
AMSE JOURNALS-AMSE IIETA publication-2017- Series: Advances D; Vol. 22; N°1; pp 16-30

Submitted Jan. 2017; Revised March 3, 2017, Accepted April 15, 2017

A Study on Multi-Processor Scheduling Algorithm

 Y. Duan*, W. Chen

Dept of Basic Science Guangdong University of Science and Technology, Dongguan, Guangdong,

China (dy_01155@126.com)

Abstract

This paper deals with task scheduling problem of multi-processors by using T-LET plane

method, and proposes a new algorithm named BLREF based on flow scheduling model. And the

optimality of this algorithm is also demonstrated. Finally, we verify the superiority of it through

specific examples. This is a simple algorithm is designed for simulation scheduling project,

improvement of simulation technology has important significance. BLREF algorithm can pass the

execution time of appropriating makes full use of the processor, so as to realize the feasible

scheduling, is a kind of optimal multiprocessor scheduling algorithm. In addition, the

misappropriation of the execution time for the analysis has very important reference value for other

algorithm, and the other is of great reference value for multiprocessor scheduling problem research.

Keywords

Scheduling algorithm, multi-processors, T-LET plane, event C, event B.

1. Introduction

Two main strategies for multi-processor task scheduling are global scheme and classification

scheme [1]. In the global scheduling scheme, every new real time task is always executed in

different processors, and all processors run the same scheduling algorithm. While, in the

classification scheme, all emergences of a task are executed in the same processor, and tasks are

assigned to different processors beforehand by a task assignment algorithm. Typical

multi-processor scheduling algorithms have many drawback [2, 3]. For example, the minimum

relaxation algorithm and the global EDF algorithm, etc. are not the optimal algorithms, since we

can find task set whose cut-off time could not be fulfilled by both algorithms. Therefore, this

paper proposes an optimal multi-processors scheduling algorithm named BLREF, Can pass the

execution time of appropriating makes full use of the processor, in order to realize the feasible

scheduling, and gives proofs on its optimality.

2. T-LET plane based BLREF scheduling algorithm

Based on the L-C plane introduced by Dertouzos [4], this paper brings in a new method for

16

abstracting task execution behaviors, and it is called the Time and Local remaining

Execution-Time plane, abbreviated as T-LET plane. In T-LET plane, the flow scheduling model in

uniprocessor is imported, which is shown by the imaginary line in Fig. 1, indicating that all tasks

are executed with a constant velocity at any time. In the T-LET plane, the x-axis represents time,

and y-axis indicates the remaining execution-time of the task. Let ri be the origin, then the

imaginary line from point (0,ei) to (d,0) represents the flow scheduling with the slope being -ui .

If Ti runs as shown in Fig.1, then its execution path can be expressed by the broken line from (0,ei)

to (d,0). In this line, the proportions for x- and y-axis are equal, and the slope is -1 when the task

runs, and 0 when it stops.

Fig.1 T-LET plane

Consider N tasks, their flow scheduling models could be constructed as shown in Fig.2. For

all tasks, we can find an isosceles right triangle in every two successive scheduling events, and

denote it as T−LET k , where k progressively increases along time. The bottom edge of the

isosceles right triangle represents time, and the vertical edge in the left side means a part of the

remaining execution-time for the tasks which is called the current remaining execution-time,

denoted as li . And it will be exhausted before the termination of each T−LET k. In each T−LET

plane, slopes of flow scheduling for each task could be constructed overlapped.

Fig.2 T-LET plane for multi-task

17

Since the whole T-LET plane is the repetition in time, a good scheduling algorithm for a

single T-LET plane would also work for all repeated ones.

Fig.3 gives details on the k-th T-LET plane in which the status of each task is represented by

a sign. The horizontal axis of the position of the sign is the current time, and the vertical axis

denotes the current remaining execution-time of the task. Here, the current remaining

execution-time means that it must be exhausted before time tk
f , and it is not the cut-off time of the

task. After the decision of scheduling time, move the sign of each task on the T-LET plane.

Though, the ideal path is the imaginary line in Fig.3, the sign of the task could move towards

only two directions. If a task is selected and then executed, the sign of it will move down along

the diagonal line, as TN does. In other situations, it will horizontally move right, as T1

does. Consider M processors, there will be at most M signs moving along the diagonal line

at the same time.

The scheduling target on the k-th T-LET plane is moving signs of all tasks to the vertex at the

rightmost on the T-LET plane. If the current remaining execution-time at time tk
f is 0, then we call

it successful arrival, or current feasibility. If all task signs on each T-LET plane are current

feasible, then these tasks may be schedulable on all continuous T-LET planes in time by moving

their ideal paths.

Fig.3 The k-th T-LET plane

For convenience, the current relaxation time of a task is defined as 0. The hypotenuse of the

T-LET plane has an important implication, that is, if a task sign strikes a certain edge, it means

that the task has no current relaxation time at all. And if this task is not selected immediately, then

it can’t satisfy current feasible scheduling target. We call the hypotenuse of the T-LET plane the

non-current relaxation diagonal line. There are two moments when scheduling should be

re-determined, and they are the moment when the current execution-time of a task is exhausted,

denoted as event B, and when the current relaxation time is 0, denoted as event C.

To distinguish these two events from traditional scheduling ones, such as release initiation of

18

tasks, we treat event B and C as sub-events. In order to satisfy current feasibility, first select M

tasks with biggest current remaining execution-time, which is called Bigger Local Remaining

Execution Time First (BLREF) strategy. Besides, it is not allowed to select tasks with 0 current

remaining execution time, and signs for them are inactivated while those for tasks with current

remaining execution time bigger than 0 is activated. At time tk
f, the events for the next task are

released immediately, and T−LETk+1 for the next T-LET plane starts and BLREF keeps

survivable. Thus, BLREF scheduling strategy is applied to each event.

The fundamental feature of BLREF algorithm is its optimality in scheduling- the total usage

ratio of the current task is no more than the capacity of all processors of the system. This

algorithm can satisfy the cut-off time of all tasks.

3. Necessary and sufficient conditions of “schedulability” in BLREF algorithm

Definition 1. When events C and B occur, denoted as tj, where 0<j<f , call BLREF algorithm

re-scheduling tasks. Here, define the current usage ratio of task
iT at time jt as：

, , / ()i j i j f jr l t t  （1）

where ,i jl is the current remaining execution time of task
iT at time jt .

Theorem 1. When all task signs on the k-1st T-LET plane move to the vertex on the rightmost,

the initial current usage ration ,0i ir u for all tasks iT on the k th T-LET plane.

Proof: If all task signs arrive at time
1k

ft and 0il , then they will restart from the ideal flow

scheduling line. The slope of the flow scheduling path for task iT is iu , then ifii utlr  /0,0, .

End of the proof.

Fig.4 The critical time

We define the notion -critical time to describe necessary and sufficient conditions of

non-current feasible of task signs.

19

Definition 2: When more than M task signs sequentially strike the non-current relaxation

diagonal line, the critical time is the time when the first sub-event occurs, shown in Fig.4. On the

right of the critical time, only M task signs are selected on the non-current relaxation diagonal

line. And those not selected will be removed from the triangle, followed by the fact that they

can’t move to the vertex on the rightmost on the T-LET plane.

Theorem 2: All task signs on the T-LET plane are not current feasible if and only if at least one

critical time occurs.

Proof: Necessity: If one critical time appears, then task signs not selected will not in the T-LET

plane. This is because slopes of task sign paths are 0 and -1 only, and signs not in T-LET plane are

impossible to reach the rightmost vertex.

Sufficiency: Suppose task signs are not current feasible, then there must be a critical time. If

not, the number of task signs on the non-current relaxation diagonal line will never exceed M.

Thus, these task signs will not be selected by BLREF algorithm until time ft . And this is

contradictory to our hypothesis, so theorem is End of the proof.

Definition 3: The total current usage ratio of the j th sub-event is defined as Sj where

,

1


N

j i j

i

S r . (2)

Corollary 1: At the critical time of the j th sub-event, we have Sj>M.

Proof: According to the ,i jr definition of 1,For tasks on the non-current relaxation diagonal line

at critical time of the j th sub-event, the current remaining execution time ,i jl is
jf tt  since the

T-LET plane is a isosceles right triangle. Therefore, we have

,

1 1 1

, (0)
N M N

f j i
j i j i

i i i Mf j f j

t t l
S r M l

t t t t   


    

 
   . (3)

End of the proof.

4. Event C

When a not selected task sign strikes the non-current relaxation diagonal line, then event C

occurs. And the selected task signs will not strikes that line. Event C means there is no current

relaxation time for the task which must be chosen immediately. In Fig.5, event C happens at time

tc , and task T M+1 strikes the non-current relaxation diagonal line.

20

Fig.5. Event C

In Fig. 5, give a lower subscript i than task sign with higher current usage ratio, namely,

,, ,1, iiii rrj  where in 1≤i<N .In this case, BLREF will select M tasks from T1 to TM, and their

signs will move along the diagonal line.

Lemma 1: Event C happens at time ct , and 1,11,   cici rr where 1 1i N   , then we have

1, 1 , 11 M c M cr r    .

Proof: If the sub-event at time ct is event C, then the time when task TM+1 strikes the

non-current relaxation diagonal line must be early than that when task TM strikes the bottom of

the T-LET plane. The time when task TM+1 strikes NLLD is 1 1 1, 1(),c f c M ct t t l      among

them 1f c  . Contrarily, the time when task TM strikes the bottom of the T-LET plane is

1 , 1c M ct l  , then we obtain

1 1 1, 1 1 , 1()c f c M c c M ct t t l t l          (4)

1 1, 1 , 1

1

1 1

, (0)
f c M c M c

f c

f c f c

t t l l
t t

t t t t

   



 

 
  

  (5)

Namely,

1,1,11   cMcM rr (6)

End of the proof.

Corollary 2: Event C happens at time ct and 1,11,   cici rr , where 1≤i<N, then

21

)1(1,11   cMc rMs (7)

Proof:

1,
1

*

1,
1 1

1,1,1 



 

    cM

M

i
ci

M

i

N

Mi
cicic rMrrrS （8）

By Lemma 1, we have

)1(1,1

*

1,

*

  cMcM rMrM （9）

)1(1,11   cMc rMS (10)

End of the proof.

Theorem 3: Event C occurs at time ct and MSc 1 , then for fcc  0, and

1,11,   cici rr , where 1≤i<N, we have

MSc  .

Proof: Let   1,111 cMcfcc ltttt . The total current remaining execution time at time

1ct is
cc

N

i
fci Sttl)(1

1
1, 


   , and decreases by *M when M task signs moving along the

diagonal line. Therefore, we have

MSttStt ccfccf   11)()(

 （11

）

cfcM ttl  1,1 (12）

MlttSttSl cMcfccfccM)()(* 1,11111,1  

 （13

）

Thus, we obtain

22

M
r

S
r

S
cM

c

cM

c)
1

1(
1

1,1

1

1,1 







 （14

）

It can be seen that Sc is a linear function regarding Sc−1 whose function graph is shown if

Fig.6. From Corollary 2, when event C happens at time
ct , we have)1(1,11   cMc rMS .

Therefore, when MSc 1 , MSc  holds. End of the proof.

Fig. 6 Linear function of event C

5. Event B

When a selected task sign strikes the bottom of the T-LET plane, then event B occurs. And

those signs that are not selected will not strike the bottom. Event B means that there is no current

remaining time for the tasks, so it is a better choice to assign the processor to run another task,

shown in Fig.7. In this figure, event B happens at time tb , and task TM+1 strikes the bottom at the

same time. Similar to analyzing event C, give a lower subscript i to the task sign with higher

usage ratio, namely, jiji rrj ,1,,  , where Ni 1 .

23

Fig. 7 Event B

Lemma 2. Event B happens at time tb and ri b−1≥ri+1,b−1, where 1≤i<N , then we have

1,1,11   bMbM rr

Proof: If the sub-event at time bt is event B, then the time when task
MT strikes the bottom of

the T-LET plane (at time 1,1   bMb lt) is earlier than that when task
1MT strikes the non-current

relaxation diagonal line (at time)(1,111   bMbfb lttt ,

1 0f bt t  ). Then,

)(1,1111,1   bMbfbbMb ltttlt （15）

1

1,11

1

1,














 bf

bMbf

bf

bM

tt

ltt

tt

l
 （16）

1,1,11   bMbM rr （17）

End of the proof.

Corollary 3. Event B happens at time bt and 1,11,   bibi rr , where Ni 1 , then

1,

*

1   bMb rMS .

Proof: 1,
1 1

*

1,1,
1

1,1 
 




     bM

M

Mi

M

i
bibi

M

i
bib rMrrrS (18)

End of the proof.

Theorem 4. Event B happens at time bt and MSb 1
. In addition, 1,11,   bibi rr , where

Ni 1 , then MSb  .

Proof: Let 11,   bbbM ttl . The total current remaining execution time at 1bt is

24

bbf

M

i

bi Sttl)(1

1

1, 



  , and M task signs decrease by 1,

*

bMlM when they are moving along the

diagonal line. Therefore, we have

1,

*

111)()(  bMbbfbbf lMSttStt （19）

1,1   bMbfbf ltttt （20）

So,

1,

*

111,1)()(  bMbbfbbMbf lMSttSltt （21）

Thus, we get

M
r

r
S

r
S

bM

bM

b

bM

b

1,

1,

1

1, 11

1







 



 （22）

The function graph for this linear function is shown in Fig.8. From Corollary 3, when event

B occurs at time bt , we have 1,

*

1   bMb rMS . Hence, MSb  when MSb 1
. End of the proof.

Fig.8 Linear function for event B

6. Proof on the current feasibility of BLREF algorithm on the T-LET plane

Aforementioned is under the condition of N>M. When N ≤M , the task signs on the T-LET

plane are always current feasible in BLREF algorithm.

Theorem 5. When N ≤M , the task signs on the T-LET plane are always current feasible in

BLREF .

Proof : First, assume that task signs are not current feasible in BLREF when N ≤M . Thus,

there must exist a critical time in the T-LET plane from Theorem 2. But, the critical time indicates

there must be at least one task sign that is not selected. And this is contradictory to the hypothesis

25

stating that all task signs are selectable. End of the proof.

When the number of tasks is smaller than that of processors, BLREF could select and

execute all tasks until their current remaining execution time becomes to 0. Event C is impossible

to occur when N≤M [5, 6], since all task signs are selectable and moving along the diagonal line.

Now , we discuss the current feasibility in the case of N>M.

Theorem 6. When N>M and if S0≤M, then task signs in BLREF is always current feasible.

Proof: Use inductive method to prove it based on Theorem 3 and Theorem 4 which show that if

Sj-1≤M then we have Sj−1≤M, where j is the time at which sub-event happens. From Corollary 3,

for each j , Sj<M holds, then there exists no critical time in the T-LET plane. And from Theorem 2

we know that task signs are current feasible if there isn’t critical time. End of the proof.

Given N (N>M) task signs in the T-LET plane, and S0≤M, there exists no critical time if

events B and C occur from Theorem 6. Once event B happens, then the number of inactivated

task signs will decrease until M signs are remained. After that, all task signs are selectable from

Theorem 5, followed by the occurrence of sequential event B. Finally, they will reach the vertex

at the rightmost of the T-LET plane.

Consider periodical tasks, if the total task usage ratio Mu
N

i
i 

1

, then task signs in the first

continuous T-LET plane are current feasible due to Theorem 5 and Theorem 6. For the second

continuous T-LET plane S0<M, BLREF guarantees the current feasibility of each T-LET plane by

the induction of Theorem 1, and this will make all tasks meet their cut-off time. Therefore, we get

the necessary and sufficient conditions of schedulability of tasks for multi-processor.

Theorem 7. Let 



N

i

iuS
1

, then the task set is schedulable in BLREF algorithm if and only

if S≤M.

Proof: It is obvious of the sufficiency. Proof of the necessity: from the introduction of

T-LET plane and BLREF algorithm , we can know that as long as the T−LET1 plane is current

feasible, then the whole task set is current feasible, too. So, we just need to prove the T−LET1

plane is current feasible under the precondition S≤M. Here, we use reduction to absurdity

method to prove it. If T−LET1 is not current feasible, then there must be a critical time t such

that St>M. But , M processors are always busy before time t from BLREF algorithm. Thus, we get

S>M which is contradictory to the hypothesis. End of the proof.

7. Comparison and analysis of algorithms

In this section, two task sets are introduced, and execution results of several typical

multi-processor scheduling algorithms and our proposed algorithm are also presented.

The first task set is listed in Table 1, where

3
60

169

6

6

6

5

5

2

4

1

3

15

1
1 

i
iuS .

26

From the conclusion in the previous section, we know that this task set is satiable using

BLREF algorithm.

Task Cut-off time Execution time Relaxation degree

T1 3 1 2

T2 4 1 3

T3 5 2 3

T4 6 5 1

T5 6 6 0

Tab. 1 First task set

The executive process of the minimum relaxation algorithm for this task set is shown in a

Gantt diagram as Fig. 9.

Fig.9. Gantt diagram of the minimum relaxation algorithm

From Fig.9 we can find that the minimum relaxation algorithm can meet the cut-off time of

all tasks in the set. The Gantt diagram of the global EDF algorithm is shown in Fig. 10.

Fig.10. Gantt diagram of the global EDF algorithm

27

Fig. 11 Flow chart of BLREF algorithm

From Fig.10 we can see that the global EDF algorithm can’t meet the cut-off time of all

tasks, shown by the imaginary lines. This task set is schedulable in case that the period of time

that exceeds the cut-off time of task T5 could be shifted onto processor 3 for execution, and task

T3 is delayed one unit time.

Using BLREF algorithm to execute this task set, and the process is shown by the T-LET

plane as Fig 11.

From this figure we find BLREF algorithm can meet the cut-off time of all tasks in the set. The

minimum relaxation algorithm is able to satisfy all tasks in the first task set, but it is not the best

algorithm. However, the second task set is not met by the minimum relaxation algorithm, shown

in Table 2.

Tab 2. Second task set

Since 3
12

35

6

5

3

2

3

24

1
2 

i
iuS , we know that this task set is satiable by using BLREF

algorithm from the conclusion in the previous section.

The execution process of the minimum relaxation algorithm shown by Gantt diagram is

available in Fig. 12.

Task Cut-off time Execution time Relaxation degree

T1 3 2 1

T2 3 2 1

T3 4 3 1

T4 6 5 1

28

Fig. 12 Gantt diagram of the minimum relaxation algorithm on the second task set

From Fig.12 we can find that the minimum relaxation algorithm can’t meet the cut-off time

of all tasks in the second set. The execution process of BLREF algorithm expressed by the T-LET

plane is shown in Fig.13.

Fig. 13 The flow chart of BLREF algorithm on the second task set

For the global EDF algorithm, this task set may be met if properly shifting the execution

order of tasks, that is, postponing tasks whose cut-off time is not reached and executing tasks that

are close to the deadline in advance.

8. Conclusion

This paper proposes a BLREF algorithm which can make full use of processors by diverting

29

the execution time, and it realizes the feasibility of scheduling. BLREF is an optimal

multi-processor scheduling algorithm. Besides, the diversion of execution time has significant

reference value for analyzing other algorithms. The quality of an algorithm largely depends on

the degree of diversion, the more the higher efficiency will be [7,8]. Compare to other algorithms,

BLREF has more task switching. Conversely, the global EDF is a very effective algorithm in

terms of reducing the number of preemptions, though it is not an optimal algorithm [9,10]. The

study in this paper is very indicative when considering other multi-processor scheduling

problems.

References

[1] J. Carpenter, S. Funk. A categorization of real-time multiprocessor scheduling problems and

algorithms [A]. Handbook on Scheduling Algorithms, Methods and Models[C].

2004. Chapman and Hall/CRC

[2] K Ramamritham, J.A. Stankovic. Scheduling Algorithms and Operating Systems Support for

Real-time Systems. Proceeding of the IEEE, Vol 83(1):55-67, 1994.

[3] Gao Li'e, A.L. Tong , F.T. Kang, W.D. Liu, N.N. Zhao, Application and Research of Dynamic

Scheduling Algorithm for Multiprocessor[J], Computer Engineering and Applications, Vol.

34,196－199, 2005.

[4] L.M. Dertouzos. Multiprocessor On-Line Scheduling of Hard-Real-Time Tasks [J] IEEE

Transactions on Software Engineering, vol 15(12):1497-1506,1989.

[5] P. Holman, J.H. Anderson. Adapting Pair Scheduling for Symmetric Multiprocessors [J].

Journal of Embedded Computing, Vol.1 Number 4, 543-564, 2005.

[6] C. Feng, J. Liang, Solve the more general travelling salesman problem [J]. AMSE Journals

–2014- Series: Modelling D. Vol 35, Issue 1, 9-23, 2014.

[7] S. Lui . Real Time Scheduling Theory: A Historical Perspective [J]. Real-Time Systems, 2004,

28:101-155.Kluwer Academic Publishers. Manufactured in The Netherlands.

[8] C. Feng，J. Liang. The solution of the more general traveling salesman [J]. AMSE Journals

–2014-Series: Advances A, Vol 51, Issue 1：27-40, 2014

[9] Y. Duan., Optimization design of the single processor scheduling algorithm in real-time

system research [J]. Journal of operational research, Vol 17, No.1, 27-34, 2013.

[10] Y. Duan., Y. Xiang, Comparative study of different genetic operator combination to solve TSP

problem [J]. Science and technology. Vol 28, No.5, 27-31, 2012.

30

