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Abstract

Under the situation of scarcity of data in the target domain, the performance of the
traditional agent simulation model tends to decrease. In this scenario, the useful knowledge in the
source domain is extracted to guide the target domain learning to obtain more appropriate class
information and agent simulation performance is an effective learning strategy. Based on the
similarity measure, this paper proposes a Biased Agent Model (TIM) algorithm, which is similar
to the source and target domain data distribution by introducing a biased learning mechanism (1M)
algorithm to improve the simulation performance of the intelligent simulation (IM) algorithm in
the data scarcity scenario. In order to ensure the validity of the bias, the TIM improves the
performance of IM by considering the statistical and geometric characteristics of the source and
target domains, the message passing mechanism in the algorithm makes it possible to achieve the
goal of assisting the target domain learning. In addition, the factor graph of TIM can also show
that the IM can be similar to IM in the case of lack of data in the target domain. The simulation
results of the simulated data set and the real data set show that the proposed algorithm is more
efficient than the classical IM algorithm in dealing with the non-sufficient data agent simulation

task with better performance.
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1. Introduction

The similarity measure (IM) algorithm [1] has been attracting the attention of many researchers
because of its unique principle of intelligent simulation, which was introduced by Frey in 2007.
According to the introduction in [1], the nature of IM algorithm is a belief propagation and
maximization algorithm based on factor graph [2], which has the following advantages compared
with other classical agent simulation methods: 1) IM agent simulation does not need to specify K
(classical K-Means [3]) or other parameters describing the number of agents (SOM [4]) and 2)
the most representative point in the simulation of an agent is called IM Different from the other
simulation centers, the agent simulation point is the data point which exists in the original data,
not the virtual point. 3) The simulation model of the IM agent is executed many times. The
results are exactly the same and do not need to randomly select the initial step, that IM algorithm
IS not sensitive to initialization, 4) IM agent simulation than other methods of error squared and
low [5, 6]. IM [7], IM [8], semi-supervised IM [9] and so on, which are based on IM.

The successful point of IM algorithm is the ability to automatically generate a reasonable
amount of simulation of the number of agents, in the case of sufficient data, IM can accurately
identify the representative of the agent simulation points, and the resulting intelligent body
simulation results are often perfect. However, in practice, the data collected due to the high
confidentiality of some production process data or the low cost of high-cost industries are usually
very limited, resulting in scenes of scarcity of data often appearing. In the case of the agent
simulation under the scenario, the simulation results of the IM algorithm are usually sensitive to
the geometric distribution of the data. This is mainly because IM is designed to maximize the
data points in each category to its agent simulation representative point. The sum of the energy
and the real geometric distribution in the data scarcity scenario are often neglected, so it is
difficult to meet any requirement except for the minimum energy, which leads to the inaccuracy
of the representative point and the distribution matrix of the obtained agent. Therefore, if we
continue to use the energy minimization principle of the IM algorithm and ignore the important
information in the relevant field will affect the final simulation results of the intelligent body.
Therefore, how to make the IM algorithm in the face of data scarcity scene can still have better
class identification. The ability and high performance of agent simulation are currently awaiting
solution. The Biased Learning Framework [10-12] is similar to human cognitive processes in that
learning can be efficiently used to guide new things. It has been shown to be effective in solving
machine learning problems in the context of data scarcity [13]. In recent years, the bias learning
framework has been widely used in pattern classification, regression modeling and agent

simulation, among which representative work includes:
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1) In the field of pattern classification, the theory of bias learning is applied to the
classification of unlabeled data [17]. In [18], the TPLSA algorithm based on bias learning theory
is proposed and applied to text categorization. In [19], the biased learning method of domain
adaptation is successfully applied to large-scale emotion data classification. A bias learning
method based on boosting algorithm [16] is proposed to solve the classification problem in the
case of interference; recently proposed a multi-source adaptive bias learning strategy [15] for
image classification.

2) In the area of regression modeling, a fuzzy system based on knowledge utilization and an
enhanced version are proposed to solve the problem of fuzzy regression modeling in data scarcity
scenarios [13, 14].

3) In the field of unsupervised agent simulation, the current research is still less. In 2012, a
biased agent simulation model based on spectral method is proposed to solve the problem of
biased agent simulation in text data.

Based on the above research results, we can find that the current bias learning strategy aims at
abstracting the relevant effective knowledge from the source domain data to guide the learning of
the target domain. The main learning strategies can be summarized as follows: 1) That is
maximizing the embedded variance or minimizing the reconstruction error [13-20]; 2)
maintaining the geometry such that similar data in the target domain remains in a similar
expression to the samples in the source domain, although the above studies work on different, but
only in the past, they chose only one learning mode and neglected the role of other structural
information. In order to solve the problem, the IM algorithm is not able to simulate the
performance of the intelligent agent when the data is lacking. In this paper, the biased learning
mechanism is introduced into the IM algorithm to obtain the biased IM agent simulation model
with knowledge biased ability. In addition, the statistical characteristics and geometrical structure
of the data are considered in the process of knowledge bias to ensure the quality of bias. The
proposed bias IM algorithm can be viewed as a generalization of the IM algorithm, which can
effectively share information and bias information between similar domains or tasks while
maintaining the classical form of IM. This paper will focus on the introduction and analysis of
two IM algorithms, biased strategy and biased agent simulation model. Firstly, the IM algorithm
and two bias strategies are introduced, and then the biased agent simulation method TIM based
on similarity measure is introduced to integrate these two strategies. When the algorithm

converges or reaches a certain number of iterations, the label distribution vector of each data

pointc =[c,,......,Cy | is calculated by (1)
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¢, =argmax|a(i, j)+r(i, j) 1)

]

It can be seen that the IM algorithm can efficiently find the best representative simulation
points and distribution matrixes without any external intervention when the data volume is
sufficient, but if there is no data in the absence of any extra data, it is easy to make the simulation
center of intelligent body deviate greatly, which leads to the failure of the agent simulation. In

this paper, we will give a new bias in the next chapter, Agent simulation method.

2. Bias similarity measure (TIM) agent simulation model

In this paper, we introduce the following two techniques to improve the current method
based on the statistic features and geometry structure of the IM Agent simulation method
described in the previous section. We propose a new method which is suitable for the IM
algorithm Biased learning framework, the framework will make full use of the statistical
characteristics of the source domain data (distribution matching bias strategy) and the geometric
features (instance retention bias strategy) between the source domain data and the target domain
data to improve the biased agent simulation results biased learning quality and enhanced IM
algorithm in the face of data scarcity scenario of the agent simulation results, the specific method

is shown in the following two sections.

2.1 Domain distribution approximation strategy

According to the theory of bias learning, the higher the similarity of domain distribution is,
the closer the distribution of target domain is to the source domain, the more the knowledge
abstracted by the source domain can guide the target domain data learning, the theoretical
correctness should be improved using the similarity principle of data distribution among agents,
we randomly extract some data from the source domain. If the distribution of the source domain
and the target domain are closer, this data belongs to the energy of the respective class
representative point of the source domain. Part of the data belong to the target domain class point

of the energy are closer to the example shown in figure 1.
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Figure 1. Distribution matching example

The distribution matrix is represented byc:[cl, ...... ,CN]. The sum of the energy of all the
data points of the target domain and the corresponding class representative point is denoted by S, .
The sum of the squares of the differences between the energy of the data point | which is
the true representative point ¢, of the source domain, and the energy of the representative point

¢, belonging to the potential domain of the target domain is denoted by'S, .

Sl:is(i,ci) (2-1)

2

i[s(j'ci)‘s(j’ciﬂ (2-2)

i=1

S,

Here a represents the potential representative of the target domain agent simulation, a
represents the source of the simulated domain representative of the agent, b represents the
number of data points selected from the source domain. Definition of a function matrix c that the
target domain all the data and potential classes The energy relations of the representative points
are expressed as follows:

Here c, represents the potential representative of the target domain agent simulation, c

represents the source of the simulated domain representative of the agent, N and represents the

number of data points selected from the source domain. Definition of a function matrix[SiCi ]N |

that the target domain all the data and potential classes the energy relations of the representative

points are expressed as follows:

2

Si =s(i,ci)+ﬂ1m[s(j,ci)—s(j,ci')] ©)

Here Mu is the pending parameter, (1), (2), (3), used to penalize the distribution differences

N
between the source and target domains. from (2-1). (2-2). (3), we canget S, +A40S, = Zsiq :
1=1

here the value of the range of 4 is [0.1,1], the interval is 0.1.
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2.2 Domain Agent Representation Geometric Bias Strategy

As described in [12], the bias learning needs to deal with two cases: (1) the training samples
used for learning do not satisfy the condition of independent and identical distribution with the
new test samples; (2) there are not enough available training samples; It is found that the
distribution property cannot guarantee the validity of the bias in the case of lack of data.
Therefore, we use the geometric features of the class representative point of the source domain
and the class representative point of the target domain to ensure the feasibility of the bias. The
data of the manifold geometry is represented by the neighbor data to some extent. Therefore, the
information of the representative point is simulated by the source domain agent to assist the
selection of the representative agent of the target domain agent.

As shown in Figure 3, the black and red data points for the source domain data set, in which
red is the representative point of its class; green and yellow data points for the target domain data
set, the yellow is the representative point of the class. It is obvious that the representative point in
the source domain data and its neighbors can be used to help the target domain learning. In
addition, the bias strategy can speed up the convergence rate of the IM algorithm, we will

introduce in Section 3.3.
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Figure 2. Example of geometric feature retention

According to Figure 2, in order to make the IM algorithm take advantage of the geometrical
structure between the source domain data and the target domain data in the biased learning
process, we define it as follows.

Definition 1:

(2 neighbors of object 1) The nearest neighbor of the data point object is denoted as, defined
as: (x neighbors of objecte) the & neighbors of data point object x are denoted as 5, defined

as follows:
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neb(x) ={y e D|dist (x, y) < £} (4)

Heredist(y,x) is as the distance metric function, means the distance betweenx,y, c¢is
threshold. The Euclidean distance is chosen for the dist(y,x) function in this paper.

Because the source domain and the target domain have similar distribution and geometric
distribution properties, the source domain data agent simulation represents the data of the target
domain within the neighborhood of the representative point. The greater the probability of
becoming a representative point of the simulation agent. Therefore, we target the domain of the

data in the vicinity of the potential representative of the class point to do the following penalties:

—o, if ¢, #k boudc, =k,
A (c)34,al, if ¢, =k and(EIj,c:k € neb(c'j)), (5)

0, otherwist

Here 1 is defined as follow:

| = s(i,c,) (6)

1 &
W i=1

c is the latent class representative point, A, is the penalty coefficient, and the specific
values are given in the experimental section. It can be found that A, (c) is similarto & (c) in
IM, which is expressed as punishment for potential representative pointc. In addition, it is worth
noting that A, (c) the likelihood of the potential class representative point becoming the

representative point of the final class is increased by imposing a penalty of A,ol on the

simulated representative point of the potential domain of the target domain of the proximal
neighbor represented by the source domain agent.
In summary, the proposed objective function of the TIM algorithm can be defined as follows:
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max S(c)=S,+40S,+A,(c)

= Yic 44, (c) ™

Compared with the TIM algorithm in (7) and the IM algorithm in (1), we can find that the
TIM algorithm draws on the data information in the source domain and has biased learning ability.
The size reflects the center of the potential class in the target domain In addition, by adding the

penalty term to the data points in the proximal neighbor of the source domain simulation,
A (c)=4,al,if ¢ =k and(Echk € neb(c'j )) reduces the IM algorithm to search for the range of

the simulated representative points of the final agent and increases simultaneously.

The data in the source domain can be used as the representative point of the final class.
Therefore, the information in the source domain can be used by the TIM in the case of
insufficient data or information in the target domain to help it learn and to speed up the
convergence of the algorithm, which can be found more easily to the target domain data
simulation agent representative points and distribution matrix. Figure 3 for the TIM algorithm
flow.
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Figure 3. TIM algorithm flow

3. Experimental Study
3.1  Experimental Setup

In order to verify the simulation performance of this method in complex situations such as

data scarcity, this chapter will analyze and evaluate the TIM algorithm by synthetic dataset and
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real network intrusion detection data KDD99 and SEA dataset respectively. For artificial
synthesis a detailed description of the data and the real data will be given in Sections 3.2 and 3.3,
respectively. In addition, for the TIM simulation of the proposed algorithm, the simulation
performance will be evaluated in sections 3.2 and 3.3, with the most recent biases The algorithm
of k-centers simulation based on real class center is given and analyzed by Transfer Spectral
Clustering (TSC) [20], IM algorithm [1], and the results are analyzed and explained properly. As
follows: 1) In IM and TIM, when the simulation result of the agent is kept unchanged for 100
times, the algorithm is terminated, that is, the maximum number of iterations is set, the similarity
is calculated by using the negative Euclidean distance. 2) The parameters of k-centers and TSC
algorithms are set by reference [1] and [20]. For the Str IM algorithm, we use different data
fragments as the number of neighbors, and the range of the number of neighbors is: Data stream
processing, and at the current time to update the intelligent simulation center in order to process
the next piece of data. For this algorithm, in order to use the formula (2-2) to verify the source
and target domain distribution is consistent to achieve effective bias 10% of the source domain
samples are randomly selected for the above test, and the extracted samples will be used as the
source of the domain of the target domain to assist the knowledge involved in the target domain
of the agent simulation process.

In order to reasonably evaluate the agent simulation performance of each agent simulation
model, the following three evaluation indexes are used to analyze the performance of the
algorithm.

1)Accuracy ACC is defined as follows:

N

Z&(yi,map(ci))
ACC =+ —— 8)

Here N is the number of data points, y, and c, are the real data tags and the obtained agent
simulation tags, respectively, 5(y,c) means when y =c, the function value is 1, otherwise is 0,

map(u) Is permutation function, which matches each agent's simulation tag with the class label.

The optimal matching results are described in the Hungarian algorithm.

2) Standardized mutual information NMI is defined as follows:
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c c N‘Ni,j

D> > N, log NN,

i=1 j=1

C N. C N .
N. log—-» N.log—
\/Zl log ; log—

NMI =

©)

In the above formula, N;; denotes the number of common data in the class i and the real
label j, N; denotes the number of data in class i, N; denotes the number of data in class j.

N, denotes The number of data in the entire data set.

3) The RI indicator is defined as follows:

RI=— ot fu (10)
N(N—1)/2

Here the number of pairing points indicating that the data points have different class labels
and belonging to different classes indicates that the data points have the same class label and the
number of pairing points belonging to the same class, and represents the total size of the entire
data sample.

The above three methods show that the performance of the algorithm is superior to the higher
value of the three methods, and the range of the above three methods is all with the value of the
high value shows the algorithm of the performance is more superior.

Experimental environment: Experimental hardware platform for the Windows32 bit 4Intel

Corei3, memory is 4GB.Programming environment for the MATLAB2012b.

3.2 Experimental Analysis of Real Data Set

In order to further explore and analyze the TIM simulation performance and practical
application value, this section will discuss the TIM algorithm on the real data set. We select two
classical data sets, network intrusion detection data and SEA Data set. The time series of these
two datasets have different distributions and the intra-class changes are large, which is
meaningful for the robustness of the intelligent agent simulation model. The KDD99 dataset is a
network connection defined as the sequence of TCP packets from the beginning to the end of a

period of time, and during this period.
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(d) (e) (f)

Figure 4. Agent simulation results on the target data set based on TIM and comparison algorithm

Table 1. compares the performance of various algorithms on the simulated data set

Dataset Index LT IM K-Centers TSC StriM TIM
NMI 0.8782 0.5725 0.0702 0.2977 0.8782 1.0000
7(c) ACC 0.9700 0.8800 0.5193 0.8065 0.9700 1.0000
RI 0.9604 0.7866 0.6100 0.6882 0.9604 1.0000

Data is transmitted from a source IP address to a destination IP address under a predefined
protocol, such as TCP and UDP. Because the attack event is highly correlated in time, statistics on
the connection between the current connection record and the previous period some relationships
between records can better reflect the relationship between connections, with strong bias
characteristics of the data set has 41 features, in addition to the discontinuation of the property
after the remaining 32 properties. Smurf class accounted for 57.015%, Neptune class accounted
for 21.582%, the remaining categories of a total of 1.782%; 2) SEA data sets (1), the total number
of the data blocks of 22 categories, which accounted for 19.621% Is a data set with abrupt
concept drift characteristics proposed by Street et al in 2001. This data has good bias, with 60,
000 samples, 3 attributes, two of which are related attributes, attributes Values ranging from 0 to
10, including four concepts, each concept, including 15000 samples. Remove 10% of the noise
point, the conceptual function using the threshold data will be divided into two categories,
namely greater than a threshold for the first class. Table 2 shows the algorithm test data fragment

667



information.

In this part of the experiment, the amount of data in the target domain is 25% of the data in
the source domain to form a data-deficient bias scenario. For the KDD dataset, the proportion of
the data is extremely low, the number of classes is set to 3 and the data sets are normalized for
both K-Centers and TSCs in the experiment. On this basis, the simulation performance of each
algorithm is compared all experimentally set data sets were run 10 times, averaged and given the
variance.

Table 3 shows the experimental results for the KDD99 dataset, where Table 3 shows the
experimental results for the source domain data of 1-3000 and the target domain data of 1000. We
can get the following conclusions:

The results of Table 3 show that the TIM algorithm is superior to other algorithms in terms of
the effectiveness of NMI, ACC, and RI for most of the three agents, which further demonstrates
that the TIM under,

Table 2. Source and Destination Domain Data Fragments

Datasets  Source Datasets  Target Datasets Source Datasets Target Datasets
3001-3750 30001-30750
4001-4750 40001-40750

KDD, 99 1-3000 5001-5750 20001-23000 50001-50750
6001-6750 60001-60750
7001-7750 70001-70750
2001-2500 20001-20500
3001-3500 30001-30500

SEA 1-2000 4001-4500 10001-12000 40001-40500
5001-5500 50001-50500
6001-6500 /

The simulation results show that the proposed method can improve the simulation results of
the target domain data. It is worth noting that the Biased Agent Simulation Model TSC essentially
adopts a multi-task learning mechanism with the task number of 2 to complete the bias learning,
Based on a coordination mechanism for the source domain and target domain data to coordinate
the data distribution characteristics similar to both improve the learning performance of the role.
However, for a class of data less geometric characteristics of the distribution of data changes, the
algorithm is not very effective.
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2) It can be seen from the experimental results table that IM-based simulation model of a
class of agents is not sensitive to the initialization of the data, which makes the IM and TIM
algorithm simulation results of the variance of 0. As can be seen, TIM algorithm which inherits
the excellent characteristics of the stability of the IM algorithm, which is more practical than
other intelligent simulation models.

3) As can be seen from Table 3, based on the source domain dataset class representative point
of the way to play the label changes in the data structure is no longer applicable, the agent
simulation performance with the increasing deterioration of this decline more and more While a
class of data-based agent simulation models keep the agent simulation performance by updating
the agent simulation model, which is often achieved through some knowledge retention
techniques (such as through the decay function mechanism) to update the agent simulation model
It is worth noting that, in the current bias scenario, the data fragment is not continuous, as shown
in Table 2, this time using the data flow algorithm for its intelligent simulation model because the
upper and lower moments of data fault caused by the Intelligent Simulation Center cannot get
accurate update, so as to achieve the desired agent simulation results.

In conclusion, through the experiment and analysis on the real data set, we can get a definite
conclusion that the TIM algorithm is better than the non-biased agent simulation model in dealing
with the lack of data, The TIM algorithm considering the distribution and geometrical features is
superior to the previous biased agent simulation model, so the superior performance of this

algorithm has been fully verified and affirmed.

Table 3. Comparison of agent simulation performance on KDD99 datasets with different target
domain data and source domain data of 1-3000

Datasets  Index LT IM K-Centers TSC StriM TIM
NMI  0.847540 0.585740) 0.677140.13970.656140.0033 0.847540 0.856140

3001-3750 AC 0.942740 0.749320 0.795540.11220.537540.0085 0.942740 0.944010
Rl 0.957140 0.742320) 0.828540).09500.767540.0048 0.95714) 0.9593+)
NMI  0.795440 0.592040 0.715940.10470.679240.1047 0.849340 0.837740

4001-4750 AC 0.924040 0.750720 0.835640.08990.591340.0227 0.952040 0.9333)
Rl 0.939540 0.748940) 0.8577+0).08700.791440.0008 0.963040 0.95484)
NMI  0.744440 0.599240 0.757040.09210.653140.0036 0.813940 0.848310

5001-5750 AC 0.9093#0 0.7653%) 0.888840.07600.570040.0017 0.9360+0 0.944010
Rl 0.909940 0.7591+0) 0.890840.09880.774040.0001 0.951040 0.963940
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NMI  0.580240 0.609740) 0.726020.17570.661540.0214 0.828040 0.846810
6001-6750 AC 0.6880#0 0.7573#) 0.854440.12030.580740.0527 0.940040 0.944010
Rl 0.76703) 0.749639 0.861340.13670.769640.0117 0.95594) 0.962540

NMI 0.467620 0.58734) 0.728840.11210.6588+0.0083 0.8266+40 0.859040
7001-7750 AC  0.5533#0 0.76804) 0.852510.08330.575540.0194 0.9427+4) 0.949310
Rl 0.67614) 0.750539 0.8358+40.11390.783540.0171 0.95684) 0.968040

3.3 Parameter Sensitivity Analysis

In order to further consider the influence of the default parameters involved in this paper on the
simulation performance of the final agent in a specific agent simulation process, this section will
analyze the sensitivity of the KDD99 dataset to the parameters of the algorithm. , The data
segment 1-3000 in the KDD99 dataset is used as the source domain, and the data segments
3001-3750 as the target domain. Since the method consists of three manually set parameters,
namely parameter 4, 4 and the number of neighbors, The parameters of fixed-optimal value of the
change in another parameter observation algorithm performance changes. Figure 5 shows the
three parameters on the performance of this algorithm simulation of the simulation results. From
the results we can see that the number of neighbors changes in this algorithm And the parameters
4 and 4 control the degree of bias of the algorithm. The results of Fig. 5 show that the change of
its numerical value will have certain influence on the simulation of the algorithm, but the
influence Which is also within the acceptable range. In summary, the performance of the
algorithm under the influence of the parameters, the results are more stable, parameter sensitivity

is not.
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Fig.5 Influence of different parameters of 4, 4, and the number of neighbors on the simulation
results: (a) the effect of the number of neighbors on the TIM algorithm; (b) the effect of
parameter 4 on the TIM algorithm; (c) the effect of parameters on the TIM algorithm
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4.

Conclusion

Based on the classical IM algorithm, this paper introduces a biased learning mechanism and

uses source domain knowledge to assist target domain learning. A new biased similarity measure

agent model is proposed to solve the problem of traditional data analysis task failure due to lack

of target domain data samples. The algorithm is a knowledge bias simulation model based on data

distribution and agent simulation point geometry, which utilizes both the geometrical structure of

the source domain data and its statistical characteristics to obtain more instructive Which is a

generalization version of IM, which can identify the number of agents and obtain the

corresponding distribution matrix by a method of information propagation of factor graph similar

to IM algorithm. In artificial data and real data the results of experiments show that the TIM

algorithm is effective and efficient in the field of knowledge biased learning.

References

1. Frey BJ and Dueck D. Clustering by passing messages between data points. Science, 2007,
315:972-976. [doi: 10.1126/science.1136800]

2. Kschischang FR, Frey BJ, and Loeliger HA. Factor griMhs and the sum-product algorithm.
IEEE Trans. Inf. Theory, 2001, 47(2): 498 -519. [ doi: 10.1109/18.910572]

3. McQueen JB. Some Methods for classification and Analysis of Multivariate Observations.
In: Proc. of 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley,
University of California Press, 1967.281-297.

4. Tsymbal A, Pechenizkiy M, Cunningham P, Puuronen S. Dynamic integration of classifiers
for handling concept drift. Information Fusion, 2008, 9(1): 56-68. [doi:
10.1016/j.inffus.2006.11.002]

5. Dueck D, Frey BJ, Jojic N, Jojic V, Giaever G, Emili A, Musso G, Hegele R. Constructing
treatment portfolios using affinity propagation. In: Proc. of 12th Annual International Conf.
on Research in Computational Molecular Biology, 2008, 360-371. [doi:
10.1007/978-3-540-78839-3—31]

6. Jain AK. Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 2010,
31(8): 651-666. [doi: 10.1016/j.patrec.2009.09.011]

7. Sumedha ML and Weigt M. Unsupervised and semi-supervised clustering by message
passing: soft-constraint affinity propagation. The European Physical Journal B, 2008,
125-135. [doi: 10.1140/epjb/e2008-00381-8]

8. Xiao J, Wang J, Tan P, etc. Joint affinity propagation for multiple view segmentation. In:

Proc. of the 11th IEEE Int. Conf. on Computer Vision, 2007, 1-7. [doi:

671


http://dx.doi.org/10.1109/18.910572
http://dx.doi.org/10.1016/j.inffus.2006.11.002
http://dx.doi.org/10.1016/j.inffus.2006.11.002
http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.1109/ICCV.2007.4408928

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

10.1109/1CCV.2007.4408928]

Strehl A and Ghosh J. Cluster ensembles---knowledge reuse framework for combining
multiple partitions. The Journal of Machine Learning Research, 2003, 583-617. [doi:
10.1162/153244303321897735]

Aggarwal CC, Han J, Wang J, and Yu P. A Framework for Clustering Evolving Data
Streams. In: Proc. of the 29th VLDB Conf., 2003, 81-92.

Shao L, Zhu F, Li X. Transfer Learning for Visual Categorization: A Survey. IEEE
Transactions on Neural Networks and Learning Syatems, 2015, 26(5):1019-1034. [doi:
10.1109/TNNLS.2014.2330900]

Zhuang FZ, He Q, Shi ZZ. Survey on transfer learning research. Journal of Software, 2015,
26(1):26-39. [doi: 10.13328/j.cnki.jos.004631]

Deng ZH, Jiang YZ, Choi K.-S., Chung F.-L., Wang ST. Knowledge-Leverage-Based TSK
Fuzzy System Modeling. IEEE Transactions on Neural Networks and Learning Systems,
2013, 24(8).1200. 1212. [doi: 10.1109/TNNLS.2013.2253617]

Deng ZH, Jiang YZ, Cao LB, Wang ST. Knowledge-Leverage-Based TSK Fuzzy System
with improved knowledge transfer, In: Proc. of the 2014 IEEE Int. Conf. on Fuzzy System,
2014, 178-185. [doi: 10.1109/FUZZ-IEEE.2014.6891544]

Tommasi T, Orabona F, CIMuto B. Learning categories from few examples with multi
model knowledge transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2014, 36(5):928-942. [doi: 10.1109/TPAMI.2013.197]

Dai W, Yang Q, Xue G, and Yu Y. Boosting for transfer learning. In: Proc. of Int. Conf.
Machine Learning (ICML), 2007, 193-200. [doi: 10.1145/1273496.1273521]

Raina R, Battle A, Lee H, etc. Self-taught learning: transfer learning from unlabeled data. In:
Proc. of the 24th Int. conf. Machine Ilearning, 2007, 759-766. [doi:
10.1145/1273496.1273592]

Xue G R, Dai W, Yang Q, Yong Y. Topic-bridged PLSA for cross-domain text classification.
In: Proc. of the 31st annual Int. ACM SIGIR conf. Research and development in information
retrieval, 2008, 627-634. [doi: 10.1145/1390334.1390441]

Glorot X, Bordes A, Bengio Y. Domain adlMtation for large-scale sentiment classification:
A deep learning IMproach. In: Proc. of the 28th Int. Conf. on Machine Learning (ICML),
2011, 513-520.

PIMadimitriou CH and Steiglitz K. Combinatorial Optimization: Algorithms and Complexity.
Dover Publications, 1998.

672


http://dx.doi.org/10.1109/ICCV.2007.4408928
http://dx.doi.org/10.1162/153244303321897735
http://dx.doi.org/10.1162/153244303321897735
http://dx.doi.org/10.1109/TNNLS.2014.2330900
http://dx.doi.org/10.1109/TNNLS.2014.2330900
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kup-Sze%20Choi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Fu-lai%20Chung.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5962385
http://dx.doi.org/10.1109/TNNLS.2013.2253617
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shitong%20Wang.QT.&newsearch=true
http://dx.doi.org/10.1109/FUZZ-IEEE.2014.6891544
http://dx.doi.org/10.1109/TPAMI.2013.197
http://dx.doi.org/10.1145/1273496.1273521
http://dx.doi.org/10.1145/1273496.1273592
http://dx.doi.org/10.1145/1273496.1273592
http://dx.doi.org/10.1145/1390334.1390441

