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Abstract  

In order to obtain the damping coefficient and other parameters that influence the dynamic 

features of the valve, this paper employs the “LuGre friction model” to describe the precise 

dynamic and the static features, and presents a new one-step identification method for the parameter 

identification of LuGre friction model through the optimization by genetic algorithm. With the 

properly selected objective function, four static parameters and two dynamic parameters can be 

obtained simultaneously by the MATLAB programming language. The proposed method is proved 

effective through the verification of the identified parameters. 
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1. Introduction 

Valves are important, indispensable equipment in the aerospace, petrochemical, coal chemical, 

and other industries. Owing to the harsh working conditions, it is inevitable for the friction pair of 

the valve to suffer wear and tear.  The wear of valve friction pair severely affects the sealing effect, 

operational performance and life span of the valve. With the in-depth research on friction and the 

improved requirements on the dynamics of mechanical systems, it is no longer reasonable to 

neglect joint friction or replace it simply with the equivalent viscous damping. This calls for the 

establishment of a proper friction model and the identification of the friction parameters in 

mechanical systems, the preconditions for dynamic analysis and control of mechanical systems. 
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The importance of building an accurate mathematical model for nonlinear friction systems is 

self-evident no matter from the perspective of understanding the friction phenomenon or in the 

view of offsetting the friction-induced damages and improving system performance. Therefore, 

friction modelling has been extensively explored by scholars at home and abroad. So far, more than 

30 kinds of friction models have been proposed [1]. These models fall into two categories: the static 

model and the dynamic model. Models in the first category do not reflect the increase in static 

friction or the friction memory phenomenon [2]. 

Some scholars used differential equations to describe the dynamic features of friction and 

attributed the difference in friction to the speed of response. Following this train of thought, these 

scholars put forward a series of dynamic friction models. The most influential ones inlclude: Dahl 

model, mane model, reset integrator model, Bliman and Sorine model [3] and LuGre model [4-6].   

Nevertheless, there is no mature method to solve the LuGre model parameters identification 

problem. In that model, it is relatively easy to identify the static parameters but immensely difficult 

to ascertain the dynamic ones.  The difficulty rises from the fact that the LuGre model is a non-

linear system with unmeasured internal state z and coupling effect between the dynamic and static 

parameters. In Literature [7], the second-order linear description is adopted to estimate the two 

dynamic parameters by the frequency-domain identification experiment. However, the 

identification based on the partial linearization method hinges on the selection of initial parameters, 

making it even harder to ensure  accuracy and convergence. 

Recent years has seen domestic and foreign scholars developing a lot of identification methods 

[8] for non-linear systems by applying genetic algorithm to parameter identification [9]. In light of 

this trend and the ability of the LuGre model to accurately describe the friction phenomenon, this 

paper presents a parameter identification method of LuGre model based on genetic algorithm [15-

17].  

 

2. System Structure and Feature Implementation 

The dynamic damping test system is mainly for the purpose of measuring the frictional features 

in the simulated cylinder packing ring system. It simultaneously measures the velocity affecting 

the friction features and dynamic damping features. For the maximum similarity between the 

simulator and the actual condition, the working conditions should be reconstructed with multiple 

subsystems. 

The dynamic damping test system consists of three parts: host computer, console, and test 

bench (Figure 1). 
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Fig.1. Dynamic damping tests system components 

 

In the dynamic damping test system, the host computer is mainly responsible for data 

processing and computing, displaying performance indices, sending commands to the console 

according to functions, receiving relevant measurement data, and displaying image curves. The 

console is mainly responsible for communicating with the host computer, controlling the test bench 

drive motor according to the commands from the host computer, acquiring and processing data, 

etc. The test bench is mainly responsible for installing the device and simulating the operating 

environment of the objects and it is composed of a motor drive system and a data acquisition 

system. 

Figure 2 is the sketch map of the composition of the dynamic damping test system. Both the 

main components of the system and the relationship between the test machine and the various 

subsystems are displayed in this sketch map. 

 

 

Fig.2. Composition diagram of the dynamic damping 

 

The data acquisition system involves both the analog signals of force sensor and temperature 

sensor, and the digital signal of grating sensor. The measurement variables include friction, pressure 

and velocity. 

The host computer realizes real-time monitoring and dynamic damping valve test through 

LabVIEW. The key measurement variables of various signals are monitored in real time to achieve 

real-time display and analysis. The linear motor and piezoelectric motor send commands through 
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the host computer, and receive the returned data for index calculation and test. The data analysis 

and historical data are preserved and displayed for further use. 

 

2.1 Lugre Friction Model 

In order to obtain the valve’s damping coefficient, it is necessary to study the features of the 

friction simulation model and the algorithms. Among the various friction models in existence, the 

most popular ones are the Karnopp model, LuGre model and integrated model. In a brief overview 

of static friction modeling and simulation, Shi [10] compared the simulation results of three friction 

models (i.e. Coulomb friction model, Karnopp model, Reset Integrator model), pointing out that 

Karnopp model outperformed the other two models in simulating the friction features at the relative 

velocity of zero. Wang [11] simulated the static friction at the launch of the system with the feed-

forward channel of Saturation Module, and emulated the nonlinear static friction in viscous phase 

by Simulink. MsMadi et al. [12] put forward a parameter identification method based on interval 

analysis of bounded error for the identification of LuGre friction model parameters. Janswevers et 

al. [13-14] examined the pre-sliding and sliding phases separately, drew the relation curves between 

the friction torque and speed, and obtained the static and dynamic friction model parameters by 

curve fitting method. 

Proposed by Canudas de Wit C, the LuGre model is a typical dynamic model. It can be 

simplified as follows: 
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Where z is the average deflection of the bristles; 𝛔𝟏 is the damping coefficient, Ns/m; 𝛔𝟐 is 

the viscous coefficient, Ns/m; 𝐅𝐜 is Coulomb friction; 𝐅𝐬 is static friction; V is the relative velocity 

between the two surfaces. The function g(v) describes the Stribeck effect. Overall, 𝐅𝐜, 𝐅𝐬, 𝐯𝐬 and 𝛔𝟐 

are static friction parameters while 𝛔𝟎 and 𝛔𝟏 are dynamic friction parameters. 
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LuGre model is a complete friction model, reflecting the full reaction to friction movement. It 

not only considers the viscous friction and Coulomb friction, but also the static friction and Stribeck 

effect (Figure 6) of the negative slope. The phenomenon of pre-slip displacement (Figure 7) can be 

simulated through the combination of (1), (2), (3) and (4). 

 

3. Parameter Identification 

3.1 Identification of Static and Dynamic Parameters  

The abovementioned LuGre model deals with the expression of linear motion: 

 

ma u F                                                                                                                                        (4) 

 

Where m is mass, kg; a is acceleration, m/s2; u is traction, N; F is friction, N. The 

corresponding time of velocity can be acquired according the input of the system control u=1.1 

sin5t. The identification parameters are set as 𝒙𝒅 = [𝝈𝟎, 𝝈𝟏, 𝑭𝒄, 𝑭𝒔, 𝒗𝒔, 𝝈𝟐]
𝑻 . The identification 

error is defined as: 

 

1( , ) ( ) ( , )e d i i d iF x t F t F x t 
                                                                                                           (5) 

1( , ) ( ) ( , )d i i d ie x t s t s x t 
                                                                                                               (6) 

 

Where F(ti) and s(ti) are the output displacement and friction of the actual system at time of ti, 

respectively; F1(xd, ti) and s1(xd, ti) are the output displacement and friction consisting of the 

identification parameters of the system model at time of ti, respectively. Thus, we have the 

following equations: 
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The objective function is defined as: 
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Where c1, c2, c3 and c4 are weight coefficients. 

During the identification process, it is necessary to measure the output displacement of the 

actual open-loop system at different times, and the corresponding friction at each moment. The 

identification error at different times can be obtained by measuring the displacement, the friction 

with the output displacement, and the friction composed of the identification parameters of the 

system model. 

The objective function is established on the maximum error of displacement and the maximum 

error of friction. At each iteration, the two errors are calculated on the computer, aiming to minimize 

the maximum error and let the estimates converge to the true values in a more efficient manner. 

Compared with the one-step identification, the two-step identification estimates the four static 

parameters 𝑭𝒄, 𝑭𝒔, 𝒗𝒔 and 𝝈𝟐 via Stribeck curve first. Substitute 
𝒅𝒛

𝒅𝒕
=0 into (1), (2) & (3), we can get 

the steady state friction: 
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Substitute (3) & (6) into (5): 
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Where the curve between friction and velocity is called “the steady-state Stribeck curve”. 

Next, two dynamic parameters 𝝈𝟎 and 𝝈𝟏 are estimated. 

Set the static parameter identification vector xs=(𝑭𝒄, 𝑭𝒔, 𝒗𝒔, 𝝈𝟐) and define identification error 

as: 

 

( , ) ( )s i i S ie x v u F v                                                                                                                       (15) 

 

Set the objective function as: 
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Static parameters identification: acquire the parameter vector x to minimize the objective 

function J. 

Dynamic parameters identification: identify 𝝈𝟎  and 𝝈𝟏  by the limit cycle oscillation curve 

[13]. Set the objective function as: 
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Where 𝝈𝟏 and 𝝈𝟐 are weight coefficients. 

 

3.2 Genetic Algorithm Design 

 

The identification of static and dynamic parameters is optimized by genetic algorithm [8-9]. 

Specifically, individual parameter vector is identified in a binary encoding format, the roulette 

selection is performed, the uniform crossover is conducted, and the mutation is carried out using 

the bit string  operator. Figure 3 describes the operation flow of the genetic algorithm[17]. 

 

The fitness function is set as: 
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Where Cmax=max{J(xi)} ensures the non-negativity of the fitness function. 

The algorithm operates in the following steps:  

(1) Initialization: Set the generation counter as 0→t, define the maximum number of 

generations as T, and randomly generate  N friction model parameters to form the initial population 

P (0);  

(2) Individual evaluation: Calculate population p (t) for each set of parameters of the fitness 

value; 

(3) Selection: Process the population with the selection operator; 

(4) Crossover: Process the population with the crossover operator; 

107



(5) Mutation: Process the population with the mutation operator. After the selection, crossover 

and mutation of population p (t), the next-generation population p (t+1) is acquired. 

(6) Termination: If 𝐭 ≤ 𝐓, then t+1→t; go back to (2). If t>T, then the individual with the 

greatest fitness is outputted as the optimal solution; terminate the calculation. 

 

 

Fig.3. Genetic Algorithms operate flow process chart 

 

4. Simulation Results and Analysis 

The genetic algorithm is stochastic, that is, it generates random probability. The result and 

convergence speed differ from operation to operation. With the continuous evolution from 

generation to generation, the results ultimately converge to the most adaptive individuals, thus 

forming the optimal solution. 

In figure 4, the subgraphs (a), (b) and (c) list the fitness values of the 100-th, 200-th and 500-

th generations, respectively. The population size M is 50; the crossover probability P is 0.9, and the 

mutation probability P is 0.05. 

 

 

(a) 100 iterations 
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(b) 200 iterations 

 

(c) 500 iterations 

Fig.4. Situation of different iterations 

 

Table 5-1 compares the minimum fitness values of the three generations obtained by the 

genetic algorithm. It can be seen that the fitness value is reversely proportional to the number of 

generations, and the algorithm results are converging. 

 

Tab.5-1. Comparison of fitness value 

Iterations 100 Generation 200 Generation 500 Generation 

Minimumalue 0.010107 0.005651 0.000461 

 

In Figure 5, the subgraphs (a) and (b) in Figure 5 present the parameter identification results 

of the 1,000-th and 2,000th generations, respectively. The optimal fitness values of the two 

generations are 0.00006311 and 0.0000020783. Considering that the fitness value of the 500-th 

generation is 0.000461, it is obvious that the fitness value decreases with the increase in the number 

of generations. According to Table 5-2, the parameter identification errors of the 1000th generation 

are 0.058%, 1.22%, 0.15%, 9.27%, 10%, and 5.57%. Despite the improved state of some 

parameters, the unsatisfactory estimated value call for further iterations. The identification value 

of the 2,000th generation is close to the true value with parameter identification errors of  0.0287%, 

1.07%, 0.93%, 2.64%, 2% and 2.775%. The results show that the evaluation parameters and 

identification results are valid and satisfactory. 
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(a) 1000 iterations               (b) 2000 iterations 

Fig.5. The optimizing process of the objective function 

 

 

Fig.6.Stribeck Cure 

 

 

Fig.7. The phenomenon of  pre-slip displacement 

 

Tab.5-2. Comparison of identification values of different generations 

Parameter Actual value 
Identification value 

(500 generation) 

Identification value 

(1000 generation) 

Identification value 

(2000 generation) 

𝝈𝟎 5
10  99891.5632 99942.2754 100028.7287 

𝝈𝟏 316 340.2324 319.8685 319.3825 

𝑭𝒔 1.5 1.4785 1.4985 1.5093 

𝑭𝒄 1 1.5427 1.0927 0.9736 

𝒗𝒔 0.001 0.0019 0.0011 0.00098 

𝝈𝟐 0.4 0.4469 0.4223 0.4111 

 

Table 5-3 compares the simulation parameters of one-step identification with those of two-

step identification. We can see that the both of the two identification methods satisfy the 

identification requirements; one-step identification is able to achieve the identification accuracy of 

two-step identification. In the actual system, however, the controller parameters of the two-step 

identification method have to be adjusted, making it hard to maintain accuracy. The time-
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consuming, labor-intensive two-step method inevitably complicates the experiment conditions. 

Although more number of generations is needed to identify the true value, the one-step 

identification method has a clear edge over the other method as it uses computer to do most of its 

work, saving manpower and resources. 

 

Tab.5-3. The comparison of identification value between two-step identification and one-step 

identification 

parameter actual value two-step one-step 

𝝈𝟎 [N/m] 5
10  100028.7287 99906.8963 

𝝈𝟏 [Ns/m] 316 319.3825 319.1326 

𝑭𝒔 [N] 1.5 1.5093 1.5000 

𝑭𝒄 [N] 1 0.9736 1.0212 

𝒗𝒔 [m/s] 0.001 0.00098 0.0010 

𝝈𝟐 [Ns/m] 0.4 0.4111 0.4046 

 

Conclusion 

Focusing on the dynamic damping test system, this paper establishes a friction model based 

on dynamic LuGre electromechanical servo system, and presents a new one-step identification 

method for the dynamic parameters of LuGre model through the optimization by the genetic 

algorithm. The proposed method can obtain static and dynamic friction parameters simultaneously. 

Compared with two-step identification method, the one-step identification method is obviously 

superior in that it reduces the steps and difficulty  in the identification of static and dynamic 

parameters in the experimental static friction model, and that it overcomes the obstacle rising from 

the coupling effect between the static and dynamic parameters and improves the accuracy. 

Therefore, the proposed method boasts significant practical value for projects. 
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