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Abstract

A new Block Hybrid Trigonometrically Fitted Method (BHTM) for the numerical integration
of second order nonlinear initial value problems with oscillatory solutions is presented in this
paper. The BHTM is based on multistep collocation method. The examination of the stability
properties of the method shows that it is A-stable. Numerical experiments are carried out to show
the accuracy and efficiency of the method on second order nonlinear initial value problems with

oscillatory solutions.

Keywords
Collocation, Hybrid, Nonlinear Second Order IVPs, Trigonometrically Fitted.

1. Introduction
In the past two decades there has been considerable interest in effective numerical integration

of the initial value problem of second-order differential equations in the form

y'(x)=flxy(x)), x€ [xu;b]}

y(xg) = ¥p. ¥'(x) = ¥4

(1)

which solution has oscillatory characteristics, where y € R® ,f:[x,,b] x R® — R" is

sufficiently differentiable, satisfies Lipschitz condition and the first derivative ¥ does not appear
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explicitly. Such problems arise in area such as quantum mechanics, celestial mechanics, and
theoretical chemistry among others. Most of these problems are nonlinear, and as a result they are
often extremely difficult, or sometimes impossible, to solve analytically with presently available
mathematical methods. With respect to the oscillatory feature of the problem (1), researchers
have proposed integrators with frequency-dependent coefficients that exactly integrate a set of
linearly independent non polynomial function for the solution of (1). Some of the methods
include trigonometric polynomial interpolation (Gautschi, 1961), mixed interpolation (De Meyer
et al., 1990; Coleman and Duxbury, 2000; Vanthornout et al., 1990), exponential fitting methods
(Ixaru et al., 2002; Vaden Berghe et al., 1999; Van Berghe and Van Daele, 2007; Simos 1998
and 2002) functional fitting (Ozawa, 2001), Piecewise Linearized methods (Ramos, 2006). More
recently, in the context of continuous multistep collocation method for the construction of
trigonometrically fitted methods, Ngwane and Jator (2013a&b and 2015a) proposed block hybrid
method, Ngwane and Jator (2015b) considered Enright method and Ndukum et al., (2017)
proposed extended backward differentiation.

This paper considers a basis function other than polynomial for the development of a hybrid
method via multistep collocation method. According to Duxbury (1999), one incentive for using
a basis function other than polynomial is the fact that as every oscillation has to be followed
when integrating oscillatory IVP, then a large amount of computer time is required and the
rounding error accumulates for small sizes. Methods based on polynomial functions are therefore
not reliable. In view of this, basis function in this research is the set
{1,x, ..., x" cos(wx), sin(wx)]. This is motivated because of its simplicity to analyses (Ngwane
and Jator, 2015b) and better approximation for initial value problems with oscillatory solution
(Coleman and Duxbury, 2000).

The collocation methods for ordinary differential equation are based on a simple algorithm,
find a function of a specified form that satisfies the differential equation exactly at a given set of
points. Basically, collocation method is the bedrock of continuous schemes. Some of the
advantages of continuous form of linear multistep method over discrete method include better
error estimation, provision of a simplified coefficient for further analytical work at different
points, provision of approximations at all interior points (Awoyemi, 1999) and ability to generate
infinite number of schemes (Oluwatosin, 2013).

The idea of block methods started with Milne (1953), who use this idea only as a mean of
generating starting values for predictor-corrector algorithms. Rosser (1967), developed the block
LMM into methods for solving IVPs. Block methods contain two parts viz: main and

complementary methods (Brugnano and Trigiante, 1998). Some of the advantages of block
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methods include but not limited to permission of easy change of step length (Yakusak and
Adeniyi, 2015), self-starting and thus avoiding the use of other method to get the starting
solution, overcoming the overlapping of pieces of solution and obtaining numerical solution at
more than one point at a time (Ramos and Singh, 2017).

Usually, the hybrid method is compounded with the need to develop predictors for the
evaluation of the corrector at off grid points making the method time consuming and more
tedious (Akinfenwa et al., 2011). It is our aim to show that the block trigonometrically fitted
hybrid method in this paper can be made to overcome this shortcoming and cope with the

integration of nonlinear oscillatory problems.

2. Derivation of the method
The proposed Block Hybrid Trigonometric Method (BHTM) with symmetric hybrid points is

of the form

1

Z a; (uj}’nﬂ + Z @y (W) Vg om = BBy (1) frez + h252 (1) Gnsz (2)

J=0 m=1

where  y,.; =v(x,+jh), fre =¥'(x,+2h), gpso=¥"(x, +2h), u=wh, wis the

frequency, x,, is a node point, vm = {35} is the hybrid point and «;, §;, &, are parameter to be

uniquely obtained from multistep collocation technique and dependent on the step size and
frequency.

The coefficients of BHTM are selected so that the method integrates the IVP (1) exactly
where the solutions are members of the linear space {1, x, x?, x?,sin(wx), cos(wx)}.

Through interpolation of the basis function given by

3
: u
vix,u) = Z a;x! + a, sin(wx) + agcos(wx), o= x

j=e

. .  Bly(xa .
at the points x,, ;, and x,.., j = 0,1and m = 1,2 respectively, collocation %m at the point

ntj?

8* [y (x,u))

x,4+, and collocation of —— at the points x,,, ,, the Continuous Block Hybrid Trigonometric

Method (CBHTM) which will be used to produce the main discrete formula and its derivative

will be used to generate three additional discrete formulas for solving equation (1) is obtained as
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1 .
v(x,u) = Z ﬂj(xru]}’nﬂ + Z Wy (4,1) Vg + BB (W) frgn + h? (2, 1) gy 22 (3)
m=1

=0
are continuous

where  a,(x,u), @, (x,u), a,(xw), a,(x,uw), B (x,u) and ¥, (x,w)

coefficients that satisfy the root condition.

Theorem 1

Let equation (3) satisfies the following equations:
I CAPRY) Vasy o 7=0(3)2 (4)
—a[}riuj) — = fasz (5)
o) T ©)

then the continuous representation of equation (3) is equivalent to

— N det['-{-’}-)
y(x,u) = :Dmpﬂx} (7)
where
fnﬂ,gn”]T,F(xj = (Pﬁ(x],Fiﬁx],Fg (x],F‘E [x],P4(x],F5(x] ]r’

V= (}Fn’}rn+1:1’}rn+1’}rn+1:2’

P; (x) ={1,x,x% x3 sin wx, coswx)

C Po(xn)  Pilxa)  Paxa)  Palx)  Palxa)  Ps(xa) |
Po(Xnnd)  PilXnnd)  Pa(Xnnd)  Pa(Xnws)  Pa(Xnn)  Ps(Xnwa)
Wy Po(Xn) P1(Xn1) Po(Xni)  Pa(Xni)  PalXnid  Ps(Xnia)
Po(Xniw2)  Po(Xniw2) Po(Xnwz) Po(Xnivz2)  Po(Xnwz)  Po(Xniv2)
Po(xni2)  PilXni2)  PalXni2)  PalXni2)  Pa(Xni2)  Ps(Xn:2)
L Po(Xn2)  Pilxni2)  Pa(Xn:2)  PalXn2)  PalXns2)  Ps(Xns2) ]

and ¥, is obtained by replacing the ith column of ¥ by V.

Proof (See Appendix)
For emphasis, we note that equation (7) is the CBHTM given by
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1 Z

y(x,uw) = Z a}'[x’u]}’nﬂ + Z oy (6,1) Vi spm + BB (2, w) fren + h? G (x,1) gy 2 (8)

J=0 m=1

Differentiating equation (8) with respect to x once, we obtain

-
r

1
1
}'J {.’X.'J 1.{} = E Z G!_; (.'X.'J 1{}}’”4.}- + Z "-xi‘m(xJ u}}’rz +om T ﬁ;i 1:.’1.] u}fn+2 + ha; (xi 1.{} (9}
j=o

=1

Evaluating equation (8) at x = x_., gives the discrete method v, ., = y(x, + 2h) which
takes the form of the main method. Evaluating equation (9) at x = x,,,,, * = x,., and
x=x,.. respectively, give the complementary methods. The BHTM whose coefficients are in
trigonometric form is presented in equations (10)-(13) while the corresponding converted series
form are given by equations (14)-(17) respectively. According to Lambert (1973) and Duxbury
(1999), series form of the coefficients is used to avoid significant losses in evaluating the

coefficients that may occur as u — 0.

Vpss = ag(sinu, cosu)y, + a,, (sinu, cosu)v, 4,4 + a,(sinu, cosu)y, .4

+ a,,(sinu,cosu)y, ., + hB,(x,w)f, ., + R 8,(xu)g, +s (10)
1 . 1 . 1 .
fose1 = Ecxm(smu, cosu)y, + A e,y 4 (sinu, cosu)y, ., + n @y 4 (sinu, cosu)y, .,
1
+ Ecxym[sin W, COSUVpspo T+ Boq (W) fren + hO54(x, u) gss (11)
1
frosg = - o2 (sinu, cosu)y, + 5 @12 (sinu, cosu)y, .4 + 7 12 (sinu, cosu)y,sq
1
+ Eauz,z (sinu, cosu)y, 4y + Bz (2, w)fpsen + hd, (2, 1) G s (12)
1 1 1
fﬁ% = 7 %02 (sinu, cosu)y, + 5 Fv13 (sinu, cosu)y,.,q + 7 %13 (sinw, cosu)y,.q
1
+ Eauz,a (sinu, cosu)y, 4,0 + B2z (xw)fpes + hd; 3 (2, ) Gsa (13)
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oo O 6852 o 11976137 4 198290254567 s \
0T 415 6027875 © 300188175000 164443082265000000 ©
o B4 L 2376 o 842051 4 103395779387 ¢
vl 415 861125 TI47337500 27407 180377500000
o o 216 108 o 7905041 4 1212485182217 6
I 415 6027875 100062725000 38370052 5285000000 ! (14)
oy =576 9672 143659 4 341432297183 6 4
vI 415 6027875 0 150094087500 5§75550787927500000 ©
30 36 2 74429 4 5891297173 P
e ; .
By= %3 T 3aaas " Jooasooo00 " T Ts3as021011400000 "
15 2 3744 2 675919 1 4 10444925363 28
- — A j
L= 15 F  Goarsrs M Sonsnaeason ' ¥~ Srersoasrarsoone ¥t )
333 1135527 o2 2296275749 W' 175095954228763  u |
%.17 8300 96446000 & 9606021600000 h  36835250427360000000
-
N ) 36486 o 96912601  w' . 32097930863  u°
VLT 415K 861125 & 114357400000 h | 1957655741250000 4
o - 3213 4958433 o1 3190083257 ' _ 202465534698150  u°
LT B30A 96446000 & 3202007200000 k& 122784168091 20000000 &
=
' (15)
o o349 250941 e L 931466759 aut 20817236400629 W
21 415 12055750 k2401505400000 h  4604406303420000000 h
-
g 3L _ 549 o LIBS06T 101499116371 5 ,
L1 166 551120 128080288000 491 136672364800000
87 195813 164198527 4 5639116078633 . 6
07 7660 192892000 6404014400000 818561 1206080000000
+. J
o =127 B6591 2 1058121 6123634502537 5. )
0.2 1245 © 18083625 ' 7147337500 © 7 1534802101140000000 ©
o 424 40583 o 2SITIIT6T 4 261TIS49476279
2415 2583375 514608300000 1973316987180000000 ©
P 229 n 275839 r BORGO4543 W I84601891677757 o
L2 415 18083625 1801125050000 13813218910260000000
o 832 78349 o 554550701 4 S6471755866637 6 | (16)
22 1245 IR083625 3602258100000 13813218910260000000 ©
12 3 o 516589 4 11030446281 | 6
———=h— it — 't — j
Bra™ %3 "~ Saaas M~ 3015054000 " T T8a176252136800000 1 T
31 73133 2 408708467 4
%2530 " Tazaason ¥+ Taaoo0a2a00000 "
42723218897929 2 5 .
55252875641040000000 )
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157 1157353 448879811 4 155204307151319 6, )

%9,37 72490 289338000 ©  28818064500000 ©  36835250427360000000 © |
o _ 237 19361 :3 n 409400863 f4 OR04240494901 rf, n
I
v 415 0 1722250 1 T 114357400000 T3085814340000000 "
o - Aol 555020 o 1099105941 4 _ 48723895208089 5,
L3 B30 96446000 3202007200000 4092805603040000000 T
2249 26888 366716951 4 222289381817 4 ! (17)
%237 7225~ TR083625 T 7204516200000 © T 82221541132500000 © T
51 E 19395587 4 560929758623 6
= i —_— +...
Bya=T66 " Ss1120 "t TRa240864000 Y T 391136672364800000
) _ 111 = 305469 r;r“g THIREHRESS .l'Jj 4
FE. 3 1 () [ 92892000 19212043 200000
_ 2588332564387 o 6
24556833618240000000 )
3. Analysis of BTHM
3.1 Local Truncation Error of BHTM
Theorem 2
The BHTM has a local truncation error (LTE)

of Coh®(w?y*(x,) + @ (x,))+ 0(h™)
Proof:
Consider the Taylor series expansion of the following

Vs Vst Y swts Ynswzs V() ¥ (%, + h), ¥(x, + v1h),¥(x,, + v2h), ¥psp,¥' (3, + 2h), 3,55 @N
d  y"(x,+2h). Also, assume that ¥(x,s;) = ¥ys;f = OLvLY2, vy (x,.,) = fos, and
v (x,:,) = g,2,. Then by substituting these into method in equation (10) and simplifying, we
have that

LTE = }?{xﬂ.-l-zj — ¥tz
= C.h¥ (v () + ¥ (x)) +0(R7) m (18)

Consequently, the Local Truncation Error (LTE) of equations (10)-(13) are respectively
obtained as
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[(— 22y 9 () + s 0y () ) 1 + 0 (W)

106240 ¥ 331200

(ivfa} (x,)— 11'5“'1 w:},m (xn])hﬁ + 0(h")

ITE = 353;1& - 95200 - (19)
( 212487 IE}[ %n) ¥ 553600 1553600 ‘}FH} [x?‘“:])h"Eh + U(h?j
(e) wiv® 6 7
(?4?* (xa) + 16600 Y (x”])h +O0(h)

From equation (24), the order of BHTM is p =(5,5,5,5)" with error

531 &01 859 3

T
constants C, = (Eﬂlzl}l}’_11'3'52DI}’15‘3'36I}I}’166|}|}} . Also, following the definition of Lambert

(1973) and Fatunla (1988), a numerical method is consistent if its order is greater than one. We
therefore remark that BHTM is consistent.

3.2  Stability of BHTM
Following Akinfenwa et al. (2015), BHTM can be represented by a block matrix finite
difference equation given by

AVy =49y +hp9F + hBWE, ., + h%G, ., DY (20)
where
Yu +1 — (vn+1,1’ vn+11'vn+1,2’ n+2 :] W (Un L"-'v?‘! 1’Un plr? nj 1.-'.+1

[fn+vj:!fn+:l:l'fn+§:2!fn:l-2]r1§1.-'; (fn—uzrfn—lrfn—ﬂrfn] G = [Hn+u119'n+1ugn+uzrgn+2]r
and A%}, 411} pl® p(1) pl1) gre Lk x k matrices.

For k = 2, we have

(1 @37 Fe2a 0 0 0 0 ay, 1 0 0 JBLI
AL = | @12 @1z T2z 0 4@ |0 0 0 ag, (0 1 0 B,
@1z @13 Guzz 0 0 0 0 @3] 0 0 1 Bl
- Dy @y @y 1 0 0 0 4 00 0 5
0 0 0 0 00 0 ¥,
BI:I}:I: 0 0 0 0 D(l} o o 0 ¥,z
o 0 0 of 0 0 0 Y3
o 0 0 0 00 %

3.2.1 Zero Stability
According to Lambert (1973) and Fatunla (1988), BHTM is zero stable if the roots of the
first characteristic polynomial have modulus less than or equal to one and those of modulus one

are simple. i.e.
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p(R) = det]RA™ — 4] =0 and |R;| = 1. Following this definition we obtained from
our calculation that |R| = (0,0,0,1).Since |R,| =1 and |R,|= 1 is simple, BHTM is Zero
Stable.

3.2.2 Convergence of BHTM
The necessary and sufficient condition for a method to be convergent is that it must be zero
stable and consistent (Lambert, 1973 and Fatunla, 1988). Since BHTM is both zero stable and

consistent, we therefore remark that it is convergent.

3.2.3 Linear Stability and Region of Absolute Stability of BHTM
Applying the block method to the test equations ¥' = Ay and v" = A%y and letting z = Ah

(pl (ol
A4 +ze"
A!.'_" _HB!.:C'_H:

yields ¥, ., = o(z,u)¥,,, where a(z,u) = S The matrix a(z) for BHTM has

_ malzud

T lzul)

eigenvalues given by (@,, @,, @3, @.) = (0,0,0,¢,), where @,(z, u) is called the

stability function. According to Ndukum et al. (2017), having suitable values of u in a large
interval means that the method can cope well for problems with estimated frequencies. It is

observed that for BHTM, the values of ue[w, 21 are satisfactory. The region of absolute stability

(RAS) of BHTM is plotted for u = E and is presented in figure 1.

0.03
0.021
Glz)
0011
STABLE REGION UNSTAELE REGION
-003  -002 -001 0 001 002 003
R(z)
-0.011
-0.021
-003-

Figure 1. Region of Absolute Stability of BHTM
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Definition: A-stability

A block method is said to be A-stable if its region of absolute stability contains the whole of
the left plane.

Since the region of absolute stability of BHTM contains the whole of the left plane, then it is
A stable.

4. Numerical Examples
We considered five nonlinear oscillatory problems to test the efficiency of the method and
compare the results with results of some other methods established in literature.
Problem 1: Non Linear Perturbed Systems
Consider the nonlinear perturbed system on the range [0,10] with e = 1073,
vy =epy(x) — 25y, —e(yi +¥i) w(0)=1, y(0)=0
vy =epy(x) — 25y, —e(y{ +¥5) 1(0)=¢ , »(0)=5
where
@, (x) =14+ " + 2esin(5x + x%) + 2 cos(x?) + (25 — 4x7) sin(x?)
@,(x) =1+ €* + 2esin(5x + x¥) — 2 sin(x?) + (25 — 4x%) cos(x?)
The exact solution is given by

y,(x) = cos(5x) + esin(x?) , y,(x) = sin(5x) + ecos(x?)

which according for Fang et al. (2009) represents a periodic motion of constant frequency with
small perturbation of variable frequency. As selected by Fang et al. (2009) and Ngwane and Jator
(2015a), we choose w = 5 and the numerical results of the maximum global errors of BHTM
were compared with Block Hybrid Trigonometrically-Fitted (BHT) of Ngwane and Jator (2015a)
and Trigonometrically-Fitted Adapted Runge-Kutta-Nystrédn (TFARKN 5(3)) of Fang et al.
(2009) of order 5 each as presented in Table 1.

Table 1. Comparison of log of Maximum Errors and Number Steps

BHTM BHT TFARKN 5(3)

N —log,,(Err) N —log,,(Err) N(rejected) —log,,(Err)
50 9.53 50 3.42 29(6) 2.78
100 10.39 100 4.61 88(9) 5.33
260 12.49 260 7.52 262(8) 7.85
810 15.82 810 10.43 811(4) 10.38
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From Table 1 and Figure 2 it can be seen that BHTM outperformed BHT which is
implemented in a corresponding fixed step size mode and TFARKN 5(3) which is implemented
in variable step size mode respectively.

Efficiency Curve for Problem 1

_1[}—-

log(Err Max)

30

500 1000 1500 2000 2500 3000
NFE
| o BHTM o HBT e TFARKN 5(3)}

Figure 2. Efficiency curve for Problem 1

Problem 2: Nonlinear Strehmel-Weiner problem
We consider the nonlinear second order IVP which was also solved by Nguyen et al. (2007)

and Jator (2016) in the interval 0 < ¢ < 10 respectively

¥ (£) = (3, (£) —¥,(£))* + 6368y, (t) — 6384y,(t) + 42cos(10t), ¥,(0) =0.5,y{(0) =0
v, (£) = —(,(£) — ¥, (£))* + 12768y, (t) — 12784y,(t) + 42 cos(10t), ¥,(0) =0.5,y,(0)=0

cosl10t)

with solution in closed form given by ¥, () = y;(t) = cos(4t) — —

Numerical results of the maximum global errors of BHTM were compared with order 6
Symmetric Boundary Value Method (SBVM) of Jator (2016) and Trigonometric Implicit Runge-
Kutta Methods

(TIRKM) of Nguyen (2007) are presented in Table 2.
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Table 2: Comparison of Maximum Errors

BHTM SVBM TIRKM
NFE Ery NFE Eryr NFE Ery
600 6.02 x 1077 801 2.6 x 1077 907 2.5 x107*
900 7.90 x 1072 1201 1.6 x 1078 1288 6.6 X 107°
1600 8.11x 1077 1601 2.8 x 1077 1682 7.0 x107¢

In Table 2 and Figure 3, we show that the BHTM uses fewer number of function evaluation
and hence more efficient than the order 6 methods in Jator (2016) and Nguyen (2007)
respectively.

Efficiency Curve for Example 2

- 10

log(Err Max) — 144
_16_

_18_

600 800 1000 1200 1400 1600
MNFE

| o BHTM © SVBM ¢ TIRKM|

Figure 3: Efficiency curve for Problem 2

Problem 3: Two Body Problem

We consider the following system of coupled differential equations which is well known as
the two body problem:

" }Fl '
7 =-5 5,(0)=1y(0)=0

Ve

ya (x) = - w@=0y0)=1

where ¥ = 4/ ¥{ + ¥5 and whose analytical solution is given by

v, (x) = cos(x), v,(x) = sin(x)
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The problem was considered in Senu et al. (2010) in the interval 0 < x < 10 with w = 1.
The BHTM is compared with the fourth order DIRKNNew of Senu et al. (2010) and the
numerical results are displayed in Table 3.

Table 3. Comparison of Numerical Results

BHTM DIRKNNew
NFE Err NFE Err
1600 513 x 107% 5000 7.49 % 107*
3200 1.30 x 107%° 10000 562 %1077
6400 400 x 1073 25000 1.00 % 107°
12800 7.43 % 107 60000 1.78 x 1077

Table 3 reveals that BHTM gives better approximation. Also, Figure 4 shows that the method
in this paper is more efficient
Efficiency Curve for Problem 3
- 1 [}_

_2[}_

— 304

log(hviax Err)
— 40

2000 4000 6000 8000 10000 12000
NFE

| o BHTM © DIRKNNew|

Figure 4: Efficiency curve for Problem 3

Problem 4: Undamped Duffing Equation
Consider the periodically forced nonlinear IVP that was solved in Fang et al. (2009).

{}r” = (cos(t) + esin(10t))® —99esin(10t) —y* — v, 0=t <1000
y(0)=1, ¥'(0) =10e
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with € = 107%% and whose analytic solution y(t) = cos(t) + esin(10t) describes a periodic
motion of low frequency with a small perturbation of high frequency. In this problem, w = 1 is
selected and the numerical results in comparison with TFARKN 5(3) of order 5 are displayed in

Table 4 while the efficiency curve is presented in Figure 5.

Table 4. Comparison of Numerical results

BHTM TFARKN 5(3)
N Max Error NFE N (rejected) Max Error NFE
80 219 x 107V 240 80 (28) 2.63 X 107° 300
97 8.37 x 10718 294 97 (41) 447 X 107 400
135 1.61x 10718 378 135 (36) 3.72x 1078 600
1035 6.13 x 10722 2108 1035 (268) 1.17 x 10713 4200

Efficiency Curve for Problem 4

— 1 U_
_20_
log(viax Err)
_30_
— 40
_SU_
L1000 2000 3000 4000
MNFE

| o BHTM o TFARKN|

Figure 5: Comparison of Efficiency curve

Problem 5: Nonlinear Duffing Equation

Consider the nonlinear Duffing equation forced by a harmonic function given by
y" + v+ y?= Bcos(fix) whose theoretical solution is unknown. A very accurate
approximation of the theoretical solution of this equation is judge by comparison with a Galerkin
approximation obtained by Van Dooren (1974) given by
y(x) = €, cos(1x) 4+ C, cos(30x) +C; cos(50x) +C, cos(70x) and the appropriate initial

conditionsare y(0)=¢C, ¥'(0)=0
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where

N=1.01, B=0002 ,C, = 0.200426728069 C; = 0.200179477536,C, = 0.246946143 X
107% ,C, = 0304016 x 10™° ,C, = 0.374x 107°

This problem has been solved numerically by different researchers in the literature. Simos
(1993), Wang et al. (2005)and Van Daele and Van Berghe (2007 all solved the problem with

P Stable Obrechkoff methods of order 12 in the interval [D, %] Archar (2011) also considered

the problem for an order 12 symmetric Obrechkoff methods within the same interval of
integrations. The newly developed BHTM is compared with the aforementioned methods and the

40.5m
101

end point absolute errors at x = and the CPU time are displayed in Tables 5 and 6

respectively.

Table 5. Comparison of Error

h Simos Wang et al. Daele Achar BHTM
m 3.15E— 4 408E — 5 4.06E — 5 4.09E — 5 1.84E — 7
500
1.81F —5 1.27E — 6 1.87E — 6 1.27E — 6 649E — 9
1000
1.08E — 6 393E—8 3.84E — 8 394E — 8 1.73E — 10
2000
2.09E -7 S517E—9 513E—9 518E -9 232E—-11
3000
655E — 8 1.23E—9 3.19E —9 1.23E -9 6.95E — 12
4000
267E—8 407E — 10 9.89E — 10 4.09E — 10 3.69E — 12
5000
Table 6: Comparison of CPU Time
h Simos Wang et al. Daele Achar BHTM
1.437 1.406 1.454 1.188 1.0254
500
2.892 2.891 2.938 2312 0.7198
1000
m 6.233 6.236 6.360 4812 19776
2000
9.859 9.546 9.719 7.548 2.3468
3000
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m 13.548 13.063 13.390 9.986 2.4463
4000

m 16.922 16.499 16.969 12.860 29522
5000

General speaking, higher order methods are expected to be more accurate than the lower
order methods. However in Table 5 the reverse is the case as BHTM of order 5 is more accurate
for this problem than some of the existing higher order methods in the literature. The Efficiency

Curve is displayed in the Figure 6.

Efficiency Curve for Problem 5

_14.

_16_

log(Err Mvax)
-18
— 20
—27
— 24
— 264
2 4 ] 8 10 12 14 16
CPU
o SIMOS © WANG + DAELE < ACHAR
<  BHTM

Figure 6: Comparison of Efficiency curve

5.0 Conclusion

A new block hybrid trigonometrically-fitted method of order five is constructed via multistep
collocation technique in this paper. The stability properties of the method was analyzed and was
found to be A-stable. Numerical results on representative examples of homogenous, non-
homogenous and autonomous nonlinear oscillatory problems are reported to show the robustness
and competence of the new method compared to some efficient methods in the literature. We
therefore conclude that for second order nonlinear initial value problems with oscillatory
solution, BHTM is more accurate and more efficient than some of the existing methods in the

literature.
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APPENDICES

1. Coefficients of Main method of BHTM in Trigonometric form

o, = (ISuzsin(%u) —9u2sin(u) +2uzsin(%uj -3 +60ucos(

+ IZCOS[%MJ u— 1885in(% u) + 1365sin(u) — 28 sin[% u] —24 u)/(

-24 cos(2u) u — 96 ucos(u) — 57 ? sin(u) — 11 sin(2 u) w? + 36ucos[% j
+ 84cos[% uj u+ 261 sin(% u) + 424 sin(% uj +76 sin[% uj

+ 428 sin( % u

— 328sin(u) + 3 u3j
o, = [ -641° sin(% u) —2sin(2u) u* + 244 sin(u) + 12 w — 192ucos[% uj

2
-32 sin(% u) + 84uj/[ ~24 cos(2u) u — 96 ucos(u) — 57 u* sin(u)

— 12 cos(2u) u + 120 ucos(u) + 480sin[i u] + 28sin(2 u) — 248 sin(u)

—11sin(2u)u2+36ucos(%u)+84cos[%u)u+26u2sin(%uj
2. (3 . (3 (1 . 3
+ 42 " sin S + 76 sin Su + 428 sin S —328sin(u) +3u

u) ? —24uzsin[%uj —184° + 168ucos[%uj

2
+ 48 cos(2u) u — 120 cos[i u) u—152 sin( % uj — 104 sin(2u) — 2565sin(u)

+ 360 sm( —96u /

( -24 cos(2u) u — 96 ucos(u )—57uzsin(u)
— 11sin(2u) u +36ucos(%u) +84cos[—u)u+26uzsin(%uj
3
2

+ 4247 sin(% u) + 76sm[ u] + 428 sm( j — 328 sin(u) +3u3j

o,= [ -18sin(2 u) =124 sin(u) + 64 u? sin[ uj + 124 — 60 cos(2u) u

3
) 2
— 168 ucos(u) + 192 cos(% u) u + 288 sin[% uj + 76 sin(2 u) + 40 sin(u)

—224sin( ; j +36u)/

( 4cos(2u) u — 96 ucos(u) — 57 ? sin(u)
— 11sin(2u) o + 36ucos(% u) + 84cos[% u) u +26u2sin(% uj

3

2

+42uzsin(%u
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B,= (12 sin(%u) hu? —3sin(2u) hu? — 18 sin(u) h® + 12 sin(%u) hi?
+ 336 sin[ % uj h —24sin(2u) h — 336sin(u) h + 144 sin[ % uj h)/[ -24 cos(2u)1
—96ucos(u) — 57 u? sin(u) — 11 sin(2 u) ? + 36ucos[% uj + 84 cos[ % uj u
1

+ 264 sin( ) u) + 4247 sin[ % uj +76 sin(% u) + 428 sin( % u) — 328 sin(u)

+3u3J

Y, = (12 cos(% u) Pu— 3cos(2u) Pu—18 cos(u) Pu+12 cos(% u) " u
— 124 sin[%uj i + 11sin(2u) B2 + 130sin(u) #* — 60 sin[% u] i 3h2u] /(
-24 cos(2u) u — 96 ucos(u) — 57 i’ sin(u) — 11 sin(2 u) w?+ 36ucos[% u]
+ 84cos[% uj u+26u sin(% u) + 4247 sin(% uj +76 sin[% uj

+ 428 sin[ % uj — 38 sin(u) +3 u3j

2. Proof of Theorem 1
The proof of the theorem is in the spirit of Ngwane and Jator (2015b).

We require that equation (3) be defined by the assumed basis function as follows

5

& (x,u) = Z a;(xu) P(x) j=01 21)
a,, (xu) = i @ (W) P(x) m=12 (22)
hf3; (x,u) = i hf3; 5 (x, u) P;(x) (23)
Ry, (x,u) = i Ry, 2 (x, 1) P (x) (24)

Substituting equations (21)-(24) into equation (3) yield

¥, u) =i

=0

1 2
{Z I'-7':[__{"‘(--7‘-4ﬂ:] ¥n+j + Z u[_um{xﬂﬂ Vntem T h_ﬁ[_:{x,li:]ﬁ!_,_: + h:'}’i_:':-réu:]ﬂr! +2 *F: {-ﬂ ':25:]
m=1

J=0

Letting
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1 2

A, = Z a:j(x, uj Vosf + Z &} om (xuj Yosom + h_.f.?:_z (‘r’“:]fuz + hz*r:_g{x, H]Er.u

j=0 m=1

equation (25) becomes

5

RS (26)

i=0

Imposing the conditions in equations (4)-(6) on equation (26), we obtain a system of 6
equations which is expressed as YA = V where A = (A, A4, A5, Ay, Ay, AZ)T is a vector form of 6
undetermined coefficients that are determined by applying Crammer’s rule as given in equation
(27)

_ det(¥;)
© det(w)’

i =0(1)(5) (27)

W, is obtained by replacing the ith column of ¥ by V.
Substituting equation (27) into equation (26) to obtain
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