel 

function has to satisfy only one premise: Mercer’s theorem [2]. Under this premise, the function 

was constructed through function approximation, wavelet transform and various other means [3-

5]. One of the most popular type selection methods is cross validation, by which different kernel 

functions are respectively tried to train samples and the kernel function with the smallest overall 

error is selected as the optimal kernel function. The parameter identification and optimization are 

the main orientation of the kernel function research. 

The SVM constructed by single kernel functions based on single-feature space has a lot of 

defects in processing unevenly distributed samples. For example, suppose there is a feature 

containing a sub-feature obeying the polynomial distribution, and another sub-feature following 

the normal distribution. If the feature is treated with single kernel functions, it is impossible to 

represent the two different distributions properly but to depict a fraction of the feature [6]. Previous 

studies [7-9] have attempted to handle the classification problems with a combined kernel function 

featuring strong local information and global information treatment ability. This strategy can 

indeed make up for the defects of single kernel function in processing local and global information. 

However, there is not yet an effective method to optimize the weighting coefficients of the two 

basic kernel functions within the strategy. 

Depending on the local and global capabilities, the kernel function is classified into local 

kernel function and global kernel function. The former is good at learning, and the latter does well 

in extrapolation [10-11]. Currently, there are numerous different types of kernel functions, each of 

which has its unique features and nonlinear processing abilities. Without the loss of the basic 

features of the original kernel functions, the local kernel functions and the global kernel function 

can be linearly combined into a new kernel function, namely, combined kernel function. The 

combined kernel function integrates the strengths of local and global kernel functions to reflect the 

exact features of actual samples [12-13]. 

Despite the definition and feature analysis of classical kernel functions in [14], the existing 

research on the kernel function mainly concentrates on the construction, type selection and 
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parameter identification of the function. There is rare report on the specific local capability of 

kernel function and its effect on SVM performance. In fact, the local capability of kernel function 

is helpful to reveal the mechanism of SVM, and enhance the latter’s classification and regression 

abilities. 

To this end, this paper analyses the local capability of SVM kernel function through 

comparative analysis. Specifically, the local capability of combined kernel function was defined 

and analyzed for the first time; the local capability features of typical kernel functions and 

combined kernel functions were detailed and compared with each other. Finally, the correctness 

and rationality of the analysis was verified through simulation. 

The remainder of this paper is arranged as follows. Section 2 describes the problem; Section 

3 defines and analyses the local capability of a combined kernel function; Section 4 discusses and 

compares the local capabilities of kernel functions; Section 5 gives the simulation examples; 

Section 6 wraps up the research with some meaningful conclusions. 

 

2. Problem Description 

2.1 Typical Kernel Function 

The structure diagram of the SVM is shown in Figure 1. The upside of the SVM is attributable 

to the introduction of kernel function, which tactfully solves the problem of nonlinear classification. 

Through inner product operation, the kernel function converts high-dimensional primitive space 

into low-dimensional feature space. The introduction of kernel function greatly facilitates the 

learning control, as it improves the nonlinear processing ability of the SVM without sacrificing the 

inherent linearity of the SVM in the high-dimensional space. Due to the unique features of each 

kernel function, the SVMs based on different kernel functions differ in generalization ability. As 

mentioned above, the kernel function is classified into local kernel function and global kernel 

function. The local kernel function boasts strong learning ability in that it is good at extracting the 

locality of the sample, its value is only affected by neighbouring data points, and it does well in 

interpolation, while the global kernel function enjoys strong generalization ability in that it is good 

at extracting the global features of the sample, and its value is only affected by distant data points 

[14]. 
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Fig.1. The Structure Diagram of the SVM 

 

Let K(xi, xj) denote the kernel function, where xi and xj represent the sample data. There are 

six types of typical kernel functions, including two local kernel functions and three global kernel 

functions. 

The two typical local kernel functions are as follows: 

(1) Gaussian kernel function (RBF kernel) 

 

2
2( , )= ( / )exp

i j i j
K x x x x  

                                                                                                    (1) 

 

where σ>0 are the kernel parameters. The RBF kernel has stronger locality than general kernel 

functions. Since the function only needs to determine one parameter, it is relatively simple to 

establish the kernel function model. That is why it is one of the most widely used kernel functions 

[15]. 

(2) Fourier kernel function 

 

2

2

(1- )(1- )
( , )=

2(1 2 ( )+ )cos
i j

i j

q q
K x x

q x x q 
                                                                                              (2) 

 

where 0<q<1. The SVM based on Fourier kernel function has also been extensively applied [16]. 

The three typical global kernel functions are as follows: 

(3) Linear kernel function 

 

( , ) =
i j i j

K x x x x
                                                                                                                            (3) 
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Featuring few parameters and fast speed, the linear kernel function finds the optimal 

generalization for the SVM in the original space [17]. 

(4) Polynomial kernel function 

 

( , ) = (( )+ )q

i j i j
K x x x x c

                                                                                                                 (4) 

 

where c and q are kernel parameters (c≥0; q∈N). This kernel function helps to derive the qth order 

polynomial classifier. When c=1, the function is a common polynomial kernel, in which the 

mapping dimension and computing load are positively correlated with the value of q. Excessively 

high value of q will increase the VC dimension of the function set, complicate the learning machine, 

and weaken the generalization ability of the SVM. The phenomenon of “over-fitting” is very likely 

to occur in this case [18]. 

(5) Sigmoid kernel function 

 

( , )= ( ( ) )tanh
i j i j

K x x x x '  
                                                                                                        (5) 

 

where λ and φ are kernel parameters (λ>0, φ<0). This function makes it possible to develop a 

multilayer perceptron with a hidden layer for the SVM so that the learning machine finds the global 

optimum instead of the local minimum. The function also guarantees that the SVM can generalize 

unknown samples well and avoid over-learning [19]. 

 

2.2 Research Motivations 

Whereas each kernel has its own strengths, weaknesses and unique features, the decision 

function of the SVM varies substantially in classification performance depending on the specific 

kernel function adopted by the SVM. However, it is difficult for the SVM to achieve high 

performance based on a single kernel function only. The existing research on the kernel function 

mainly focuses on the selection of combined parameters and internal parameters, and seldom 

examines the SVM performance from the local capability of kernel function. In fact, the local 

capability of kernel function helps to reveal the mechanism of SVM, and enhance the latter’s 

classification and regression abilities. For this reason, the local capability of kernel function was 

taken as the object of this research. Hereinto, the local capability of the combined kernel function 

was defined and analysed for the first time, and the local capability was discussed for each kernel 
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function. The research lays a solid basis for ascertaining the relationship between local capability 

and kernel function. 

 

3. Definition of Local Capability and Feature Analysis of Kernel Function 

3.1 Definition of Local Capability of Kernel Function 

In the existing research, there is no clear definition about the local capability of kernel function. 

Some scholars expressed the concept of “local kernel function” as “a kernel function whose 

influence mainly concentrates in the neighbourhood of the test point, and dwindles substantially 

on samples far away from the test point.” In other words, a kernel function can be referred to as a 

local kernel function, provided that its function value fluctuates significantly near the test point and 

varies slightly at points far from the test point. Considering the difference between the left and right 

sides near the neighbourhood and the difference between left and right samples far from the test 

point, the author selected two endpoints near the test point, simulated the “variation of function 

value near the test point” with the slope change of the two endpoints, and took account of the 

interval length of the endpoints. In light of this, the local capability of kernel function is defined as 

follows: 

Definition 1: Let K(xi, xj) be a kernel function. Select two endpoints x1 and x2 in the vicinity 

of a test point x0. Denote the slope of the kernel function at the endpoints as K`(x0, x1) and K`(x0, 

x2), respectively, and denote the local capability of the kernel function as G. The specific structure 

diagram of the kernel function is shown in Figure 2. Then, the local capability of the kernel function 

is believed to hinge on two quantities: endpoint slope difference and endpoint interval length. 

Hence, the local capability of the kernel function can be expressed as: 

 

0 2 0 1

2 1

( , ) ( , )' 'K x x K x x
G

x x





                                                                                                           (6) 

 

By this definition, the local capability is positively correlated with the endpoint slope. The 

specific value of local capability depends on the test point, the two endpoints, and the internal 

parameters of the kernel function. 

342



1
x 2

x
0

x
0

( , )K x x

0 1
( , )'K x x

0 2
( , )'K x x

 

Fig.2. Structural Diagram of Local Capability of the Kernel Function 

 

3.2 Local Capability of Combined Kernel Function 

This sub-section gives the expression for the local capability of combined kernel function. 

With varied interpolation and extrapolation abilities, different kernel functions have different 

capabilities of learning and generalization. If these kernel functions are combined into a new kernel 

function, the resulting combined function will do well in both learning and generalization, which 

fits the purpose of the SVM. The performance of the combined kernel function can be controlled 

by integrating the prior knowledge of the process into the function through parameter adjustment. 

The local capability of combined kernel functions are expressed in the formula below. 

Theorem 1. If K1(xi, xj), K2(xi, xj), …, Kn(xi, xj) are n arbitrary kernel functions, the test point 

and the two endpoints are x0, x1 and x2, respectively, and Pi is the weighting coefficient of the i-th 

kernel function, then the local capability of the combined kernel function ∑ 𝑝𝑖𝐾𝑖
𝑛
𝑖=1 (𝑥0, 𝑥)  is 

expressed as: 

Proof: Assuming that the derivative of the i-th kernel function is ( , )'

i i j
K x x , the local 

capability Gi of the i-th kernel function can be expressed as follows according to Definition 1: 

 

0 2 0 1

2 1

( ( , ) ( , ))' '

i i

i

K x x K x x
G

x x





                                                                                                       (7) 

 

Then, the local capability of the combined kernel function is: 
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                                                                                              (8) 

 

As for the combined kernel function, there is the following theorem: 

Theorem 2. If the weighting coefficient in Theorem 1 satisfies 
1

=1
n

i

i

p


  in Theorem 1, the 

local G capability of the combined kernel function 0

1

( , )
n

i i

i

p K x x


  will not exceed the maximum 

local capability of single kernel functions: 
1 2

( )
, ...

max
i

i n
G G


  

where Gi is the local capability of the i-th kernel function. 

Proof: The following formula is obtained by scaling Formula (8): 

 

0 2 0 1

1 2 1

1

1 2
1

( ( , ) ( , ))

( )

' '

, ...
max

n
i i i

i

n

i i

i

n

i i
i n

i

p K x x K x x
G

x x

p G

p G























                                                                                                (9) 

 

Substituting 
1

=1
n

i

i

p


  into the above formula, we can get: 
1 2

( )
, ...

max
i

i n
G G


  

According to Theorem 2, the local capability of the combined kernel function is no greater 

than the maximum local capability of any constitutive kernel function. Since the combined kernel 

function is the weighted average of all constitutive kernel functions, the combined kernel function 

is bound to have a smaller local capability than the maximum constitutive kernel function. However, 

the remaining capabilities of the combined kernel function will be enhanced. Moreover, the 

combined kernel function will carry more diverse local and global features thanks to the varied 

weighting coefficients. 

 

4. Comparative Analysis of Local Capabilities of Kernel Functions 

This section mainly calculates and compares the local capabilities of kernel functions. 
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4.1 Calculation of Local Capabilities for Single Kernel Functions 

If the test point, the left endpoint, and the right endpoint are denoted as x0, x1 and x2, 

respectively, the load capability of each typical kernel function can be calculated by Formula (6). 

The local capability of RBF kernel is: 

 

2 2 2 2
2 0 1 0

2 0 1 0

2 1

( ) ( )

2 0 0 1

2

2 1

( ( , ) ( ( , ))

2( ) 2( )
=

( )

' '

G

x x x x

K x x K x x
G

x x

x x e x x e

x x

 



   






  



                                                                             (10) 

 

The local capability of Fourier kernel function is: 

 

2 0 1 0

2 1

2 0 1 0

2 1

( ( , ) ( ( , ))

= 0
( )

L

K x x K x x
G

x x

x x x x

x x











' '

                                                                                                     (11) 

 

The local capability of linear kernel function is: 

 

2 0 1 0

2 1

2 2

2 0 1 0

2 2 2 2

2 0 1 0

2 1

( ( , ) ( ( , ))

(1- )(1- ) ( ) (1- )(1- ) ( )

(1 2 ( )+ ) (1 2 ( )+ )
=

' '

sin sin

cos cos

F

K x x K x x
G

x x

q q x x q q x x

q x x q q x x q

x x






 


   



                                                            (12) 

 

The local capability of polynomial kernel function is: 

 

2 0 1 0

2 1

1 1

0 0 2 0 1

2 1

( ( , ) ( ( , ))

( ) ( )
=

' '

P

q q

K x x K x x
G

x x

q x x x c x x c

x x

 






  



                                                                                             (13) 

 

The local capability of Sigmoid kernel function is: 
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2 0 1 0

2 1

2 2

0 0 1 0 2

2 1

( ( , ) ( ( , ))

tanh ( ( ) )-tanh ( ( ) )
=

' '

S

K x x K x x
G

x x

x x x x x

x x

    






   



                                                                     (14) 

 

Note: According to Formulas (10)~(14), the local capability of kernel function depends on the 

internal parameters of the kernel function, in addition to the selected test point and left or right 

endpoint. 

 

4.2 Comparison of Local Capabilities among Various Kernel Functions 

4.2.1 Comparison of Local Capability between RBF Kernel and Fourier Kernel 

Function 

Theorem 3: If the test point, the left endpoint, and the right endpoint are denoted as x0, x1 and 

x2, and the distance between x0 and x1 equals that between x0 and x2, i.e., △x=x2-x0, then the local 

capability of RBF kernel is stronger than that of Fourier kernel function when σ <
√2(1−𝑞)

√(1+𝑞)
, weaker 

than the latter when σ >
√2(1−𝑞)

√(1+𝑞)
, equal to the latter when σ =

√2(1−𝑞)

√(1+𝑞)
. 

Proof: According to Formulas (10) and (11), we have: 

 

2 2 2 2
2 0 1 0( ) ( )

2 0 0 1

2

2 1

2 2

2 0 1 0

2 2 2 2

2 0 1 0

2 1

2( ) 2( )
-

( )

(1- )(1- ) ( ) (1- )(1- ) ( )

(1 2 ( )+ ) (1 2 ( )+ )

sin sin

cos cos

x x x x

G F

x x e x x e
G G

x x

q q x x q q x x

q x x q q x x q

x x

 



   
  

 


 


   



                                                       (15) 

 

Assuming that x0, x1 and x2 are fixed and x2-x0=x0-x1, then: 

 

2 2
2 0

2
( ) 2 0

2 2 2

2 0 2 0

(1- )(1- ) ( )2
-

(1 2 ( )+ ) ( )

sin

cos

x x

G F

q q x x
G G e

q x x q x x





  
 

  
                                                        (16) 

 

When the endpoints x1 and x2 are approaching the test point x0, 
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2 0 2 0

2

2 0

2 2 2

2 0 2 0

2 2

(1- )(1- ) ( )2
( - )=

(1 2 ( )+ ) ( )

2 1

(1- )

sin
lim lim

cos
G L

x x x x

q q x x
G G

q x x q x x

q

q





 




  


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                                                        (17) 

 

If 
2 2

2 1
0

(1- )

q

q


  , the solution 

2(1- )

1

q

q
 


 is obtained, indicating that the RBF kernel has 

stronger local capability than the Fourier kernel function. 

If 
2 2

2 1
0

(1- )

q

q


  , the solution 

2(1- )

1

q

q
 


 is obtained, indicating that the RBF kernel has 

weaker local capability than the Fourier kernel function. 

If 
2 2

2 1
0

(1- )

q

q


  , the solution 

2(1- )

1

q

q
 


 is obtained, indicating that the RBF kernel has 

an equal local capability to the Fourier kernel function. 

 

4.2.2 Local Capability Comparison between Local Kernel Function and Global 

Kernel Function 

By the definition of local capability G =
|𝑘𝑥2−𝑘𝑥1|

𝑥2−𝑥1
=≥ 0, the linear kernel function has the 

weakest local capability with GL=0. Below is a pairwise comparison of local capability between 

local and global kernel functions.  

Theorem 4: If the test point, the left endpoint, and the right endpoint are denoted as x0, x1 and 

x2, then RBF kernel has stronger local capability than polynomial kernel function. 

Proof: According to Formulas (10) and (13), we have: 

 

2 2
2 0

1 1

0 0 2 0 1( )

2

2 0

( ) ( )2
-

2( )

q q

x x

G p

q x x x c x x c
G G e

x x





 

 
  

 


                                                          (18) 

 

When the endpoints x1 and x2 are approaching the test point x0, lim
𝑥2→𝑥0

(𝐺𝐺 − 𝐺𝑃) =
2

𝜎2
> 0, 

indicating that the RBF kernel has stronger local capability than the polynomial kernel function. 

Theorem 5: If the test point, the left endpoint, and the right endpoint are denoted as x0, x1 and 

x2, then RBF kernel has stronger local capability than sigmoid kernel function. 

Proof: According to Formulas (10) and (14), we have: 
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2 2
2 0

2 2

0 0 1 0 2( )

2

2 0

tanh ( ( ) )-tanh ( ( ) )2
-

2( )

x x

G S

x x x x x
G G e

x x


    



 
   

 


                                  (19) 

 

When the endpoints x1 and x2 are approaching the test point x0, lim
𝑥2→𝑥0

(𝐺𝐺 − 𝐺𝑠) =
2

𝜎2
> 0, 

indicating that the RBF kernel has stronger local capability than the sigmoid kernel function. 

Theorem 6: If the test point, the left endpoint, and the right endpoint are denoted as x0, x1 and 

x2, then Fourier kernel function has stronger local capability than polynomial kernel function. 

Proof: According to Formulas (11) and (13), we have: 

 

1 12
0 0 2 0 12 0

2 2

2 0 2 0 2 0

( ) ( )(1- )(1- ) ( )
-

(1 2 ( )+ ) ( ) 2( )

sin

cos

q q

F p

q x x x c x x cq q x x
G G

q x x q x x x x

   
 

                                (20) 

 

When the endpoints x1 and x2 are approaching the test point x0, 
2 0

2

1
( - )= 0

(1- )
lim

F P
x x

q
G G

q


 , 

indicating that the Fourier kernel function has stronger local capability than the polynomial kernel 

function. 

Theorem 7: If the test point, the left endpoint, and the right endpoint are denoted as x0, x1 and 

x2, then Fourier kernel function has stronger local capability than sigmoid kernel function. 

Proof: According to Formulas (11) and (14), we have: 

 

2 22
0 0 1 0 22 0

2 2

2 0 2 0 2 0

tanh ( ( ) )-tanh ( ( ) )(1- )(1- ) ( )
-

(1 2 ( )+ ) ( ) 2( )

sin

cos
F S

x x x x xq q x x
G G

q x x q x x x x

       
 

   
                    (21) 

 

When the endpoints x1 and x2 are approaching the test point x0, 
2 0

2

1
( - )= 0

(1- )
lim

F S
x x

q
G G

q


 , 

indicating that the Fourier kernel function has stronger local capability than the sigmoid kernel 

function. 

 

4.2.3 Local Capability Comparison between Polynomial Kernel Function and 

Sigmoid Kernel Function 

Theorem 8. If the test point, the left endpoint, and the right endpoint are denoted as x0, x1 and 

x2, then polynomial kernel function has the same local capability with sigmoid kernel function. 

Proof: According to Formulas (13) and (14), we have: 
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1 1 2 2

0 0 2 0 1 0 0 1 0 2

2 0 2 0

( ) ( ) tanh ( ( ) )-tanh ( ( ) )
-

2( ) 2( )

q q

P S

q x x x c x x c x x x x x
G G

x x x x

           
 

 
 

 

When the endpoints x1 and x2 are approaching the test point x0, 
2 0

( - )=0lim
p S

x x
G G


, indicating 

that the polynomial kernel function has the same local capability with the sigmoid kernel function. 

 

4.2.4 Local Capability Comparison between Combined Kernel Function and 

Local Kernel Function 

Theorem 9. If the test point, the left endpoint, and the right endpoint are denoted as x0, x1 and 

x2, and the combined kernel function consists of a typical local kernel function and a typical global 

kernel function, then the local kernel function has greater local capability than the combined kernel 

function. 

Proof: Let K1(x0, x) be a local kernel function and K2(x0, x) be a global kernel function. If the 

weighting coefficients of K1(x0, x) and K2(x0, x) are denoted as P1 and P2, respectively, and the local 

capabilities of the two functions are denoted as Gl and Gg, respectively, then: 

When the endpoints x1 and x2 are approaching the test point x0, 
2 0

( )>0lim
l

x x
G


. Considering that 

the local capability of the combined kernel function is 
1 2

( )
, ...

max
i

i n
G G


 (Theorem 1), it is concluded 

that the local kernel function has stronger local capability than the combined kernel function. 

Theorem 10. If the test point, the left endpoint, and the right endpoint are denoted as x0, x1 

and x2, and the combined kernel function consists of two typical local kernel functions, then the 

local capability of the combined kernel function falls between those of two kernel functions. 

Proof: Let K1(x0, x) and K2(x0, x) be the two local kernel functions. If the weighting 

coefficients of K1(x0, x) and K2(x0, x) are denoted as P1 and P2, respectively, and the local 

capabilities of the two functions are denoted as Gl and Gg, respectively, then: 

When the endpoints x1 and x2 are approaching the test point x0, 
2 0

1 1
( )=lim

l
x x

G G


 and

2 0

2 2
( )=lim

l
x x

G G


. Considering that the local capability of the combined kernel function is 

2 0

1 1 2 2
( )=lim

x x
G p G p G


  (Theorem 8), we have 1 1 2 2

1 2 1 2
( ) ( )

, ,
min max

i i
i i

G p G p G G
 

   , which means the 

local capability of the combined kernel function falls between those of two kernel functions. 
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4.2.5 Comparative Analysis on Local Capabilities of Kernel Functions 

Based on the previous theorems, this sub-section comprehensively compares the local 

capabilities of local kernel functions, global kernel functions and their combined kernel functions. 

As mentioned above, the local capability of kernel function is closely related to the test point, left 

and right endpoints and the kernel function parameters. Rather than acquire the specific value of 

local capability of a certain kernel function, the author aimed to express the relative strength of 

local capabilities of the kernel functions. 

The following results are drawn from the comparative analysis: among the local kernel 

functions, RBF kernel has stronger local capability than Fourier kernel function; local kernel 

function possesses much stronger local capability than global kernel function; the linear kernel 

function has the weakest local capability (0); the local capabilities of the other global kernel 

functions are also 0 when the endpoints x1 and x2 are approaching the test point x0. To sum up, the 

local kernel function boasts the strongest local capability; the local capability of the combined 

kernel function involving a local and a global kernel function is stronger than that of the global 

kernel function and weaker than that of the local kernel function; the global kernel function comes 

bottom in terms of local capability.  

 

5. Experimental Simulation 

5.1 Verification of Local Capability of Single Kernel Function 

The kernel parameters are set as follows: RBF (σ=0.1), Fourier kernel function (q=0.8), 

polynomial kernel function (c=1; q=2); sigmoid kernel function (λ=2; φ=-Pi/4); the test point: 

x0=0.5; the endpoints: x1=0.45 and x2=0.55. The calculated local capabilities are listed in Table 1. 

 

Tab.1. Local Capabilities of Single Kernel Functions 

Kernel 

function 

Gaussian 

kernel 

function 

Fourier 

kernel 

function 

Linear 

kernel 

function 

Polynomial 

kernel function 

Sigmoid 

kernel 

function 

Local 

Capability 

Value 

155.7602 32.6401 0 0.5 0.5114 

 

As shown in Table 1, the local kernel function has much stronger local capability than the 

global kernel function; RBF kernel possesses stronger local capability than Fourier kernel function; 

the local capability of linear kernel function is 0 because the slope is constant at any point of the 

function; the polynomial kernel function has the same local capability with the sigmoid kernel 
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function. The simulation results are in good agreement with the results of the previous comparative 

analysis. 

 

5.2 Verification of Local Capability Features of Rbf 

The following experiment was conducted for the local kernel function RBF to test the local 

capability variation with the kernel parameter σ. The experimental procedures are presented below 

and its results are shown in Table 2. 

 

Tab.2. Local Capability Variation with Kernel Parameter σ of RBF 

Kernel parameter value 0 1.   0 2.   0 3.   0 4.   

Local Capability Value 155.7602 46.9707 21.6134 12.3062 

 

It is obvious that the local capability gradually decreased with the increase in the kernel 

parameter σ. The trend verifies the correctness of Theorem 2. 

 

5.3 Verification of Local Capability of Combined Kernel Functions  

Following the parameter settings in 5.1, the local capabilities of combined kernel functions 

were calculated with the weighting coefficients of 0.5 and 0.5. The calculated results are listed in 

Table 3. 

 

Tab.3. Local Capabilities of Combined Kernel Functions Involving Two Kernel Functions 

Local Capability 

Value 

Fourier kernel 

function 

Linear kernel 

function 

Polynomial kernel 

function 

Sigmoid kernel 

function 

Kernel function 94.2001 77.8801 77.6301 77.6244 

Fourier kernel 

function 
—— 16.3201 16.0701 16.0644 

Linear kernel 

function 
—— —— 0.25 0.2557 

Polynomial 

kernel function 
—— —— —— 0.5057 

 

As shown in Table 3, if the combined kernel functions are ranked in descending order of local 

capability, the combined kernel function involving two local kernel functions will come first, 

followed by the combined kernel function involving a local kernel function and a global kernel 

function, while the combined kernel function involving two global kernel functions will come 

bottom of the ranking. In the meantime, the combined kernel function outshines the two single 

constituent kernel functions in local capability. 
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Next, the author calculated the local capabilities of the combined kernel functions involving 

three kernel functions. Such a combined kernel function either consists of two local kernel 

functions and one global kernel function (two-local-one-global), or one local kernel function and 

two global kernel functions (one-local-two-global). The internal kernel parameters remain the same, 

and the weighting coefficients are 0.5,0.3 and 0.2. The results are presented in Tables 4 and 5. 

 

Tab.4. Local Capabilities of Combined Kernel Functions Involving Two Local Kernel Functions 

and One Global Kernel Function 

Local Capability Value 
Linear kernel 

function 

Polynomial kernel 

function 

Sigmoid kernel 

function 

Gaussian kernel function 

Fourier kernel function 
115.5601 108.9706 115.5090 

 

Tab.5. Local Capabilities of Combined Kernel Functions Involving One Local Kernel Function 

and Two Global Kernel Functions 

Local Capability 

Value 

Linear Kernel Function 

Polynomial kernel 

function 

Linear kernel 

function 

Sigmoid kernel 

function 

Polynomial kernel 

function 

Sigmoid kernel 

function 

Gaussian kernel 

function 
108.9821 108.9810 108.8810 

Fourier kernel 

function 
22.7981 22.7969 22.8031 

 

It can be seen from Table 4 that the local capability of any of the three “two-local-one-global” 

combined kernel functions is below the maximum local capability of the single kernel functions, 

which validates Theorem 2. Moreover, the three combined kernel functions have almost equivalent 

local capabilities. This is because the local capability of each combined kernel function mainly 

comes from the two local kernel functions. 

As can be seen from Table 5, each of the “one-local-two-global” combined kernel functions 

has a stronger local capability than any of its constituent single kernel function, owing to the 

influence of the local kernel function. In addition, the combined kernel function involving RBF 

outperforms that involving Fourier kernel function in local capability. 

 

Conclusion 

The research of kernel function is an important way to improve the SVM performance. 

However, the existing studies on kernel function mainly focus on type selection and parameter 

identification. In light of the problem, this paper analyses the local capability of SVM kernel 
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function through comparative analysis. Specifically, the local capability of combined kernel 

function was defined and analysed for the first time; the local capability features of typical kernel 

functions and combined kernel function were detailed and compared with each other. Finally, the 

correctness and rationality of the analysis was verified through simulation. 
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