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Abstract 

In view of the difficulty in measuring large flat mirrors, this paper introduces a pentaprism 

system that measures the angle differences between points on the mirror surface with a scanning 

pentaprism. Based on the angle differences, many equations were established and the mirror 

surface was expressed through a least squares calculation. The error analysis reveals that the 

system accuracy was 11.6nm root-mean-square (rms) over a 1.5m flat mirror. Then, the 

pentaprism measurement was compared with Ritchey-Common test. The comparison shows that 

the difference between the two results is 10.2nm rms over a 1.5m flat mirror, which is within the 

error range of the pentaprism system. Thus, the proposed pentaprism system is applicable to the 

measurement of large flat mirrors. 
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1. Introduction 

Following the conventional interferometry technique, it is impractical to measure large flat 

mirrors with an aperture greater than 1m. m The largest aperture of commercial interferometers is 

about 900mm, which is insufficient to cover the entire surface of a said large flat mirror. To 

overcome the problem, two methods have been developed, namely sub-aperture stitching 
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interferometry [1,2] and Ritchey-Common test [3-5]. However, the accuracy and efficiency of the 

sub-aperture stitching interferometry are not high when the sub-apertures are far smaller than the 

test mirror. The Ritchey-Common test can measure the full surface of a large flat mirror, only if 

there is a reference spherical mirror even larger than the test mirror. Sometimes, it is impossible 

to obtain such a reference mirror. The introduction of a pentaprism system may make up for the 

defects of the current methods. 

A range of pentaprism systems have been developed to measure large optical surfaces. Such 

systems can be roughly divided into two types. The first type of pentaprism system contains one 

scanning pentaprism that directly measures the tilt angles on the surface [6-12]. This system is 

sensitive to errors, such as the tilt of the autocollimator, the manufacturing errors of the 

pentaprism, and the environmental influence. The second type consists of two pentaprisms, a 

stationary reference pentaprism and a scanning pentaprism, that measure the angle differences 

between points on the test surface [13-16]. This system eliminates the first-order errors caused by 

tilt, and most of the environmental influence. However, it fails to offset the inevitable 

manufacturing errors of the two pentaprisms in the calculation of angle differences. 

In this research, a novel pentaprism system is proposed to measure large flat mirrors with an 

aperture no greater than 2m. The proposed system was improved in four aspects from the 

above-mentioned two types of systems. First, the angle differences are measured by only one 

scanning pentaprism to eliminate the first-order errors caused by tilt, most of the environmental 

influence, and the manufacturing errors of the two-pentaprism system. Second, the system can 

automatically monitor and reduce the tilt of the pentaprism. Third, the measured results are of 

high accuracy, for the mirror surface is expressed by Zernike polynomials and the expression is 

derived through a least squares calculation. Fourth, the system directly obtains the 2D surface 

profile without obtaining and stitching the 1D surface profiles. These improvements can improve 

the accuracy and efficiency of the pentaprism measurement. 

 

2. Principles of the Measurement 

A pentaprism is a five-sided reflecting prism used to deviate a beam of light by 90 degrees. 

The deviation angle hardly changes when the pentaprism rotates by small amounts. Figure 1 

shows the light path of the measurement. The collimated beam is deflected by the pentaprism 

from the autocollimator to the mirror surface, and then reflected by the surface back to the 

autocollimator. The angle between the returning and exiting beams reveals the tilt angle on the 

mirror surface. 
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Fig.1. The Light Path of the Measurement 

 

The autocollimator can measure both the angle along the scan direction (hereinafter referred 

to as the in-scan angle) and the angle perpendicular to the scan direction (the cross-scan angle). 

The tilt of the pentaprism only causes second-order errors to the in-scan angle, but first-order 

errors to the cross-scan angle. Therefore, only the in-scan angle was selected for the 

measurement. 

Let us denote the in-scan angle obtained by the autocollimator as φ (Figure 1). Then, the 

in-scan tilt angle ε on the mirror surface can be expressed as 

 

2


  .                                                                      (1) 

 

When the pentaprism is scanning on the rails, it is possible to acquire the tilt angles of many 

points on the mirror surface. If the tilt angles of any two points are ε1 and ε2, the angle difference 

δ between the two points can be derived as 

 

12   .                                                                  (2) 

 

Many common errors can be eliminated by calculating the angle difference. For example, if 

the autocollimator has a tilt angle ω (Figure 2), the angle obtained by the autocollimator is φ = 

2(ε+ω). Whereas the tilt angle ω does not change during the scanning, the angle difference δ 

between the two points is 
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The result of Equation (3) is the same as that of Equation (2), indicating that the error ω has 

no impact on the angle difference. 

 

 

Fig.2. Elimination of Tilt Angle ω 
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Fig.3. Six radial Scans through the Mirror Centre 

 

Six radial scans were carried out through the mirror centre (Figure 3). Every two adjacent 

scans were separated by 30°. In the cylindrical coordinate system, the mirror surface S(ρ,θ)is 

expressed by Zernike polynomials Zi(ρ,θ) as follows: 
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where ρ is the normalized radial distance (0≤ρ≤1); θ is the normalized azimuthal angle (0≤θ<2π); 

Ci are the Zernike coefficients; n is the number of Zernike polynomials. Let d be the distance 

between the two points, R be the radius of the test mirror, and (ρ,θ) and (ρ+d/R,θ) be the 

normalized coordinates of the two points (Figure 3). The angle ε is so small that is equals the 
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derivative of S(ρ,θ) versus ρ. Then, the following equations hold: 
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When the radial distance is divided by R to be normalized to ρ(0≤ρ≤1), the tilt on the surface 

is multiplied by R. Hence, the right sides of Equations (5) and (6) must be divided by R. The 

following equation can be obtained by subtracting Equation (5) from Equation (6). 
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where Ci are the only unknown variables. Based on Equation (7), it is possible to derive the 

equations of various pairs of points. Then, Ci can be obtained through a least squares calculation, 

and the expression of the mirror surface can be derived as Equation (4). 

Note: 

(1). The two points must be in the same scan and share the same azimuthal angle. 

(2). The distance d between the two points must exceed 200mm, because small distance narrows 

down angle difference and magnifies relative errors. 

(3). The two points must be measured quickly one after the other to minimize the influence of 

environmental changes. 

 

3. Control of Pentaprism Tilt 

Owing to the imperfectness of the rails, the pentaprism will tilt inevitably during scanning. 

Hence, an autocollimator and a return mirror were added to monitor the tilt. As shown in Figure 4, 

Autocollimator 1 is mainly used to measure the mirror surface, while Autocollimator 2 and the 

return mirror are used to monitor the pentaprism tilt. The return mirror and the pentaprism are 

installed on the same mount. 
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Fig.4. Autocollimator 2 and Return Mirror 

 

 

Fig.5. Tilt Angles of Optical Components 

 

The tilt angles of the optical components are defined in Figure 5. Let us denote V as half of 

the in-scan angle obtained by Autocollimator 1 and H as half of the cross-scan angle. Actually, V 

is the tilt angle ε in Equation (1) with some errors. Through ray tracing calculations, V and H can 

be derived as[17]. 

 

0

2
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where V0 and H0 are constant angles resulted from the manufacturing errors of the pentaprism. If 

Δ is used to indicate the change from the pre-scan value, then the change ΔH can be derived as 

below without considering the second-order terms  in Equation (9): 

 

0HH acppppst   ,                                      (10) 
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where Δγac= 0 for Autocollimator 1 is stationary in each scan; ΔH0= 0 as H0 is a constant value; 

on the polished mirror surface, Δαst is about 3μrad rms, and Δαpp and Δγpp are both about 50μrad 

rms. Δαst is negligible for it is much smaller than Δαpp and Δγpp. Then, Δαpp can be derived as  

 

Hpppp   ,                                                           (11) 

 

where Δγpp is monitored by Autocollimator 2 and ΔH is monitored by Autocollimator 1. After the 

pentaprism tilts Δαpp and Δγpp are derived, the two parameters will be automatically adjusted to 

<15μrad rms through feedbacks. The monitoring and adjustment must be done prior to 

measurement at every test point on the mirror surface. Note that Δβpp has no influence on the 

measurement, and does not need to be controlled. 

 

4. The Pentaprism System 

 

Fig.6. The Pentaprism System 

 

The pentaprism system is illustrated in Figure 6. The pentaprism and the return mirror are 

fixed onto the same mount, which remotely adjusts their tilt. The mount can slide on a pair of 

2.2m parallel rails along the lines of sight of the two autocollimators. During the sliding process, 

the tilt of the mount varies in a range of 50μrad rms. The positions of the scanning pentaprism are 

measured by a grating scale with an accuracy of 0.005mm rms. Autocollimator 1 

(SH-LTP/Imagine Optic) emits a 27mm collimated beam, reaches an accuracy of 130nrad rms in 

rotation, and boasts a full measurement range of ±12mrad. Autocollimator 2 is exactly the same 

as Autocollimator 1. All the components mentioned above are fixed onto a rotation arm. The arm, 
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mounted on a rotation stage (rotation angle error: 75μrad rms), can rotate for multiple scans. 

During the rotation process, the tilt of the arm varies in a range of 70μrad rms. 

As stated by Geckeler [17], the initial system alignment should be conducted in reference to 

Autocollimator 1. After the alignment, the initial tilt of all the optical components must be less 

than 10μrad rms. 

 

5. Error Analysis 

5.1 Tilt Errors 

From Equations (8) and (9), it can be seen that αpp and γpp cause second-order errors to V and 

first-order errors to H. Thus, only V should be adopted for the measurement. 

Let us assume that the two points are Point 1 and Point 2, and the change from Point 1 to 

Point 2 is Δ. It should be noted that the Δ here is different from that in Section 3. In essence, the 

change ΔV is the angle difference  δ in Equation (2) with some errors. From Equation (8), ΔV  can 

be derived as 

 

 )()()2( stppppacstacppstacppppV   

0)( Vacstppppacst   ,                                   (12) 

 

where Δαac= Δβac= 0for Autocollimator 1 is stationary in each scan; ΔV0= 0 as V0 is a constant 

value. Whereas (-Δβst) is actually the angle difference δ to be measured, the error of the angle 

difference δ is 

 

)()()2( s ppppactstacppstacppppE   .         (13) 

 

According to Equation (13), the first-order errors in V are eliminated after calculating the 

angle difference, and only the second-order errors remain. 

The values of some tilt angles are listed in Table 1. The author measured the 

root-mean-square (rms) errors of Δαpp, Δγpp and Δαst, and the limit errors of other angles. The 

limit error is 3 times the corresponding rms error. 

The calculated results of Eδ are listed in Tables 2 and 3. All the minus signs in Equation (13) 

were changed to plus signs to analyse errors. Note that limit errors are considered to be constant 

in Table 3. It is calculated that the error of the angle difference δ is 11.1nrad rms. 
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Tab.1. The Values of Some Tilt Angles. 

Tilt 
angles 

From initial 
alignment 

From tilts 

of scanning 
pentaprism 

From tilts of 
rotation arm 

From local 

tilts in mirror 
surface 

Root-sum-square 

αpp <30 μrad <45 μrad <210 μrad — <217 μrad 

Δαpp — 21 μrad rms — — 21 μrad rms 
γpp <30 μrad <45 μrad — — <54 μrad 

Δγpp — 21 μrad rms — — 21 μrad rms 

αst <30 μrad — — <9 μrad <31 μrad 
Δαst — — — 3 μrad rms 3 μrad rms 

αac — — <210 μrad — <210 μrad 
βac — — <210 μrad — <210 μrad 
γac — — — — — 

Note: 

1. Since Autocollimator 1 the reference for the alignment, αac, βac and γac have no component resulted from the initial 

alignment; 

2.Since the γ tilt of the rotation arm is essentially the rotation angle error of the rotation stage, γpp and γac have no 

component resulted from the tilt of the rotation arm (Section 5.3);  

3. γac equals 0. 

 

Tab.2. Calculations of Some Components in Equation (13) (μrad). 

Components in 

Eq. (13) 
αpp 2αpp αac αst γpp Root-sum-square 

2αpp+αac+αst — <434 <210 <31 — <483 
αac+αst — — <210 <31 — <212 

αac+αpp+γpp <217 — <210 — <54 <307 

 

Tab.3. Calculations of Eδ in Equation (13). 

Terms in Eq. (13) Values (nradrms) 

Δαpp(2αpp+αac+αst) 10.1 
Δγpp(αac+αst) 4.5 

Δαst(αac+αpp+γpp) 0.9 

Root-sum-square 11.1 

 

5.2 Measurement Error of Autocollimator 1 

The measurement error of Autocollimator 1 is 130nrad rms. According to Equations (1) and 

(2), the error of the angle difference δ can be calculated as 
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5.3 Position Errors of Measurement Points 

The rotation angle error of the rotation stage is 75μrad  rms, and the radius of the mirror is 

assumed to be 750mm, so the corresponding position error is less than 

 

056.07501075 6   mm rms.                                                  (15) 

 

The position error from the scan of the pentaprism is 0.005mm rms, which is the accuracy of 

the grating scale. 

The angles αpp, γpp, βac, γac, V0 and H0, the first-order terms in Equations (8) and (9) except 

αstand βst, refer to the tilt angles of the beams towards the mirror. The corresponding position 

errors equal the products of the beam tilt angles and the distance between the pentaprism and the 

mirror (Table 4). 

 

Tab.4. Calculations of the Position Errors Corresponding to Beam Tilt Angles. 

Beamtilt angles 

(μradrms) 

Distance between pentaprism and 

mirror (mm) 

Position errors 

(mm rms) 

From αpp: 72 500 0.036 
From γpp: 18 500 0.009 

From βac: 70 500 0.035 
From V0: 16 500 0.008 
From H0: 16 500 0.008 

Root-sum-square 0.052 
Note:  

(1).The values of αpp, γpp and βac are the same as those in Table 1; 

(2). γac is excluded because it equals 0. 

 

The three kinds of position errors are combined into: 

 

077.0052.0005.0056.0 222  mm rms.                                        (16) 

 

The position error 0.077mm rms has a minor influence on the flat and polished test surface. 

It is estimated that the tilt angle ε changes by less than 15nrad/mm on the mirror surface. Thus, 

the error of tilt angle ε is 1.2nrad rms. According to Equation (2), the error of the angle difference 

δ is 1.7nrad rms. 

 

5.4 Manufacturing Errors of the Pentaprism 

The manufacturing errors of the pentaprism is the root cause of the constant angle errors V0 
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and H0 (Equations (8) and (9)), which have been analysed in Sections 5.1 and 5.3. It can be seen 

from Equation (13) that V0 is eliminated in the calculation of angle difference. 

 

5.5 Errors from Environmental Changes 

To reduce environmental changes, the system and the test mirror were placed on a vibration 

isolation platform at the ambient temperature of 20°C±0.2°C without the movements of people 

and other things. 

Assuming that two matching points are separated by 300mm, it only takes 15sec for the 

pentaprism to measure the two points. Within such a short period of time, the environmental 

changes are so small as to be negligible in the calculation of angle difference. 

 

 

Fig.7. The In-scan Tilt Angles of the Two Fixed Points 

 

 

Fig.8. The Angle Difference between the Two in-scan Tilt Angles 

 

Two fixed points, separated by 300mm, were selected on the mirror surface. The angle 

difference between them was measures once every 10mins for 24h. The obtained in-scan tilt 

angles of the two fixed points are illustrated in Figure 7, and difference between the two angles is 

displayed in Figure 8. As shown in Figure 7, the two tilt angles shared the same variation trend. 
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The standard deviations of the tilt angles of Points 1 and 2 were 607.6nrad and 620.2nrad 

respectively, and the standard deviation of the angle difference was merely 38.5nrad. 

 

5.6 Combined Error 

The combined error of the angle difference is 100.3nrad rms (Table 5).  

 

Tab.5. Calculations of the Combined Error of the Angle Difference. 

Error sources Errors (nrad rms) 

Tilt errors 11.1 

Measurement error of Autocollimator 1 91.9 
Position errors 1.7 

Errors from changing environment 38.5 

Root-sum-square 100.3 

 

5.7 Monte Carlo Simulation 

The angle difference errors and their effects on the obtained surface profile were simulated 

on MATLAB by Monte Carlo method. The object is a 1.5m flat mirror with 20 pairs of 

measurement points per azimuthal angle. Every two matching points were separated by 300mm. 

The measurement contained a total of 6 scans. With the aid of MATLAB, the angle differences 

were generated for all the pairs of points and the random error of 100.3nrad rms was produced for 

all the angle differences. Two surface profiles were calculated, respectively using the angle 

differences with and without these errors. The difference between the two surface profiles is 

called the profile error. The rms value of the profile errors is 11.6nm, which reflects the error 

range of our system. 

 

6. Measurement Results and Comparison 

As mentioned above, our system was used to measure a 1.5m flat mirror (Figure 9). The 

measurement involved six scans and 20 pairs of measurement points per azimuthal angle. The 

distance between every two matching points was 300mm. Eight primary Zernike polynomials 

were chosen to express the mirror surface. The mirror was measured 10 times under the same 

conditions. The standard deviations of the 10 profile results are shown in Figure 10. The largest 

standard deviation (9.3nm) only occurred on the edge of the mirror, and the standard deviations 

was averaged at 6.8nm, signifying the repeatability of the system. The average Zernike 

coefficients are listed in Table 6. The average surface map is shown in Figure 11. 
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Fig.9. Simulation 

 

(nm)

 

Fig.10. The Standard Deviations of the 10 Profile Results 

 

Tab.6. The Average Zernike Coefficients from the Pentaprism Measurements. 

Zernike polynomials Zernike coefficients(nm) 

Power: Z4= 2ρ2-1 37.1 

Cosine astigmatism: Z5= ρ2cos2θ -42.6 
Sine astigmatism: Z6=ρ2sin2θ 19.9 

Cosine coma: Z7= (3ρ2-2) ρcosθ 43.0 

Sine coma: Z8= (3ρ2-2) ρsinθ 39.5 
Spherical: Z9= 6ρ4-6ρ2+1 -25.3 

Cosine trefoil: Z10= ρ3cos3θ 10.4 

Sine trefoil: Z11= ρ3sin3θ -7.8 

 

 

Fig.11. The Average Surface Map from the Pentaprism Measurements 

252



For comparison, another method, the Ritchey-Common testing, was introduced to measure 

the 1.5m flat mirror [3-5]. As shown in Figure 12, the test device consists of an interferometer, 

the 1.5m flat mirror, and a 1.8m spherical mirror. The obtained surface map is shown in Figure 

13. 

 

 

Fig.12. The Configuration of Ritchey-Common Test Device 

 

 

Fig.13. The Surface Map from Ritchey-Common Test 

 

Through the comparison between Figures 11 and 13, it can be seen that the two methods 

yielded almost the same results. The rms value of the difference between the two surface maps 

was 10.2nm, which fell within the error range (Section 5.7) of the pentaprism system. 

 

Conclusions 

This paper introduces a novel pentaprism system to measure large flat mirrors with an 

aperture no greater than 2m. The system that measures the angle differences between points on 

the mirror surface with a scanning pentaprism, and derives the expression of the mirror surface 

through a least squares calculation. 

It is discovered that the system can effectively reduce various errors. First, the first-order 
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errors caused by tilt were eliminated by the error-reducing property of the pentaprism and the 

calculation of the angle differences. Second, the second-order errors caused by tilt were reduced 

by the control of the pentaprism tilt. Third, the effect of the manufacturing errors of the 

pentaprism was ameliorated by the calculation of the angle differences. Fourth, the relative errors 

were offset by the long spacing between the two matching points. Fifth, the environmental 

influence was removed by the the calculation of the angle differences, the strict control of 

environment and the short time between the measurements of the two matching points. 

Through the error analysis, it is concluded that the proposed system has an error range of 

11.6nm rms over a 1.5m flat mirror. The pentaprism measurement was then contrasted with 

Ritchey-Common test. The resulting difference was 10.2nm rms over a 1.5m flat mirror, which 

fell within the error range of the pentaprism system. Thus, the proposed pentaprism syste m is 

applicable to the measurement of large flat mirrors. 
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