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Abstract  

This paper presents an experimental evaluation of different features for use in speaker 

identification (SID). The features are tested using speech data provided by the EUROM1 

database, in a text-independent closed-set speaker identification task. The main objective of the 

paper is to present a novel parameterization of speech that is based on an auditory model called 

Auditory Image Model (AIM). This model provides features of the speech signal and their utility 

is assessed in the context of speaker identification. In order to explore the features that are more 

informative for predicting a speaker’s identity, the auditory image is used within the framework 

of cutting it into rectangles. Then, a novel strategy is incorporated for the enrolment of speakers, 

which is used for specifying the regions of the image that contain features that make a speaker 

discriminative. Afterwards, the new speaker-specific feature representation is assessed in noisy 

conditions that simulate a real-world environment. Their performance is compared with the 

results obtained adopting MFCC features in the context of a Vector Quantization (VQ) 

classification system. The results for the identification accuracy suggest that the new 

parameterization provides better results compared to conventional MFCCs especially for low 

SNRs. 
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1. Introduction 

Humans are considered to be fairly good at identifying speakers based on their voices. 
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Automatic recognition systems are expected to do as well as humans but there is still a lack of 

robust speech characteristics that index an utterance as originating from one speaker rather than 

another. 

The main goal in speaker recognition is to find measurable quantities that minimize within-

speaker variability and simultaneously maximize between-speaker variability [1]. 

Generally, speaker recognition encompasses two fundamental tasks: speaker identification and 

speaker verification [2]. Speaker identification is the assignment of an unknown voice to one of 

the speakers known by the system and it is assumed that the voice must come from a fixed set of 

speakers. This task is often referred as closed-set identification. On the other hand, speaker 

verification refers to open-set identification because generally, it is assumed that the unknown 

voice may come from an impostor.  

Regardless of the task, speaker recognition is a pattern classification task and consists of two 

procedures: training and testing. Training involves registration of speakers with the system. With 

registered speakers, speech data is matched with known patterns (speaker templates) and this 

process is called testing.  

Both processes involve extraction of features from speech data, which makes the features 

critical to the classification process. To date, most speaker recognition systems use the MFCC 

(Mel Frequency Cepstral Coefficients) that are also used in speech recognition. 

In this paper, we suggest an alternative to them called Auditory Image Model (AIM). The AIM 

is a visual representation of all the stages that a sound goes through once it enters the human 

auditory system. In Section II, the model, the feature extraction process and the chosen 

classification algorithm are described. The first experimental set, which is about identification in 

quiet conditions as well as specifying how the auditory model can be used in the best possible 

way, is presented in section III. Section IV consists of the evaluation of the AIM and MFCC in 

the context of speaker recognition in noisy conditions. The conclusions are presented in Section 

V. 

 

2. Methodology 

2.1 Auditory Image Model (AIM)  

The auditory image model is a time-domain model of the signal processing stages in the 

hearing system associated with the ascending auditory pathway. Patterson et al. [1] first described 

the auditory image as the simulation of the neural representation underlying humans’ first 

conscious awareness of a sound. 
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The principle functions of AIM are to describe and simulate: 1) the basilar membrane 

motion (BMM) in the cochlea, 2) the neural activity pattern (NAP) observed in the auditory nerve 

and cochlear nucleus, 3) the identification of the peak times of the neural activity called strobe 

points, which are used to construct the auditory image and 4) the stabilized auditory image (SAI) 

that forms the basis of auditory perception. 

Perceptual research on pitch and timbre indicates that at least some of the time-interval 

information in the NAP is preserved in the auditory image [4]. For that reason, Patterson et al. [1] 

supported that a continuous temporal average process cannot generally, simulate the auditory 

temporal integration, since averaging over time destroys the temporal fine structure within the 

averaging window. Furthermore, Patterson et al. [5] suggested that the fine structure of periodic 

sounds is preserved compared to the fine structure of noises.  

As a result, they showed that this information could be preserved by, firstly, identifying 

peaks in the neural activity as it flows from the cochlea and measuring time intervals from these 

strobe points to smaller peaks. The final step is to form a histogram of these time intervals for 

each channel of the filter bank. This temporal integration process is referred to as strobed 

temporal integration (STI) and it stabilizes and aligns the repeating neural patterns of periodic 

sounds like vowels and musical notes [1,5]. The complete array of time interval histograms is the 

simulation of the AIM of an auditory image of the sound. Figure 1 shows the SAI for the vowel 

/ae/. 

 

 

Fig.1. Main Panel: Stabilized Auditory Image of the Vowel /ae/. 

 

The bottom panel is the temporal profile, which is estimated as the average over all channels 

for every point in time. The right panel is the spectral profile, which is the average over time for 

285



every channel. The arrows show the locations of formants. The peak at 9ms indicates the 

repetition rate of the sound. [4] 

 

2.2 Feature Extraction 

The auditory image can be used in the feature extraction stage in order to obtain feature 

vectors that represent it. These vectors can be processed for identifying patterns that typically 

appear in it.  

Generally, the patterns can be identified at different positions in the image. The specific 

location of a pattern depends on the characteristics of the sound source. For pattern recognition, 

the information can be identified in smaller and larger scales in the SAI. At large scales, the 

temporal structure of the sound can provide information about the pitch whilst at smaller scales, 

there is information about the resonances following each pulse. The latter can be an indication for 

the vocal tract length (VTL) of a speaker.  

Therefore, it is preferred to look for patterns in various locations and different scales of the 

SAI rather than the whole image. The process that is followed in order to recognize patterns is to 

define a set of overlapping rectangles of different scales that cover the whole frame.  

At first, the initial rectangle size has been chosen to be 16 samples in the time interval 

dimension by 32 filter bank channels.  

 

 

Fig.2. SAI Frame after the Down Sampling to 16 x 32 Pixels [6]. 

 

Then, from this baseline pair of box size, both dimensions were increased through 

multiplying them by powers of 2. The multiplication stops at the point where the dimensions of 

the largest box do not exceed the limits of the frame. For every pair of dimensions, the SAI space 
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is tiled with boxes, starting at zero point in the time interval dimension. In the cochlear channel 

dimension, the box tiling occurs with a shift of half box width each time [6]. 

Afterwards, the content of each rectangle is independently processed with a specific concept 

named down sampling. The content of each box is reduced to the size of the smallest one (i.e. 16 

samples in the time interval dimension by 32 filter bank channels). After this rescaling, the larger 

boxes are viewed at a coarser resolution. For further reduction of dimensionality, the margins of 

each rectangle are computed by averaging the elements over each of the two dimensions. Figure 2 

shows a SAI frame that is downsampled to 16 x 32 pixels.  

 

2.3 Modelling Framework 

Vector Quantization (VQ) is a process of mapping vectors of a large vector space to a finite 

number of regions in that space. Each region is called a cluster and is represented by its centre 

(named centroid). A collection of all the centroids makes up a codebook.  

Even though the codebook is smaller than the original sample, it still accurately represents a 

person’s voice characteristics. In this procedure, a codebook is created for all the boxes that are 

extracted for the total number of SAI frames of every speech signal. The novel strategy that has 

been incorporated is analytically explained in the following section. 

 

3. Speaker Identification in Quiet Conditions 

In this section, we consider two different cases for the speaker recognition system in quiet 

environments. The first case is the identification for two databases of 30 and 180 speakers. The 

focus is on text-independent and closed-set identification, which assumes that the test case 

belongs to one among the registered speakers. The second one focuses on specifying the most 

discriminative features among speakers and obtaining a lower-dimensional feature representation 

from the SAI. In the next sections, the procedures and results for both cases will be presented in 

detail. 

 

3.1 SAI-based System 

In this section, the modules of the proposed system that uses AIM as a front-end are 

described. The architecture of the SAI-based system is presented in figure 3. The gammatone 

filter bank that was used as the cochlea model for the auditory processing consisted of 64 

frequency channels. Given the filter bank size, the SAI is cut into 154 rectangles and each box is 

reduced to a 48 – element feature vector with the down sampling process. 
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Fig.3. Architecture of the AIM-based SID System 

  

After the transformation of the SAI frames into feature vectors, the speaker modelling step 

follows. This is achieved through the VQ, which is implemented using the K-means clustering 

algorithm. The number of centroids (or means) is chosen to be 64. 

For the case of the 30-speaker corpus, the average duration of the training speech is 14.2ms, 

which results in 1420 frames. The number of boxes over the total number of frames is 1420 x 154 

= 218680, i.e. 218680 feature vectors. For the corpus of 180 speakers, the average training speech 

duration is 20.7ms and the average total number of frames is 2070. Before the VQ, the feature 

dimensions are 318780 (2070 x 154 boxes). 

After the VQ process (with K = 64), the speakers of both corpora are represented with a 

significantly reduced dimensionality of 64 x 154 = 9856 feature vectors. The final outcome of the 

enrolment session is a number of speaker models equal to the number of trained speakers. Each 

model consists of a number of codebooks equal to the total number of boxes (i.e. 154) for both 

cases that have been mentioned above. Each codebook has a size equal to 64 x 48 elements. The 

process is repeated as many times as the number of trained speakers. 

Then, the testing phase occurs where the feature extraction stage is the same as in the 

training session. The features are extracted from every box of all frames as 48-element feature 

vectors. 

For speaker matching, the concept is to see how well each codebook encodes the features of 

the target speaker through estimating the values that may reconstruct each frame of the test 

speaker using each one of the trained speaker models. To achieve that, the Euclidean distance is 

computed, for every frame and every box, between every centroid in the codebook for that 

specific box and the current (test) feature vector for that box. For each frame, the minimum of 

these distances is the reconstruction value for that frame using the codebook for that specific box. 

Afterwards, the above process is repeated over the total number of frames and these values, for 
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every box, can be averaged over all of the frames (i.e. the complete speech utterance). The latter 

results in the mean reconstruction value for every box.  

Finally, the procedure is repeated for all of the trained speakers in the database. The speaker 

that is most likely to be the target speaker is the one that has the biggest number of boxes 

corresponding to the smallest average reconstruction value.  

 

3.2 Baseline System 

In this research study, the system that uses MFCC as a front-end is used as a comparison to 

the SAI-based system. The Mel-cepstrum is probably the most commonly used feature in speech 

recognition and has become the state-of-the-art method for speaker recognition as well. 

For this system, the speaker modelling module consists of the same classifier as the proposed 

system that uses the K- means clustering algorithm. The difference between the two systems is 

that there is not a box-cutting module involved in the design of the MFCC-based system. Figure 4 

presents its architecture 

 

Fig.4. Architecture of the MFCC-based SID System 

  

During the enrolment of speakers, 40 cepstral coefficients are extracted from every frame (of 

25ms duration). The complete feature representation of the speech utterance consists of all of 

these vectors. 

Afterwards, for speaker modelling, a codebook is learnt for every speaker over the total 

number of frames. The modelling framework is the same as in the SAI-based system so the 

centroids are equal to 64 and the codebook size for each speaker is 64 x 40 elements. When the 

enrolment of speakers finishes, the end result is a number of reference templates equal to the 

number of enrolled speakers. Each template consists of only one codebook. 

Subsequently, in the testing phase, the concept is to see how well each codebook encodes the 

features of the test speaker. So, for each frame, the 40-element test feature vector is computed 

and compared to each one of the 64 code words. This is based on computing the Euclidean 
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distance between them and results in a matrix of distances to each centroid. In order to find the 

most representative centroid for reconstructing that frame using that codebook, the minimum 

distance between that centroid and the feature vector of the frame is computed. The same process 

is repeated for the total number of frames and the average of all of these distance values is 

estimated. The outcome is the mean value for reconstructing the whole speech utterance. 

After repeating the process for all the speaker templates, the speaker matching is based on 

finding the template that corresponds to the smallest average value. This is the template that 

corresponds to the person that matches the unknown speaker. 

 

3.3 Database Description 

The speaker recognition experiments were performed on a multilingual corpus named 

EUROM1, which consists of recordings in 7 European languages [7]. For the purpose of this 

research work, a subset of EUROM1 was used and two different speech data sets were created. 

The first corpus consists of 30 English speakers (12 females and 18 males), which are 

divided into 3 different groups of 10 people. The average length of the training and test speech is 

14.2 and 15 seconds respectively.  

The second corpus is 6 times larger than the first one and contains 3 groups of 60 talkers (30 

females and 30 males in each group) in 3 languages (English, French and Swedish). The average 

training and test speech durations are 20.7 and 20.6 seconds respectively.  

For all of them, the speech material is in the form of small passages that consist of 5 

sentences. All speakers were prompted to read the same material and the recordings took place in 

an anechoic room. The speech signals have been pre-processed for pause removal. 

 

3.4 Results 

In this section, the identification performances of both the SAI-based and the baseline 

systems are presented in tables I and II. The SID accuracy was computed as the ratio of the 

number of correctly identified speakers to the total number of speakers that have been considered 

for the testing phase. The error of the identification score is calculated as the standard error of the 

mean among the 3 different groups of speakers. 

From the results, it is obvious that the proposed system achieves high accuracy levels. In the 

case of the small speech corpus, both systems achieve perfectly accurate identification. Also, 

when the number of speakers increases to 180, the performances of the two systems are similar. 

As expected, the SID accuracy decreases as the size of the speaker population increases. 
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After obtaining the identification results from the proposed system in quiet conditions, the 

process for finding the most informative SAI features is described in the next section and the 

results are presented. 

 

Tab.1. Sid Accuracy (%) for the SAI-based and Baseline Systems (for the 30-speaker Corpus) 

Corpus of 180 speakers 

System configuration SAI MFCC 

SID Accuracy (%) 89.4 90.5 

SID Error (%) 2 3.1 

 

Tab.2. Sid Accuracy (%) for the SAI-based and Baseline Systems (for the 180-speaker Corpus) 

Corpus of 30 speakers 

System configuration SAI MFCC 

SID Accuracy (%) 100 100 

 

3.5 Specification of Discriminative Features 

In the previous section, the comparison between the proposed and the baseline systems 

shows that the SAI features can produce promising recognition results.  

Yet, the issue of dimensionality is an important aspect in SID systems since it affects their 

computational efficiency. This experimental set is based on investigating the hypothesis that a 

subset of the extracted auditory features, which are more speaker-specific and have lower 

dimensionality, can be specified. 

As previously described, each SAI frame has two dimensions, i.e. cochlear channel and time 

interval. The changes in the glottal pulse rate correspond to a change in the horizontal spacing of 

the vertical pitch ridges while a change in the resonance scale (formants) associates to changes in 

the vertical location of the resonance structure. Thus, the image separates, to a certain extent, the 

two types of information into its two dimensions. 

In order to find the features that are more distinctive for every speaker, the VQ process that 

has been incorporated in the SAI-based system is used in a different context. As previously 

explained, the speaker matching happens when most of the boxes that are extracted from the SAI 

of the target speaker fulfil the criterion of minimization of the mean reconstruction value from the 

codebooks, which correspond to those boxes, of a specific speaker template. Inversely, when the 

speakers do not match with each other, these reconstruction values should be maximized. If these 

maximum values are estimated, the boxes that correspond to them can be specified. The features 
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that are related to those boxes are the discriminative ones among all speakers. Additionally, the 

position of these boxes can indicate which areas of the image are more informative for speaker 

identification. This knowledge can also be useful for developing the box-cutting process from its 

initial version. 

For this experiment, the data sets and the speech material are the same that were used before. 

The procedure was repeated 3 times for each group of the 10 and 60 speakers. Figures 5 and 6 

show where these areas are located on the image for all speakers.  

In these figures, the x-axis is the time interval dimension while the y-axis is the frequency 

channel dimension of the SAI. The plotted rectangles are those that have been specified by the 

combination of the box-cutting and VQ procedures and fulfil the maximization criterion. Every 

box has a size of 32 frequency channels and 16 samples in the time interval dimension. 

From the figures, it is apparent that the most informative regions are located at 

approximately the first 10ms of the SAI in terms of the time interval dimension. Commonly, the 

first glottal pulse that forms the first pitch ridge lies in that time span. The glottal pulses are 

known to be produced by the vocal cords in the larynx and excite resonances in the vocal tract 

beyond the larynx. The larynx varies among people of different gender and age and so does their 

pitch that is considered to be a source of individuality in the voicing mechanism. 

 

 

Fig.5. Specification of the Informative SAI Areas (for the 3 Trials Using 10 Speakers Each Time). 

The 6 Boxes Cover the Part of the Filter Bank above 1KHz and the Area between 1.6 and 6.4ms. 
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Fig.6. Specification of the Informative SAI Areas (for the 3 Trials Using 60 speakers Each Time). 

The 18 Boxes Cover Different Part of the Filter Bank (Low and High Frequencies) and Extend up 

to 11.2ms. The Black Boxes are Specified in All Trials While the Yellow and Orange Ones Are 

Discriminative as Well for the First and Second Trial Respectively. 

 

Furthermore, another element that varies independently from the glottal pulse rate (or pitch) 

is the resonance scale (formants). Even though a person can alter his/her pitch, the resonances of 

one’s vocal tract will not change because the anatomy remains the same. As a result, it seems that 

the formants are a more critical feature for identifying a person from one’s voice. Also, the boxes 

that are located beside each other horizontally contain a segment of the structures that are a result 

of resonances. Thus, this type of information is speaker-dependent.  

Additionally, a very interesting finding of the VQ process is that the high frequency range of 

speech may contain meaningful speaker information. More specifically, the location of the boxes 

in figures 5 and 6 above 1KHz indicate that the high frequencies should not be overlooked. 

Consequently, higher formants can be distinctive and should be combined with the lower ones in 

order to make a decision for correct identification. 

In conclusion, the incorporation of this new training strategy and the alternative use of it 

makes it possible to extract the notable information that makes a speaker more discriminative 

compared to others. Overall, it seems that the area of interest converges at, approximately, the 

first 10ms of the auditory image.  

Finally, the above results support the hypothesis that perceptual differences about speakers 

can rely on lower-dimensional features. The latter will be important for the further development 

of the SID system design in the next set of experiments. 
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4. Noise-Robust Speaker Identification 

The focus in this part of the study, is firstly on improving the existing system design through 

using the obtained knowledge from the previous experiments. Then, the objective is to assess the 

auditory features under the presence of interfering sounds, which is a common challenge for SID 

systems. The improvement of the existing box-cutting module as well as the results from the 

comparison between the SAI and the MFCC parameterization are presented as follows. 

 

4.1 SAI-based System 

First of all, the system architecture is the same as it has been presented in figure 3 as well as 

the operations and parameters involved in the auditory model.  

Furthermore, the first objective of this experimental part is to modify the box-cutting process 

in order to create a more computationally efficient system. This is achieved through taking into 

account the results of the specification of the most distinctive features. As mentioned previously, 

the position of the rectangles that contain these features converge in, approximately, the first 

10ms of the time interval dimension. Also, it is important to consider that most of the boxes are 

placed alongside each other and if they are added up together, they cover the image on a larger 

scale. Therefore, this leads us into choosing to segregate this specific region of the image where 

all the boxes are located. The latter helps in eliminating the substantial redundancies that exist in 

the SAI. 

In consequence, the image is cut into one rectangle that covers the whole filter bank and 

reaches up to 12.8 ms (256 time samples) in the time interval axis. The choice of this size is made 

on the basis of the dimensions of the rectangles in the box-cutting process being powers of 2. So, 

for computational convenience, we choose the area that extends up to 256 time samples (which is 

a power of 2) instead of 200 samples (i.e. 10 ms). In terms of the frequency dimension, the 

selection of all the frequency bands is based on trying to preserve the spectral formation without 

disassembling structures that are caused by resonances.  

After this modification, the end result is a box of 64 frequency channels and 256 samples for 

every frame and it is shown in figure 7. After cutting these boxes for the total number of frames, 

all of them are downsampled as before into the smallest box of 32 x 16 pixels and reduced into 48 

values each. The final outcome of the developed feature extractor is a number of feature vectors, 

which consist of 48 elements, equal to the number of SAI frames. 
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Fig.7. Selection of the SAI Area that Contains the Speaker-Specific Features. this Box (Dashed 

Line) Covers the 64 Channels of the Filter Bank and Extends up to 12.8ms in The Time Interval 

Axis. 

 

The step that follows the feature extraction is the speaker modelling, which creates the 

trained speakers’ reference templates, and it is implemented through the K-means clustering 

algorithm. For every speaker, one codebook is created for that one box that is cut over the 

complete number of frames. More specifically, all the 48-element feature vectors are 

concatenated in order to have the representation of the entire speech signal. After the VQ, each 

speaker is represented by a codebook of 64 code words since the number of centroids remains the 

same for this experiment as previously. As a result, the outcome of the enrolment session is a 

number of speaker templates equal to the number of trained speakers that consist of a codebook 

with 64 x 48 features. The latter is a similarity with the baseline system since the MFCC-based 

system uses the single codebook approach with 64 x 40 elements. 

Afterwards, the speaker testing occurs with the same feature extractor as shown in figure 3. 

At this stage, the same modification in the box-cutting takes place as it is presented in figure 7. 

For each box of every frame, the result of the down sampling is a vector with 48 features. After 

gathering all the feature vectors of the target speaker’s speech, the concept is again to see which 

reference template encodes them better. To achieve that, the same steps, which were followed in 

section III, for estimating the Euclidean distances between the centroids and the feature vectors, 

are repeated. The criterion for speaker matching is the minimization of the average value that 

reconstructs the test speech signal using a specific codebook.  

In conclusion, the system development that has been described is a salient contribution since 

the feature dimensionality is reduced while complex structures in the SAI data are being captured. 
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Also, the use of a single codebook, compared to the multi-codebook approach of its initial design, 

makes a difference to the computational complexity of the system.  

Lastly, the performance of the modified SID system will be evaluated through comparing it 

with the baseline system that has the architecture described in section III (figure 4). 

 

4.2. Database Description 

The second part of this research work comprises of two types of evaluation. At first, the 

hypothesis that the SAI features can be more noise-robust compared to the MFCC is tested. In 

this set of experiments, the data sets are part of the same multilingual EUROM1 corpus that has 

been used in the first part of this study. The system is again randomized in terms of the groups of 

speakers so that the variability of SID accuracy is estimated. The speech corpora of 30 (3 groups 

of 10) and 180 (3 groups of 60) talkers have been used here as well. The characteristics of the 

training and test speech material are the same as before.  

Nevertheless, the main difference is that the training speech is clean whereas the test speech 

utterances are mixed with babble noise of 8 talkers at various SNR levels from -5 to 10 dB, at 5 

dB intervals. For these identification experiments, each test case was matched against all speakers 

and the closest one was taken as the result.  

Then, our next hypotheses are that the duration of the training and test speech material can 

affect the levels of accuracy. The former is tested through varying the duration of the training 

speech while the test speech length remains constant. Inversely, in the latter, the training speech 

duration remains constant whilst the test speech varies. For these experiments, the database 

consists of 60 English speakers of EUROM1 that are divided into 6 groups (in order to test the 

variation of the accuracy). In both cases, clean speech is used for the enrolment session whilst the 

test speech is mixed with the same type of babble noise that was used before but only at 0 dB 

SNR. 

 

4.3 Results 

Firstly, the novel SAI parameterization is compared to standard MFCC. The speaker 

modelling framework of VQ with 64 centroids remains constant for both systems throughout all 

of the experiments in order to focus on the feature sets. The SID accuracy was computed in the 

same way as in the previous experiment. The error of the identification score is estimated as the 

standard error of the mean. 

Figure 8 plots the SID accuracy (%) against the SNR levels for the corpus of 30 speakers. In 

general, the results indicate that the auditory features provide satisfying accuracy for all noise 
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levels. Additionally, they perform significantly better for -5 and 0 dB SNR (t-tests with p-value 

equal to 0.0352 and 0.0301 respectively).  

Specifically, the accuracy at -5 dB SNR is equal to 50% compared to 30% obtained by the 

MFCCs (with a 5.77% error for both cases). Also, for 0 dB SNR, this configuration achieved on 

average 90% identification (with a 10% error), while the baseline system achieved 60% 

recognition (with a 5.77% error). Interestingly, as the noise level decreases, performance reaches 

a point of saturation. For 5 dB SNR, the two systems have equal identification accuracy of 

93.33% with an error of 3.33%. Maximum accuracy is attained for 10 dB SNR, where the scores 

are quite similar. MFCCs achieve 100% identification whilst the SAI reaches 96.66% with an 

error of 3.33%. 

 

 

Fig.8. Speaker Identification (SID) Accuracy (%) of the SAI-based and MFCC-based Systems for 

the Corpus of 30 Speakers Using Multi-talker Babble Noise. the Error Bars Represent the 

Standard Error of the Mean (Among the Levels of SID Accuracy of the 3 Subsets of 10 Speakers) 

 

Figure 9 presents the results for the identification accuracy against the 4 SNRs for the larger 

speaker population. From the figure, it is clear that the hypothesis for the noise robustness of the 

SAI features can be justified despite the change in the number of speakers. 

In particular, for 0 dB SNR, it is noteworthy that the recommended configuration reaches on 

average 55% recognition (with a 7.26% error) compared to 35% (with a 7.8% error) obtained by 

the MFCCs. For even more noisy conditions, reflected by -5 dB SNR, the average identification 

is almost 5.5% higher for the auditory features (17.22% with 6.82% error).  

As the SNR increases, there seems to be a saturation of performance with comparison to the 

baseline system. Yet, for 5 dB SNR, there is still better identification score (71.66% with 8.55% 

error) whilst for 10 dB SNR, there is convergence of the outcomes of both systems, i.e. 81.11% 

with 8.94% error for the SAI and 82.77% with 4.33% error for the MFCCs. 
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Fig.9. Speaker Identification (SID) Accuracy (%) of the SAI-based and MFCC-based Systems for 

the Corpus of 180 Speakers Using Multi-talker Babble Noise. The Error Bars Represent the 

Standard Error of the Mean (Among the Levels of SID Accuracy of the 3 Subsets of 60 Speakers) 

 

 

 

Fig.10. Speaker identification (SID) accuracy (%) of the SAI-based system for varying training 

speech duration. The error bars represent the standard error of the mean (estimated as the error 

among the levels of SID accuracy of the 6 subsets of 10 speakers) 

 

In the second part of this evaluation, the hypothesis that larger amounts of training data 

result in better recognition rates is investigated. As previously mentioned, the test speech length 

remains the same while the training speech is doubled for every trial and varies from 1 to 16 secs 

(which is the maximum average duration of this corpus). Speakers are modelled using the 64-

means clustering algorithm. Figure 10 shows the results for the SID accuracy of the SAI – based 

system against the length of the training speech material. 
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As expected, the identification accuracy gets better as the length of the training speech 

increases. This generally happens since more training data result in obtaining more reliable 

estimates of the speaker models. Even though the codebook size (64 code words) is not very large, 

it is remarkable that the accuracy level for 1 sec of training data is 30% (with 3.65% error), 

48.3% (with 3.65% error) for 2 secs and 66.6% (with 4.22% error) for 4 sec.  

Additionally, it appears that for these cases, there is a constant relationship between the two 

variables since the accuracy improves up to 18.3% for every doubling of the speech duration. 

This observation is also valid for the speech durations of 8 and 16 secs, where the recognition rate 

is 78.3% (with 8.7% error) and 90% (with 6.3% error) correspondingly. For both cases, the 

performance improves up to 11.7%, which is less than the previous upgrade, but still remains the 

same. 

 

 

Fig.11. Speaker identification (SID) accuracy (%) of the SAI-based system for varying test 

speech duration. The error bars represent the standard error of the mean (estimated as the error 

among the levels of SID accuracy of the 6 subsets of 10 speakers) 

  

Finally, in the third part of this evaluation, the hypothesis about the effect of the length of 

test speech on the identification score is tested. Usually, longer test data are expected to produce 

better accuracy levels since more information can be extracted to represent the target speakers. In 

this case, the speech used during enrolment does not change and the test speech segments range 

from 1 to 16 sec. For each trial, their duration is doubled. The speaker modelling framework is 

the same. The results for the SID accuracy against the length of the test speech are summarized in 

figure 11. 

From the results in the figure above, it seems that the performance becomes better as the test 

speech length increases. When the test utterances last for 1 and 2 secs, the average identification 
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accuracy is 51.6% (with 7.9% error) and 65% (with 5% error) respectively. Importantly, the 

biggest improvement of performance occurs for the speech length equal to 4 secs, which is 20% 

on average, and the SID accuracy reaches 85% (with 5.6% error). 

Additionally, for the length of 8 secs, the accuracy is almost similar to that of 4 secs and 

equal to 86.6% (with 7% error) while it slightly improves up to 90% (with 6.3% error) for the 

maximum speech duration of 16 sec. Lastly, it is worth mentioning that after the duration of 4 

secs, there seems to be a saturation of the recognition score. 

 

Conclusion 

In this paper, the applicability of an auditory model, named Auditory Image Model, on a 

text-independent speaker identification system has been discussed. Our research work consisted 

of two main sets of experiments.  

In the first one, the identification task was conducted in quiet conditions for two speaker data 

sets of different sizes. The system performance was compared to a baseline system using the 

MFCC parameterization. The results suggest that the features that are extracted from the auditory 

image can produce high recognition cores similar to those obtained by the benchmark. 

Furthermore, the second part of this experimental set investigated the hypothesis that it is 

possible to retrieve a subset of the auditory features that is more speaker-specific. The latter was 

achieved with the incorporation of a novel strategy during the enrolment of speakers that 

combines the method of box-cutting with VQ. The concept was to analyse the content of every 

box of the image independently through creating codebooks for each one of them. This way of 

yielding codebooks resulted in specifying the most informative regions of the SAI that indicate 

features that are more discriminative for speakers.  

After the specification of these areas of the image, the boxes converge to the area up to, 

approximately, 10 ms in terms of the time interval dimension. With regard to the frequency 

dimension, the rectangles cover the whole filter bank or parts of it. Since the first pitch ridge lies 

in that SAI region, it appears that pitch is one source of individuality. Also, the boxes contain part 

of the structures that have been created as a result of the resonances of the vocal tract (lower and 

higher formant frequencies), which is a very important characteristic of the anatomy of a person.  

Lastly, the first glottal pulse is usually included in that time span and the shape of it can 

affect the speaker’s voice quality. As a result, it appears that this SAI region can provide 

information about the characteristics of a speech signal that are speaker-dependent.  

Overall, it seems that the benefit of the SAI approach is that the signal is converted into a 

two-dimensional representation that makes it possible to segregate the glottal pulse rate from the 
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resonance structure of the vocal tract. This allowed us to specify the characteristics mentioned 

above that make a speaker more discriminative compared to others. 

In the second experimental set of this study, the results of the previous part were used in 

order to deal with the issue of feature dimensionality. The existing configuration of the box-

cutting module was modified so that it includes the informative auditory features. This procedure 

is important since there were substantial redundancies in the image and it was essential to try and 

find a denser representation of the signal with reduced data dimensionality. Additionally, after the 

speaker modelling part, each speaker template consisted of a single codebook, which is different 

from the multi-codebook approach that was used in the initial version of the system. 

Consequently, the new representation makes a good comparison with the MFCC features since 

their dimensionality is similar and it is computationally efficient given that the features are 

extracted in much less time for both the training and testing phases. 

Then, the robustness of this novel representation was investigated in noisy conditions that 

simulate a realistic environment for two different speaker databases. For both cases, the results 

suggest that the auditory feature vectors lead to much better performance, i.e. higher SID 

accuracy, compared to the MFCC-based system especially for low SNRs.  

Overall, it seems that one characteristic of the SAI that is key to noise robustness is the 

representation type of the auditory image, which has the benefit of combining different types of 

information to a certain extent. The first kind of information is the use of the temporal fine 

structure at the output of the filter bank. This results in the SAI preserving the fine timing 

information whereas the MFCC retain the spectral envelope. 

Another important element of the auditory model is that the image contains the relative 

magnitudes of all frequency bands. At the same time, it includes the specific positions of the 

frequency areas with high magnitudes that associate to resonances of the vocal tract. This trait of 

the SAI is one of the reasons behind its robustness for distorted speech, since more noise can be 

tolerated around the spectral peaks. 

In the final part of these experiments, two hypotheses were tested about the durations of the 

training and test speech segments influencing the SID accuracy levels. As expected, the system 

performance improved as the length of the speech utterances increased in both cases. 

Nevertheless, it is notable that the proposed system achieved very satisfying recognition scores 

for relatively short training and test speech utterances. 

In conclusion, it seems that the derived features are promising and merit the attention of the 

speaker identification and verification community for consideration in further work. 
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