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Abstract  

It is crucial for a hydropower station to operate smoothly in a safety and steady way. In this 

paper, we explore the current development trend and intelligent control theory of hydropower 

control system. The mathematical expressions are set up here for the system hardware and software, 

respectively. An integrated model was also developed for servo system of each mathematical model 

linear combination, which lays a theoretical foundation for model identification of hydropower 

units; this paper introduces the neural network and the fuzzy control theories and analyzes the BP 

and RBF network structures and identification simulation. The experimental results show that the 

RBF network can improve the iterative efficiency, speed up the analysis and identification, and 

avoid sluggish condition of global approximation convergence. The fuzzy control rule for PID 

controller is optimized as a result the Fuzzy PID control may speed up the adjustment, and increase 

the speed at which the system tends to be stable, provided that the system stability is ensured. It, 

therefore, contributes the most to the safety of the power grid. 
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1. Introduction 

In recent years, hydropower, as a kind of green energy resource, has become increasingly 

popular in China. There is an unprecedentedly vast market. The hydropower station is generally 
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located in a remote area, which has posed a great challenge in terms of automation and intelligence; 

Due to the complexity and diversification of hydropower unit, the traditional control strategy 

always plays a poor effect [1], e.g. the water head at the guide vane opening is prone to rise up, the 

mechanical inertia of generator is high, the perturbance is hardly stabilized, and the operating 

conditions are complex and changeable, it is urgent to face the challenges of intelligent operation 

of hydropower units [2]. 

With the rocketing development of computer-based intelligent control theory, some progress 

has been made in the application of hydropower unit. [3] Salhi et al. studied the mode control of 

speed governing system for water turbine. [5] Nagode et al. made a study on adaptive control of 

hydropower unit. [6] Guo et al. explored the stability of hydropower unit by using feedback 

linearization. The above results show that, based on the intelligent control theory, the linear and 

nonlinear model system control can make instant response to current information and have good 

control effect. 

Therefore, this paper studies the hydropower unit from the perspective of the model in 

question, and using the neural network and fuzzy control in the field of intelligence control, to 

improve the control performance of hydropower units. 

 

2. Parametric Control Theory of Hydropower Unit 

The parameter control of hydropower unit implies two conditions. The first is to identify the 

prototype of hydropower unit designed currently. The second is that appropriate controller is 

designed for the prototype of hydropower unit designed currently. The parametric control of 

hydropower unit, as a kind of system control, includes relevant system identification control 

theories, i.e. fuzzy control, neutral network and intelligent algorithm [7], which are characterized 

by the following:  

(1) Fuzzy control theory. When it is used in the hydropower unit, other theories or algorithms 

are generally integrated (PI theory, TSK theory, co-evolution algorithm, double immunity control 

algorithm) to avoid the natural defects of the fuzzy controller and improve the control precision. 

(2) Neural network theory. The information is processed by the neural network in a distributed 

way. With a variety of inputs, it combines with computer technology, circuit technology to achieve 

the information processing capabilities of neural network. This theory can also address the complex 

modeling. If used with other theories, such as, prediction control algorithm, PMDL, ANFIS, single-

gain neuron PSD, etc. [8], it can present a good control for giant perturbation system, thus realizing 

the modeling and control of hydropower unit prototype.  
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(3) Intelligent algorithm theory. As an algorithm of optimized controller, the intelligent 

algorithm can optimize the fuzzy control theory and the neural network theory. The common 

optimization algorithms include SGA, GA and improved GA, which improve the control precision 

[9]. 

 

3. Mathematical Modelling and Model Identification of Hydropower Unit Based 

on Neural Network Theory 

3.1 Mathematical Modelling 

 

The software and hardware of the hydropower system include water turbine, generator, 

conduit system and control system. The fluid inertia of water turbine and the mechanical inertia of 

the generator are adverse factors that affect the control performance of unit system. The 

mathematical model of each part comes here as follows:  

For the model of the electro-hydraulic servo system [10], it is expressed as below: 

 

Y(s)

U(s)
=

1

Ty1Tys2+𝑇𝑦s+1
                                                                                                                        (1) 

 

If 𝐓𝐲𝟏≪𝐓𝐲, it is simplified as: 

 

𝐘(𝐬)

𝐔(𝐬)
=

𝟏

𝐓𝐲𝐬+𝟏
                                                                                                                                    (2) 

 

For the conduit system, if the perturbation is lesser, the pipe is short (<600m), 

 

Gh(s) =
h(s)

q(s)
= −Tws                                                                                                                                  (3) 

 

For the turbine system, the torque and flow are expressed using Taylor series expansion: 

 

∆𝐦𝐢 =
𝛛𝐦𝐢

𝛛𝐲
∆𝐲 +

𝛛𝐦𝐢

𝛛𝐱
∆𝐱 +

𝛛𝐦𝐢

𝛛𝐡
∆𝐡 = 𝐞𝐲∆𝐲 + 𝐞𝐱∆𝐱 + 𝐞𝐡∆𝐡;                                                               (4) 

∆𝐪𝐢 =
𝛛𝐪𝐢

𝛛𝐲
∆𝐲 +

𝛛𝐪𝐢

𝛛𝐱
∆𝐱 +

𝛛𝐪𝐢

𝛛𝐡
∆𝐡 = 𝐞𝐪𝐲∆𝐲 + 𝐞𝐪𝐱∆𝐱 + 𝐞𝐪𝐡∆𝐡                                                          (5) 
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For the generator system, it converts mechanical energy into electrical energy, considering 

the load variable, the system's first-order model is: 

 

∆mi − ∆mg − eg∆x = Ta
′ d∆x

dt
= (Ta + Tb)

d∆x

dt
                                                                             (6) 

 

𝐓𝐚-- Mechanical inertia time of generator unit 

𝐓𝐛-- Inertia coefficient of the load converted to the unit side 

Then the conduit system is expressed as: 𝐆𝐬(𝐬) =
𝟏

𝐓𝐚
′+𝐞𝐧

 

For the overall system of hydropower units, the function transfer form as above is shown in 

Figure 1. 

 

 

Fig.1. Water turbine transfer function 

 

The Mason formula simplifies the transfer function as: 

Forward channel: 𝐩𝟏 =
𝐞𝐪𝐲𝐞𝐡𝐓𝐰𝐬

𝐓𝐚
′𝐬+𝐞𝐧

, 𝐩𝟐 =
𝐞𝐲

𝐓𝐚
′𝐬+𝐞𝐧

 

Loop: 𝐥𝟏 = −𝐞𝐪𝐲𝐓𝐰𝐬 , 𝐥𝟐 = −
𝐞𝐪𝐲𝐞𝐡𝐓𝐰

𝐓𝐚
′𝐬+𝐞𝐧

 

𝐉𝐞𝐩𝐬𝐨𝐧 − 𝐭𝐲𝐩𝐞: ∆= 𝟏 − (𝐥𝟏 + 𝐥𝟐)； 

Cofactor: ∆𝟏= 𝟏   ∆𝟐= 𝟏 − 𝐥𝟏； 

Transfer function: 

 

𝐆(𝐬) =
𝐩𝟏∆𝟏

+𝐩𝟏∆𝟐

∆
=

𝐞𝐪𝐲𝐞𝐡𝐓𝐰𝐬

𝐓𝐚
′𝐬+𝐞𝐧

+
𝐞𝐲

𝐓𝐚
′𝐬+𝐞𝐧

(𝟏+𝐞𝐪𝐲𝐓𝐰𝐬)

𝟏+𝐞𝐪𝐲𝐓𝐰𝐬+
𝐞𝐪𝐲𝐞𝐡𝐓𝐰𝐬

𝐓𝐚
′𝐬+𝐞𝐧

=
(𝐞𝐲𝐞𝐪𝐡−𝐞𝐪𝐲𝐞𝐡)𝐓𝐰𝐬+𝐞𝐲

𝐞𝐪𝐡−𝐓𝐚
′𝐓𝐰𝐬𝟐+[(𝐞𝐧𝐞𝐪𝐡−𝐞𝐪𝐱𝐞𝐡)𝐓𝐰+𝐓𝐚

′]𝐬+𝐞𝐧
                   (7) 

 

As can be seen from the above formulae, the hydropower model is rather complex. In fact, 

when the hydropower unit operates, it is not always stable with intense fluctuations, etc. Therefore, 
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it is difficult to build accurate mathematical model using he traditional modeling method. On this 

basis, the neural network can be used to identify the hydropower units 

 

3.2 Mathematical model identification 

Based on the analysis in 3.1, we know that the hydropower unit must be identified by 

combination with the neural network. The neural network methods are divided into two classes, 

i.e. BP and RBF [11], whose principles are shown in Figures 2 and 6, respectively. 

 

 

(a)BP Network identification (b)Used for identification of BP network 

Fig.2. BP network identification of structure 

 

Where, k is the time value, u(k) denotes the signal; 𝐲(𝐤) denotes the actual output signal; 𝐲𝐧(𝐤) 

represents output signal identified based on the BP network; 𝐰𝐢𝐣  represents the weight of the 

interlayer. BP algorithm generally includes forward propagation and reverse propagation, the latter 

mainly adjusts the weight between the interlayers, as shown in Figure 3 below. 

To verify the performance of BP network identification, select a hydropower unit, the 

parameters are shown in Table 1 below. Under different working conditions, the dynamic process 

for 10% perturbation is identified. The target error results are shown in Figure 4, the identification 

results are shown in Figure 5. 

 

Tab.1. Parameter selection 

Parameter Values 

Turbine model HL 220 

Rated head 68m 

Rated speed 300 r / min 

Rated flow 33 m3 /s 

Nominal output 17.5WM 

The unit of inertial time constant 8.72s 

The relay inertial time constant 0.1s 

Number of hidden nodes 15 and 25 

The number of iterations 400 
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Fig.3. BP network learning steps 

 

  

Fig.4. BP network training error changes 

Y 

 

N 
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Fig.5. Frequency interference 10% changes in BP network to identify the results 

 

It can be seen from the above two figures, the number of hidden nodes is lesser, the 

convergence time and the number of iterations of the BP network get much less (n = 15, the number 

of iterations is 150 times; n = 25, the number of iterations is 250 times), however the error is 

relatively large during the identification. 

 

  

(a) RBF Network identification (b) Used for identification of RBF network 

Fig.6. RBF network identification of structure 

 

 

Fig.7. RBF network training error changes 
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Fig.8. Frequency interference 10% changes in RBF network to identify the results 

 

RBF network design process differs from the BP. On the RBF network, A center coordinate 

vector and the width of Gauss function must be set in order to determine link weight between the 

hidden layer and output layer [11]. As compared with Fig. 7, Fig. 8 and Fig. 5 and Fig. 6, it can be 

found that RBF network identification is made more accurate. As a local approximation neural 

network, RBF network identification can greatly improve iterative efficiency for hydropower units 

and avoid sluggish phenomenon of global approximation convergence. 

 

4. Probe into Intelligent Control 

4.1 Neural Network Optimization Parameters 

Now the traditional PID control technique is widely used in small and medium-sized 

hydropower units, which hardly adapts to diversified conditions with low control precision and 

poor covariant. In the paper, a neural network algorithm is integrated into the controller RBF-PID 

in control structure as shown in Fig. 9. RBF-PID can dynamically change the traditional PID 

parameters based on the information timely provided by the RBF network to accomplish 

optimization of the controller [12]. 

When the frequency interference of given generator system is 8%, the simulation experiment 

compares to the control effects of RBF-PID and PID. The parameters in simulation experiment are 

shown in Table 2. The control effect is shown in Fig. 10. As can be seen from the Fig., RBF-PID 

controller can restore smooth and steady operation within a shorter time. 
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Fig.9. RBF - PID controller design 

 

Tab.2. The simulation experiment parameters 

Parameter Value 

PID initial value [3,0.005,1] 

Learning factors of initial value [0.6,0.5,0.1] 

Neurons in hidden layer nodes 5 

 

 
Fig.10. RBF - PID compared with PID control effect 

 

4.2 Probe into intelligent control of hydropower unit 

Fuzzy control does not need dependence on the precise mathematical model of system and 

accurate system information. At this time, when the control system is hardly expressed using 

mathematical model, the fuzzy control is superior to the others. Fuzzy control captures the signal 

from the fuzzy to clear based on fuzzy control rule and control mechanism, the relevant control 

rule is shown in Table 3 below. 

The operating modes may be switched repeatedly during the operation of generator system. 

The working conditions are subjected to change [13]. Now Fuzzy control is introduced to improve 

the fuzzy control rules of parameters ∆Kp, ∆Ki, ∆Kd.The following results are deduced from the 

errors occurred when the generator system operates, its gradient and PID parameters: 
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(1) When the error gets higher, the initial PID parameter Kp may increase. This coincides with 

normal demand for system adjustment; 

(2) When the error shows moderate, the initial PID parameter Kp diminishes accordingly, 

whereas Ki, Kd may increase. This coincides with normal demand for system adjustment; 

(3) When the error is lower, the initial PID parameters Kp, Ki go up accordingly, whereas Kd 

may down. This coincides with normal demand for system adjustment; 

 

Tab.3. The basic fuzzy control rules 

 NB NS ZE PS PB 

NB NB NB NS NS ZE 

NS NB NS NS ZE PS 

ZE NS NS ZE PS PS 

PS NS ZE PS PS PB 

PB ZE PS PS PB PB 

 

 
Fig.11. Conventional PID and Fuzzy PID 

 

Simulation results are shown in Fig. 11. As can be seen from the Fig, Fuzzy PID control can 

adapt to control adjustment under multiple conditions and in variable states by modifying the rules 

for fuzzy control parameters. Then the adjustment speed also increased in the case that the stability 

is ensured. We think that the PID controller added in fuzzy inference features a high adjustment 

rate and good stability, whose control effect is superior to that of conventional PID control when 

the control object is subjected to intense perturbation. 

 

Conclusion 

This paper explores the application of the intelligent control theory based on the fuzzy control 

theory and the neural network theory in terms of identification and optimization of control 
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parameters on the hydropower unit, from which the results and related conclusions are derived as 

below: 

(1) The mathematical model of hydropower unit is analyzed, and the mathematical expressions 

are created for every hardware and software respectively. The overall model of servo system is 

obtained for linear combination of each mathematical model, which lays a theoretical foundation 

for model identification of hydropower unit. 

(2) The BPF and RBF networks are adopted to have a contrastive analysis from the design 

network structure to identification simulations, respectively. It is considered that the analysis 

processes of both are roughly consistent. The RBF network, as a local approximation neural 

network, can improve the iterative efficiency, speed up the analysis and identification, and avoid 

sluggish phenomenon of the global approximation convergence. 

(3) On the basis of RBF network, PID controller is optimized for fuzzy control rules. The 

optimization and simulation results show that fuzzy PID control is adaptable to multiple conditions, 

variable states with fast adjustment, which not only ensures the stability of the system, but also 

improves the speed at which it tends to be stable. 
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