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Abstract  

This paper deals with task scheduling problem of multi-processors by using T-LET plane 

method, and proposes a new algorithm named BLREF based on flow scheduling model. And the 

optimality of this algorithm is also demonstrated. Finally, we verify the superiority of it through 

specific examples. This is a simple algorithm is designed for simulation scheduling project, 

improvement of simulation technology has important significance. BLREF algorithm can pass the 

execution time of appropriating makes full use of the processor, so as to realize the feasible 

scheduling, is a kind of optimal multiprocessor scheduling algorithm. In addition, the 

misappropriation of the execution time for the analysis has very important reference value for other 

algorithm, and the other is of great reference value for multiprocessor scheduling problem research. 
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1. Introduction  

Two main strategies for multi-processor task scheduling are global scheme and classification 

scheme [1]. In the global scheduling scheme, every new real time task is always executed in 

different processors, and all processors run the same scheduling algorithm. While, in the 

classification scheme, all emergences of a task are executed in the same processor, and tasks are 

assigned to different processors beforehand by a task assignment algorithm. Typical 

multi-processor scheduling algorithms have many drawback [2, 3]. For example, the minimum 

relaxation algorithm and the global EDF algorithm, etc. are not the optimal algorithms, since we 

can find task set whose cut-off time could not be fulfilled by both algorithms. Therefore, this 

paper proposes an optimal multi-processors scheduling algorithm named BLREF, Can pass the 

execution time of appropriating makes full use of the processor, in order to realize the feasible 

scheduling, and gives proofs on its optimality.  

2. T-LET plane based BLREF scheduling algorithm 

Based on the L-C plane introduced by Dertouzos [4], this paper brings in a new method for 

16



abstracting task execution behaviors, and it is called the Time and Local remaining 

Execution-Time plane, abbreviated as T-LET plane. In T-LET plane, the flow scheduling model in 

uniprocessor is imported, which is shown by the imaginary line in Fig. 1, indicating that all tasks 

are executed with a constant velocity at any time. In the T-LET plane, the x-axis represents time, 

and y-axis indicates the remaining execution-time of the task. Let ri be the origin, then the 

imaginary line from point (0,ei) to (d,0) represents the flow scheduling with the slope being -ui . 

If Ti runs as shown in Fig.1, then its execution path can be expressed by the broken line from (0,ei) 

to (d,0). In this line, the proportions for x- and y-axis are equal, and the slope is -1 when the task 

runs, and 0 when it stops. 

 

 

Fig.1 T-LET plane 

 

Consider N tasks, their flow scheduling models could be constructed as shown in Fig.2. For 

all tasks, we can find an isosceles right triangle in every two successive scheduling events, and 

denote it as T−LET k , where k progressively increases along time. The bottom edge of the 

isosceles right triangle represents time, and the vertical edge in the left side means a part of the 

remaining execution-time for the tasks which is called the current remaining execution-time, 

denoted as li . And it will be exhausted before the termination of each T−LET k. In each T−LET 

plane, slopes of flow scheduling for each task could be constructed overlapped.  

  

 
Fig.2 T-LET plane for multi-task 
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Since the whole T-LET plane is the repetition in time, a good scheduling algorithm for a 

single T-LET plane would also work for all repeated ones.  

Fig.3 gives details on the k-th T-LET plane in which the status of each task is represented by 

a sign. The horizontal axis of the position of the sign is the current time, and the vertical axis 

denotes the current remaining execution-time of the task. Here, the current remaining 

execution-time means that it must be exhausted before time tk
f , and it is not the cut-off time of the 

task. After the decision of scheduling time, move the sign of each task on the T-LET plane. 

Though, the ideal path is the imaginary line in Fig.3, the sign of the task could move towards 

only two directions. If a task is selected and then executed, the sign of it will move down along 

the diagonal line, as TN does. In other situations, it will horizontally move right, as T1  

does. Consider M processors, there will be at most M signs moving along the diagonal line 

at the same time.  

The scheduling target on the k-th T-LET plane is moving signs of all tasks to the vertex at the 

rightmost on the T-LET plane. If the current remaining execution-time at time tk
f is 0, then we call 

it successful arrival, or current feasibility. If all task signs on each T-LET plane are current 

feasible, then these tasks may be schedulable on all continuous T-LET planes in time by moving 

their ideal paths.  

 

 

Fig.3 The k-th T-LET plane 

 

For convenience, the current relaxation time of a task is defined as 0. The hypotenuse of the 

T-LET plane has an important implication, that is, if a task sign strikes a certain edge, it means 

that the task has no current relaxation time at all. And if this task is not selected immediately, then 

it can’t satisfy current feasible scheduling target. We call the hypotenuse of the T-LET plane the 

non-current relaxation diagonal line. There are two moments when scheduling should be 

re-determined, and they are the moment when the current execution-time of a task is exhausted, 

denoted as event B, and when the current relaxation time is 0, denoted as event C.  

To distinguish these two events from traditional scheduling ones, such as release initiation of 
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tasks, we treat event B and C as sub-events. In order to satisfy current feasibility, first select M 

tasks with biggest current remaining execution-time, which is called Bigger Local Remaining 

Execution Time First (BLREF) strategy. Besides, it is not allowed to select tasks with 0 current 

remaining execution time, and signs for them are inactivated while those for tasks with current 

remaining execution time bigger than 0 is activated. At time tk
f, the events for the next task are 

released immediately, and T−LETk+1 for the next T-LET plane starts and BLREF keeps 

survivable. Thus, BLREF scheduling strategy is applied to each event.  

The fundamental feature of BLREF algorithm is its optimality in scheduling- the total usage 

ratio of the current task is no more than the capacity of all processors of the system. This 

algorithm can satisfy the cut-off time of all tasks. 

  
3. Necessary and sufficient conditions of “schedulability” in BLREF algorithm  
 

Definition 1. When events C and B occur, denoted as tj, where 0<j<f , call BLREF algorithm 

re-scheduling tasks. Here, define the current usage ratio of task 
iT  at time jt  as： 

, , / ( )i j i j f jr l t t   （1） 

where ,i jl  is the current remaining execution time of task 
iT  at time jt . 

Theorem 1. When all task signs on the k-1st T-LET plane move to the vertex on the rightmost, 

the initial current usage ration ,0i ir u  for all tasks iT  on the k th T-LET plane.  

Proof: If all task signs arrive at time 
1k

ft  and 0il , then they will restart from the ideal flow 

scheduling line. The slope of the flow scheduling path for task iT  is iu , then ifii utlr  /0,0, . 

End of the proof. 

 

 

Fig.4 The critical time 

 

We define the notion -critical time to describe necessary and sufficient conditions of 

non-current feasible of task signs.  
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Definition 2: When more than M task signs sequentially strike the non-current relaxation 

diagonal line, the critical time is the time when the first sub-event occurs, shown in Fig.4. On the 

right of the critical time, only M task signs are selected on the non-current relaxation diagonal 

line. And those not selected will be removed from the triangle, followed by the fact that they 

can’t move to the vertex on the rightmost on the T-LET plane.  

 

Theorem 2: All task signs on the T-LET plane are not current feasible if and only if at least one 

critical time occurs.  

Proof: Necessity: If one critical time appears, then task signs not selected will not in the T-LET 

plane. This is because slopes of task sign paths are 0 and -1 only, and signs not in T-LET plane are 

impossible to reach the rightmost vertex.  

Sufficiency: Suppose task signs are not current feasible, then there must be a critical time. If 

not, the number of task signs on the non-current relaxation diagonal line will never exceed M. 

Thus, these task signs will not be selected by BLREF algorithm until time ft . And this is 

contradictory to our hypothesis, so theorem is End of the proof.  

Definition 3:  The total current usage ratio of the j th sub-event is defined as Sj where 

  

,

1


N

j i j

i

S r .                             (2) 

 

Corollary 1: At the critical time of the j th sub-event, we have Sj>M. 

Proof: According to the ,i jr definition of 1,For tasks on the non-current relaxation diagonal line 

at critical time of the j th sub-event, the current remaining execution time ,i jl  is 
jf tt   since the 

T-LET plane is a isosceles right triangle. Therefore, we have 

 

,

1 1 1

, ( 0)
N M N

f j i
j i j i

i i i Mf j f j

t t l
S r M l

t t t t   


    

 
   .                  (3) 

End of the proof.  

4. Event C 

When a not selected task sign strikes the non-current relaxation diagonal line, then event C 

occurs. And the selected task signs will not strikes that line. Event C means there is no current 

relaxation time for the task which must be chosen immediately. In Fig.5, event C happens at time 

tc , and task T M+1 strikes the non-current relaxation diagonal line.      

20



 

Fig.5.  Event C 

 

In Fig. 5, give a lower subscript i than task sign with higher current usage ratio, namely, 

,, ,1, iiii rrj   where in 1≤i<N .In this case, BLREF will select M tasks from T1 to TM, and their 

signs will move along the diagonal line.  

Lemma 1:  Event C happens at time ct , and 1,11,   cici rr  where 1 1i N   , then we have 

1, 1 , 11 M c M cr r    . 

Proof: If the sub-event at time ct  is event C, then the time when task TM+1 strikes the 

non-current relaxation diagonal line must be early than that when task TM strikes the bottom of 

the T-LET plane.  The time when task TM+1 strikes NLLD is 1 1 1, 1( ),c f c M ct t t l      among 

them 1f c  . Contrarily, the time when task TM strikes the bottom of the T-LET plane is 

1 , 1c M ct l  , then we obtain  

1 1 1, 1 1 , 1( )c f c M c c M ct t t l t l                                 (4) 

 

1 1, 1 , 1

1

1 1

, ( 0)
f c M c M c

f c

f c f c

t t l l
t t

t t t t

   



 

 
  

                   (5) 

Namely,  

1,1,11   cMcM rr    (6) 

 

End of the proof.  

Corollary 2: Event C happens at time ct  and 1,11,   cici rr , where 1≤i<N, then  
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)1( 1,11   cMc rMs           (7) 

 

Proof:  

 

1,
1

*

1,
1 1

1,1,1 



 

    cM

M

i
ci

M

i

N

Mi
cicic rMrrrS   （8） 

 

By Lemma 1, we have 

 

)1( 1,1

*

1,

*

  cMcM rMrM  （9） 

)1( 1,11   cMc rMS        (10) 

 

End of the proof.  

 

Theorem 3: Event C occurs at time ct  and MSc 1 , then for fcc  0, and 

1,11,   cici rr , where 1≤i<N, we have  

MSc  . 

Proof: Let   1,111 cMcfcc ltttt . The total current remaining execution time at time 

1ct  is 
cc

N

i
fci Sttl )( 1

1
1, 


   , and decreases by *M  when M task signs moving along the 

diagonal line. Therefore, we have  

 

MSttStt ccfccf   11)()(

 （11

） 

 

cfcM ttl  1,1  (12） 

 

MlttSttSl cMcfccfccM )()(* 1,11111,1  

 （13

） 

 

Thus, we obtain 

22



M
r

S
r

S
cM

c

cM

c )
1

1(
1

1,1

1

1,1 







 （14

） 

It can be seen that Sc is a linear function regarding Sc−1 whose function graph is shown if 

Fig.6. From Corollary 2, when event C happens at time 
ct , we have )1( 1,11   cMc rMS . 

Therefore, when MSc 1 , MSc   holds.  End of the proof.  

 

Fig. 6 Linear function of event C 

5. Event B 

When a selected task sign strikes the bottom of the T-LET plane, then event B occurs. And 

those signs that are not selected will not strike the bottom. Event B means that there is no current 

remaining time for the tasks, so it is a better choice to assign the processor to run another task, 

shown in Fig.7. In this figure, event B happens at time tb , and task TM+1 strikes the bottom at the 

same time. Similar to analyzing event C, give a lower subscript i to the task sign with higher 

usage ratio, namely, jiji rrj ,1,,  , where Ni 1 .  
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Fig. 7 Event B 

Lemma 2.  Event B happens at time tb and ri b−1≥ri+1,b−1, where 1≤i<N , then we have  

1,1,11   bMbM rr  

Proof: If the sub-event at time bt  is event B, then the time when task 
MT  strikes the bottom of 

the T-LET plane (at time 1,1   bMb lt ) is earlier than that when task 
1MT  strikes the non-current 

relaxation diagonal line (at time )( 1,111   bMbfb lttt , 

1 0f bt t   ). Then,  

 

)( 1,1111,1   bMbfbbMb ltttlt  （15） 

 

1

1,11

1

1,














 bf

bMbf

bf

bM

tt

ltt

tt

l
 （16） 

 

1,1,11   bMbM rr                   （17） 

 

End of the proof. 

 

Corollary 3. Event B happens at time bt  and 1,11,   bibi rr , where Ni 1 , then   

1,

*

1   bMb rMS . 

Proof:      1,
1 1

*

1,1,
1

1,1 
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


     bM

M

Mi

M

i
bibi

M

i
bib rMrrrS                   (18) 

End of the proof.   

Theorem 4. Event B happens at time bt  and MSb 1
. In addition, 1,11,   bibi rr , where 

Ni 1 ,  then MSb  . 

Proof: Let 11,   bbbM ttl . The total current remaining execution time at 1bt  is 

24



bbf

M

i

bi Sttl )( 1

1

1, 



  , and M task signs decrease by 1,

*

bMlM  when they are moving along the 

diagonal line. Therefore, we have  

 

1,

*

111 )()(   bMbbfbbf lMSttStt  （19） 

 

1,1   bMbfbf ltttt （20） 

 

So,      

1,

*

111,1 )()(   bMbbfbbMbf lMSttSltt   （21） 

Thus, we get  

M
r

r
S

r
S

bM

bM

b

bM

b

1,

1,

1

1, 11

1







 



  （22） 

The function graph for this linear function is shown in Fig.8. From Corollary 3, when event 

B occurs at time bt , we have 1,

*

1   bMb rMS . Hence, MSb  when MSb 1
. End of the proof. 

 

 
 

Fig.8 Linear function for event B 

 
6. Proof on the current feasibility of BLREF algorithm on the T-LET plane 

 

Aforementioned is under the condition of N>M. When N ≤M , the task signs on the T-LET 

plane are always current feasible in BLREF algorithm. 

  

Theorem 5. When N ≤M , the task signs on the T-LET plane are always current feasible in 

BLREF . 

Proof : First,  assume that task signs are not current feasible in BLREF when N ≤M . Thus, 

there must exist a critical time in the T-LET plane from Theorem 2. But, the critical time indicates 

there must be at least one task sign that is not selected. And this is contradictory to the hypothesis 
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stating that all task signs are selectable. End of the proof. 

When the number of tasks is smaller than that of processors, BLREF could select and 

execute all tasks until their current remaining execution time becomes to 0. Event C is impossible 

to occur when N≤M [5, 6], since all task signs are selectable and moving along the diagonal line.  

Now , we discuss the current feasibility in the case of N>M. 

 

Theorem 6. When N>M and if S0≤M, then task signs in BLREF is always current feasible.  

Proof: Use inductive method to prove it based on Theorem 3 and Theorem 4 which show that if 

Sj-1≤M then we have Sj−1≤M, where j is the time at which sub-event happens. From Corollary 3, 

for each j , Sj<M holds, then there exists no critical time in the T-LET plane. And from Theorem 2 

we know that task signs are current feasible if there isn’t critical time.  End of the proof.  

Given N (N>M) task signs in the T-LET plane, and S0≤M, there exists no critical time if 

events B and C occur from Theorem 6.  Once event B happens, then the number of inactivated 

task signs will decrease until M signs are remained. After that, all task signs are selectable from 

Theorem 5, followed by the occurrence of sequential event B. Finally, they will reach the vertex 

at the rightmost of the T-LET plane. 

Consider periodical tasks, if the total task usage ratio Mu
N

i
i 

1

, then task signs in the first 

continuous T-LET plane are current feasible due to Theorem 5 and Theorem 6. For the second 

continuous T-LET plane S0<M, BLREF guarantees the current feasibility of each T-LET plane by 

the induction of Theorem 1, and this will make all tasks meet their cut-off time. Therefore, we get 

the necessary and sufficient conditions of schedulability of tasks for multi-processor.  

Theorem 7. Let 



N

i

iuS
1

, then the task set is schedulable in BLREF algorithm if and only 

if S≤M. 

Proof:  It is obvious of the sufficiency.  Proof of the necessity: from the introduction of 

T-LET plane and BLREF algorithm , we can know that as long as the T−LET1 plane is current 

feasible, then the whole task set is current feasible, too. So, we just need to prove the T−LET1 

plane is current feasible under the precondition S≤M.  Here, we use reduction to absurdity 

method to prove it.  If T−LET1 is not current feasible, then there must be a critical time t such 

that St>M. But , M processors are always busy before time t from BLREF algorithm. Thus, we get 

S>M which is contradictory to the hypothesis. End of the proof.  

7. Comparison and analysis of algorithms 

In this section, two task sets are introduced, and execution results of several typical 

multi-processor scheduling algorithms and our proposed algorithm are also presented.  

The first task set is listed in Table 1, where 

  

3
60

169

6

6

6

5

5

2

4

1

3

15

1
1 

i
iuS .  

26



 

From the conclusion in the previous section, we know that this task set is satiable using 

BLREF algorithm. 

 

Task Cut-off time Execution time Relaxation degree 

T1 3 1 2 

T2 4 1 3 

T3 5 2 3 

T4 6 5 1 

T5 6 6 0 

 

Tab. 1 First task set 

 

The executive process of the minimum relaxation algorithm for this task set is shown in a 

Gantt diagram as Fig. 9.  

 

 

Fig.9. Gantt diagram of the minimum relaxation algorithm 

 

From Fig.9 we can find that the minimum relaxation algorithm can meet the cut-off time of 

all tasks in the set. The Gantt diagram of the global EDF algorithm is shown in Fig. 10.  

 

Fig.10. Gantt diagram of the global EDF algorithm 
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Fig. 11 Flow chart of BLREF algorithm 

From Fig.10 we can see that the global EDF algorithm can’t meet the cut-off time of all 

tasks, shown by the imaginary lines. This task set is schedulable in case that the period of time 

that exceeds the cut-off time of task T5 could be shifted onto processor 3 for execution, and task 

T3 is delayed one unit time.  

 

Using BLREF algorithm to execute this task set, and the process is shown by the T-LET 

plane as Fig 11.  

 

From this figure we find BLREF algorithm can meet the cut-off time of all tasks in the set. The 

minimum relaxation algorithm is able to satisfy all tasks in the first task set, but it is not the best 

algorithm. However, the second task set is not met by the minimum relaxation algorithm, shown 

in Table 2. 

Tab 2. Second task set 

 

 

 

 

 

 

 

Since 3
12

35

6

5

3

2

3
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1
2 

i
iuS , we know that this task set is satiable by using BLREF 

algorithm from the conclusion in the previous section. 

The execution process of the minimum relaxation algorithm shown by Gantt diagram is 

available in Fig. 12.  

 

Task Cut-off time Execution time Relaxation degree 

T1 3 2 1 

T2 3 2 1 

T3 4 3 1 

T4 6 5 1 
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Fig. 12 Gantt diagram of the minimum relaxation algorithm on the second task set 

 

From Fig.12 we can find that the minimum relaxation algorithm can’t meet the cut-off time 

of all tasks in the second set. The execution process of BLREF algorithm expressed by the T-LET 

plane is shown in Fig.13. 

 

 

 

Fig. 13 The flow chart of BLREF algorithm on the second task set 

 

For the global EDF algorithm, this task set may be met if properly shifting the execution 

order of tasks, that is, postponing tasks whose cut-off time is not reached and executing tasks that 

are close to the deadline in advance.  

8. Conclusion  

This paper proposes a BLREF algorithm which can make full use of processors by diverting 
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the execution time, and it realizes the feasibility of scheduling. BLREF is an optimal 

multi-processor scheduling algorithm. Besides, the diversion of execution time has significant 

reference value for analyzing other algorithms. The quality of an algorithm largely depends on 

the degree of diversion, the more the higher efficiency will be [7,8]. Compare to other algorithms, 

BLREF has more task switching. Conversely, the global EDF is a very effective algorithm in 

terms of reducing the number of preemptions, though it is not an optimal algorithm [9,10]. The 

study in this paper is very indicative when considering other multi-processor scheduling 

problems.    
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