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This paper attempts to solve the insufficient machining precision of computer numerically 

controlled (CNC) machine tools, which is induced by the thermal error of the spindle. 

Firstly, the relationship between machining error and thermal sensitive points was 

analyzed through experiments. On this basis, the backpropagation neural network (BPNN) 

was improved by particle swarm optimization (PSO). Next, the improved network (PSO-

BPNN) was used to build a thermal error compensation (TCE) model for the spindle of 

machine tools. Taking VM-500T precision machine tool as the object, the temperature 

data were grouped through the optimization based on thermal imaging, grey relational 

analysis (GRA), and fuzzy clustering, to determine the temperature sensitive items that 

causes the thermal error. To speed up network convergence, the PSO algorithm was 

introduced to optimize the number of hidden layers and the number of hidden layer nodes 

of the BPNN, lifting the network from the local optimum trap. To enhance the 

generalization ability, the weights and thresholds of the BPNN were also improved by the 

PSO. After that, two TCE models were established for the spindle of the machine tool, 

respectively based on the original BPNN and PSO-BPNN. Contrastive experiments show 

that the PSO-BPNN TCE model achieved the better generalization ability, and improved 

the prediction accuracy of the machining error of the CNC machine tool.  
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1. INTRODUCTION

Machine tool is the mother machine of all machineries. Its 

machining precision directly determines the precision of 

computer numerically controlled (CNC) machining products. 

The insufficient precision of CNC machine tool mainly comes 

from the thermal error induced by its changing temperature. In 

precision machining, 40-70% of all machining errors are 

attributable to the thermal error of machine tools [1-4]. The 

thermal error seriously restricts the manufacturing quality of 

machine tool. 

Previous studies have proved that thermal error 

compensation (TEC) is a low-cost and efficient way to 

improve the machining precision of CNC machining tools, 

which does not need to change the original machine structure. 

Numerical method and modeling are two common approaches 

for TCE [4, 5]. Typical numerical methods include finite-

element method and finite-difference method. Nevertheless, 

numerical methods are difficult to popularize, because the 

thermal error cannot be easily quantified under the constraints 

of thermal features and boundary conditions of the spindle.  

Modeling aims to establish the thermal error model of the 

spindle, after the correlation between temperature and error at 

thermal sensitive points is obtained through numerous 

experiments and statistical analysis. In actual machining, 

however, the thermal drift of motorized spindle is highly 

variable, and the data samples on temperature and thermal drift 

are often small and imperfect, containing various fuzzy 

information [6-8]. Facing the small training samples, the 

common regression modeling methods, grey theory, and 

support vector machine (SVM) cannot fully comprehend the 

sample information, resulting in non-robust TEC models [9-

13]. 

The artificial neural network (ANN) has been widely 

introduced to improve the robustness of the TEC models. For 

instance, Ramesh et al. [2] proposed a hybrid SVM-Bayesian 

network to classify the experimental data by working 

conditions, mapped the relationship between temperature and 

thermal error with SVM model, and accurately predicted the 

thermal error of spindle. Miao et al. [9] tested the temperatures 

and thermal errors at different spindle speeds, and learned that 

the multiple regression analysis (MRA) has poor prediction 

accuracy and robustness in the case of small modeling data. 

From the least squares SVM (LSSVM), Zhao et al. [10] 

derived the lifting wavelet transform-based LSSVM (LWT-

LSSVM), making the thermal error model more stable and 

accurate in prediction. Ouafi et al. [11] optimized the 

backpropagation neural network with genetic algorithm (GA-

BPNN), created a thermal error model based on five key 

temperature points, and demonstrated that the model could 

accurately forecast the thermal deformation at the turning 

center with a low computing load.  

In addition, Ma et al. [12] grouped temperature variables 

through grey clustering and correlation analysis, and 

constructed a thermal error prediction model for high-speed 

spindle based on GA-BPNN. Drawing on grey theory and data 

preprocessing, Zhang et al. [13] presented a neural network 

(NN) TEC model for machine tools, and built a TEC model by 
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repeatedly adjusting the data sequence length of the grey 

model as well as the weights and thresholds of the NN; the 

TEC model was found to have high prediction accuracy and 

strong robustness. After comparing human immune system 

with ANN, Yan et al. [14-17] proposed the artificial immune 

radial basis function (AIRBF) network, which boasts good 

adaptability and prediction accuracy through dynamic 

structural adjustment and online learning. Miao et al. [18] set 

up a state space modeling algorithm, and proved that the 

algorithm can automatically adjust the model as per the 

changing operating parameters of the machine tool, making 

the machine tool more adaptable. 

The thermal drift of motorized spindle is complex, 

changeable, and nonlinear. The data on thermal drift and 

temperature, which are collected in the machining process, 

tend to be fuzzy and incomplete. Under various working 

conditions, the TEC of the spindle depends heavily on two 

factors: (1) The identification of thermal sensitive points, 

which bears on the accuracy of the TEC model; (2) The 

establishment of the TEC model, which reflects the exact 

relationship between the data collected from thermal sensitive 

points, and determines the accuracy and compensation ability 

of the TEC system. 

This paper attempts to build a TEC model for VM-500T 

CNC machine tool. Firstly, the thermal sensitive points were 

selected through the optimization based on thermal imaging, 

grey relational analysis (GRA), and fuzzy clustering. Next, the 

BPNN was improved by particle swarm optimization (PSO), 

and improved network (PSO-BPNN) was used to build a TEC 

model for the spindle of the machine tool. Finally, the 

proposed model was proved feasible through the comparison 

with the original BPNN model in terms of accuracy and 

generalization ability. 

 

 

2. THEORETICAL MODELING 

 

2.1 PSO 

 

In the PSO algorithm [19], a number of particles are 

initialized randomly. Each particle is assigned a velocity and 

position. During the runtime, each particle keeps looking for 

the best-known individual velocity/position pbest in the search 

space, and updates its own velocity and position in comparison 

with the pbest values of others, thereby converging to the best-

known global velocity/position gbest. The position/velocity of 

pbest and gbest is updated respectively by:  
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where, 𝑥𝑖,𝑡
𝑑  and 𝑣i,t

𝑑  are the d-th dimension component of the 

position vector and the velocity vector of particle i in the t-th 

iteration, respectively; 𝑝𝑖,𝑡
𝑑  is the d-th dimension component of 

the pbest of particle i and the gbest of the swarm in the t-th 

iteration, respectively; 𝐶1  and 𝐶2  are the velocity update 

constants; rand1 and rand2, both fall in the interval of [0, 1] 

are random functions. The principle of particle movement is 

explained in Figure 1. 

 
 

Figure 1. The principle of particle movement 

 

The PSO algorithm is prone to fall into the local optimum 

trap, which dampens the optimization effect. To solve the 

problem, Shi et al. [20] introduced the inertia weight and 

constriction factor into the PSO algorithm. Subsequent studies 

have proved that introducing inertia weight brings equivalent 

benefits as introducing the constriction factor. 

 

2.2 BPNN 

 

The BPNN [20, 21] is known for its strong adaptability, 

self-learning ability, and relatively high prediction accuracy. 

However, the network might converge slowly in the later 

period, for the convergence relies on the gradient descent 

method. Besides, the network performance is greatly affected 

by the learning rate. If the learning rate is excessively high, the 

BPNN will oscillate significantly, rather than converge to the 

optimal solution. If the learning rate is too small, the BPNN 

will easily fall into the local optimum trap. 

In general, the prediction ability of BPNN is positively 

correlated with its training ability. If the BPNN learns too 

many sample details, the overfitting phenomenon will occur. 

In this case, the training ability will be improved, but the 

prediction ability will be reduced. Then, the learned model 

could no longer reveal the statistical laws of the samples. 

 

2.3 PSO-BPNN 

 

To realize the fast convergence to the global optimal 

solution, the constriction factor was added to improve the 

convergence speed of the PSO; then, the number of hidden 

layers and number of hidden layer nodes were optimized to 

improve the prediction accuracy of the BPNN; finally, the 

PSO was combined with the BPNN to speed up the 

convergence of the network.  

In the PSO-BPNN, the PSO performs global search, while 

the BPNN carries out the local search. The merits of the two 

techniques are combined to prevent the BPNN from falling 

into the local optimum trap. In addition, the weights and 

thresholds of the BPNN are corrected by the PSO, enhancing 

the generalization ability of the network [22, 23]. 

Based on the PSO-BPNN, the TCE model was created in 

the following steps: 

Step 1. Data preprocessing 

The temperature data and z-direction thermal deformation 

data were normalized to eliminate the singular values in the 

samples, which may otherwise prolong network training and 

slow down network convergence.  
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Step 2. Determining the structure and parameters of the 

BPNN 

By formula (4), five combinations of temperature variables 

were selected (i.e. m=5). Only z-direction thermal deformation 

data and n-axis thermal deformation data were taken as 1. 

Preliminary calculations indicate that the number of hidden 

layer nodes falls in the interval of [3, 13]. After comparing 

BPNNs with different number h of hidden layer nodes, the 

most suitable h value was found as 8. The default number of 

nodes of double hidden layers was also set to 8, and the 

number of output layer node was set to 1. 

The BPNN parameters were configured as follows: the 

maximum number of training iterations is 300, the learning 

rate is 0.1, and the minimum training error is 0.0001. 

Step 3. Determining PSO parameters. 

After adding the constriction factor, the PSO algorithm can 

be updated as: 
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where, χ is the constriction factor: 
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where, 𝜑 = 𝑐1 + 𝑐2 and 𝜑 > 4. Normally, the φ value is set to 

4.1; c1 and c2 are set to 2.05. Substituting these values into 

formula (3), it was learned that 𝜒 = 0.729 , and 𝑐1 = 𝑐2 =
0.729 ∗ 2.05 = 1.49445. 

After the adjustment, the PSO parameters were configured 

as follows: the maximum number of iterations is 30, and the 

swarm size is 20. Then, the position and velocity of each 

particle were initialized. 

Step 4. Weight and threshold adjustment and fitness 

calculation 

The weights and thresholds of BPNN were adjusted by the 

PSO based on the constantly updated positions and velocities 

of particles. On this basis, the fitness was calculated to 

improve the particle position, particle velocity, as well as the 

weights and thresholds of the network. The fitness reflects the 

quality of each particle, and guides the subsequent updates of 

its position and velocity. The fitness function F can be 

expressed as: 
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where, N is the number of training samples; L was the number 

of output layer nodes; pa,b and qa,b  are the expected output and 

actual output from the b-th node of the a-th sample, 

respectively. 

The above formula shows that the smaller the fitness, the 

better the particle, and the smaller the network error. 

Step 5. Iterative updates of position and velocity 

Each particle iteratively updates its position and velocity 

based on its fitness, pbest and gbest by: 
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where, 𝑥𝑖,𝑡
𝑑  and 𝑣i,t

𝑑  are the d-th dimension component of the 

position vector and the velocity vector of particle i in the t-th 

iteration, respectively; 𝑝𝑖,𝑡
𝑑  is the d-th dimension component of 

the pbest of particle i and the gbest of the swarm in the t-th 

iteration, respectively; 𝐶1  and 𝐶2  are the velocity update 

constants; rand1 and rand2, both fall in the interval of [0, 1] 

are random functions.  

Step 6. Screening the particles meeting the output 

conditions 

The particles whose fitness is below the set value or whose 

number of iterations is greater than the set value were 

outputted. Those failing to meet the output conditions would 

further update their positions and velocities until they meet 

these conditions. 

Step 7. Optimizing the weights and thresholds for prediction 

The optimal weights and thresholds were generated, and 

used to train the BPNN, laying the basis for the prediction of 

thermal error.  

Through the above steps, the BPNN operation is effectively 

accelerated, and the prediction accuracy, convergence stability, 

and generalization ability of the network are improved. The 

workflow of PSO-BPNN is illustrated in Figure 2.  

 

 
 

Figure 2. The workflow of PSO-BPNN 
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3. EXPERIMENT AND MODELING 

 

3.1 Selection of thermal sensitive points 

 

As mentioned before, our experiments focus on the VM-

500T CNC machine tool (maximum speed: 1,000r/min; 

horsepower of spindle motor: 3.7/5.5kW). 

The thermal drift of spindle is usually determined by five-

point measuring method [22, 23]. Hence, five points X1, X2, 

Y1, Y2, and Z (Figure 3) were selected to detect the spindle 

deformation. After multiple tests at different speeds and 

excluding the errors of initial positioning and radial alignment, 

it was found that the thermal offsets of the spindle in the x and 

y directions are very small, exerting a negligible impact on the 

machining precision.  

Figures 4-6 provide the thermal deformations on the x-, y-, 

and z-directions, respectively. It can be seen that Z-direction 

deformation changed obviously with time, exerting a serious 

impact on the machining precision. Thus, the thermal error in 

the Z-direction was selected as the target of TCE modeling. 

 

 

 
 

Figure 3. The arrangement of the five points 

 

 
 

Figure 4. The thermal deformation in the x-direction 

 
 

Figure 5. The thermal deformation in the y-direction 

 

 
 

Figure 6. The thermal deformation in the z-direction 

 

 
 

Figure 7. The thermal images 

 

Then, thermal imaging [24] was adopted to detect the 

temperature change of the working spindle. Based on the 

detected results, several positions with obvious temperature 

rise were preliminarily selected as the key points, which 

reduces the experimental cost, eliminates the interference data, 

and improves the modeling accuracy.  
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The thermal imaging was completed with a Fluke TiS50 

infrared thermal imager (range: 10-50℃; distance: 1.5m; 

nominal temperature: 2%). The temperature was collected by 

two 8-channel temperature acquisition modules, which are 

embedded with a 16-bit analog/digital (A/D) conversion and 

photoelectric isolation device.  

Multiple experiments were carried out with the machine 

tool in idle state. It was observed that the temperature rise 

around the spindle and the spindle housing is of experimental 

significance. The thermal images on the spindle and its end 

cap, sleeve and support are displayed in Figure 7 above. 

Through the preliminary analysis on the thermal images, a 

total of 16 key points was selected for our experiments. 

Magnetic suction temperature sensors (resolution: 0.1℃; 

accuracy: 0.4℃; range: 0-100℃) were deployed on these 

points (Figure 8; Table 1). 

 
T9
T1
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T10
T11

T4

T12
T13
T2
T3

T6

T7
T8

T15

T14

 
 

Figure 8. The deployment of magnetic suction temperature 

sensors 

 

Table 1. The positions of magnetic suction temperature 

sensors 

 
Serial number Position 

T1, T5, T9, T14 Upper end of spindle box 

T10, T11, T12 Front end of spindle housing 

T15 Lower end of spindle box 

T2, T3, T4 Left side of spindle sleeve 

T13 Front end of spindle sleeve 

T6 Lower end of spindle sleeve 

T7, T8 Motor housing 

T16 Room temperature 

 

 
 

Figure 9. The temperature rise curves of the 16 sensors 

The machine tool was kept idle at a certain speed. The 

temperature data were sampled at an interval of 1s. The 

sampled data with normal temperature rise in 16,000s were 

selected for analysis. Figure 9 presents the temperature rise on 

the 16 sensors. It can be seen that the temperatures at all 

sensors were continuously increasing; the increment and 

increasing rate are negatively correlated with the distance from 

the sensor to the spindle. 

 

3.2 Optimization of thermal sensitive points 

 

The data collected by so many sensors cannot be grouped 

accurately by fuzzy clustering. Thus, the measuring points 

were initially screened through GRA [20], which can reflect 

the degree of correlation between parent sequence and 

subsequences to a certain extent. Here, the temperature data 

were optimized with the thermal deformation induced by 

temperature rise as the parent sequence, and the 16 

temperature datasets as subsequences. Firstly, the obtained 

data were normalized to the same interval: 
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where,𝑔𝑞(𝑒)  is the normalized data; 𝑑𝑞(𝑒)  is the original 

data; 𝑚𝑖𝑛
𝑒
𝑑𝑞(𝑒)  and 𝑚𝑎𝑥

𝑒
𝑑𝑞(𝑒) are the minimum and 

maximum values of the original data, respectively.  

Then, the correlation coefficient was calculated by 
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where, 𝑔0(𝑒)  is the reference sequence; 𝜆  is the deviation 

coefficient (the value is usually 0.5); 𝛥𝑚𝑖𝑛 and 𝛥𝑚𝑎𝑥  are the 

minimum and maximum deviations, respectively; 𝛥0(𝑒) is the 

deviation of 𝑑𝑞(𝑒) from 𝑔0(𝑒): 
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where, 𝑑𝑞(𝑒) is the deviation of the reference sequence. 

The mean correlation coefficient was adopted to compute 

the degree of grey correlation: 
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where, r(go, dq) is the correlation between subsequence go and 

parent sequence dq; n is the length of the reference sequence. 

Table 2 records the degree of grey correlations between the 

measuring points. The greater the numerical result, the closer 

the correlation between the subsequence and the parent 

sequence, and the stronger the correlation between 

temperature data and thermal error data. As shown in Table 2, 

the measuring points did not differ significantly in the degree 

of grey correlation. Based on the degree of grey correlation, 

the measuring points were sorted in descending order, and the 

first eight points were selected as the main measuring points: 

T3, T8, T9, T10, T11, T12, T13, and T15. 
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Table 2. The degree of grey correlations between the 

measuring points 

 
Measuring point R Measuring point R 

T1 0.7567 T9 0.8116 

T2 0.7847 T10 0.8146 

T3 0.8108 T11 0.8149 

T4 0.8049 T12 0.8174 

T5 0.8063 T13 0.8391 

T6 0.8089 T14 0.7910 

T7 0.7969 T15 0.8225 

T8 0.8538 T16 0.7739 

 

Next, the measuring points were further screened by fuzzy 

clustering [12, 25], which eliminates the impact of the 

coupling between temperature variables and improves the 

robustness of the TEC model. The grouping of fuzzy 

clustering is implemented in the following steps: 

Step 1. The temperature data 𝑇 = 𝑇1, 𝑇2, ⋯ , 𝑇𝑛  were 

preprocessed, and the temperature matrix was converted into 

an n×n distance matrix by the square form function in 

MATLAB. 

Step 2. The distance between any two elements in the 

distance matrix was calculated by the pdist function in 

MATLAB. 

Step 3. The calculated results were expressed as cluster trees 

by the linkage function, and classified into groups by the 

cluster function in MATLAB. 

Step 4. The combinations of temperature variables were 

judged by the correlation coefficient and compound 

correlation coefficient. The correlation coefficient can be 

calculated by: 
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where, 𝑇𝑖𝑗  is the j-th temperature variable at point i; 𝑇𝑖  is the 

mean temperature at point i; Zj is the j-th displacement variable; 

𝑍�̅� is the mean displacement. 

The compound correlation coefficient can be calculated by: 
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The fuzzy clustering process is explained in Figure 10 [26]; 

the calculation results of correlation coefficients and complex 

correlation coefficients are listed in Table 3. 

 

Table 3. The correlations between main measuring points 

 

Measuring point 𝑹𝟐 𝑹2' 

T3 0.8766 0.8764 

T8 0.8284 0.8277 

T9 0.8313 0.8303 

T10 0.8581 0.8570 

T11 0.8441 0.8426 

T12 0.8692 0.8676 

T13 0.9418 0.9410 

T15 0.9851 0.9850 

 

As shown in Figure 10, the 8 main measuring points fall into 

4 groups: the first group only has T3, the second only has T13, 

the third only has T15, and the fourth has T8-12. Referring to 

the data in Table 3, T3, T10, T12, T13, and T15 were taken as 

the key measuring points. 

 

 
 

Figure 10. The grouping through fuzzy clustering 

 
Note: Points 1-8 are T3, T8, T10, T11, T12, T13, and T15, respectively 

 

3.3 Model error prediction 

 

The temperature data collected at the five key measuring 

points were taken as inputs, and the z-direction thermal 

deformation as the output. The inputs were split into a training 

set of 14,000s, and a prediction set of 2,000s. The BPNN 

model and PSO-BPNN model were separately applied to 

predict the thermal errors. Figure 11 presents the running 

results of both models.  

 

 
 

Figure 11. The thermal errors and residuals in the z- 

direction 

 

As shown in Figure 11, the BPSO-BPNN model slightly 

outperformed the BPNN model, but the advantage is not 

obvious. 

To verify the generalization ability of the PSO-BPNN, the 

input data were divided into a training set of 12,000s, a 

prediction set of 2,000s, and a verification set of 2,000s. The 

verification set was not used in BPNN construction or training, 

but used to simulate the network performance beyond the 

training. To ensure data consistency, the prediction part was 

excluded from image output. Then, the BPNN model and 

PSO-BPNN model were separately implemented, and their 

running results are displayed in Figure 12. 

As shown in Figure 12, the PSO-BPNN significantly 
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outshined the BPNN in generalization ability. 

From Figures 11 and 12, the thermal error predicted by 

PSO-BPNN was closer to the actual value than that predicted 

by BPNN. Although both models achieved lower 

generalization ability than the prediction tasks, the PSO-

BPNN was more accurate and stable than BPNN, and 

exhibited stronger prediction performance and generalization 

ability than the latter. 

 

 
 

Figure 12. The generalization abilities in z-direction 

 

 
(a) Training error 

 

 
(b) Regression results 

 

Figure 13. The training performance of the BPNN 

 
(a) Fitness function 

 

 
(b) Training error 

 

 
(c) Regression results 

 

Figure 14. The training performance of the PSO-BPNN 

 

Furthermore, the experiment data were automatically 

divided into a training set, a verification set, and a test set. 

BPNN and PSO-BPNN were separately trained on the training 

set, and verified on the verification set. The output error was 

obtained after the verification task. In addition, the data were 

automatically divided into the three sets again, and the results 

of BPNN and PSO-BPNN on these set were separately 

307



 

integrated into a comprehensive map. The training effect 

improves as the output approaches the Y-T diagonal. Figure 

13 shows the training error and regression results of BPNN; 

Figure 14 shows the fitness, training error and regression result 

of PSO-BPNN. 

From the fitness functions, it can be seen that BPNN and 

PSO-BPNN had the same target value, and their optimal value 

had the same gradient (10-5~10-4). Meanwhile, the training 

error of PSO-BPNN descended at a faster speed and for a 

shorter time than that of BPNN. The regression results show 

that the outputs of PSO-BPNN and BPNN were close to the 

said diagonal. The descent rates of fitness function reveal the 

superiority of PSO-BPNN in convergence speed and quality. 

Overall, PSO-BPNN can achieve a similar accuracy as BPNN, 

but at a faster convergence rate, in the same environment. 

 

3.4 Results analysis 

 

To display the optimization effect of PSO-BPNN more 

intuitive, the performance of the model was evaluated by mean 

relative error (MRE) and residual error. Let 𝑎 =
(𝑎(1), 𝑎(2),⋯ , 𝑎(𝑛)) be the residual data sequence, and 𝑟 =
(𝑟(1), 𝑟(2),⋯ , 𝑟(𝑛))  be the measured thermal errors. The 

MRE 𝛿 can be calculated by: 
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where, 𝑎(𝑖) is the residual error of the model; 𝑟(𝑖) is the actual 

thermal error. 

The residual error 𝜀 can be calculated by: 
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where, 𝑎 is the mean residual error of the model. 

The absolute difference between the predicted deformation 

and the actual deformation was divided by the absolute actual 

displacement to obtain the relative error. Then, the MRE was 

derived from the relative errors. Similarly, the relevant data 

were imported to formula (14) to obtain the residual error. The 

calculation results are shown in Table 4. 

 

Table 4. The MRE and residual error of different models 

 
Prediction method MRE 𝜹/% Residual errors 𝜺 

PSO-BPNN 1.82% 0.1702 

BPNN 6.74% 0.4212 

PSO generalization 4.76% 0.2347 

BPNN generalization 20.63% 0.3652 

 

As shown in Figure 4, the PSO-BPNN achieved better 

results than BPNN in prediction accuracy, and stability. In 

terms of generalization ability, the relative errors of PSO-

BPNN and BPNN both increased. Through comparison, it was 

learned that the PSO-BPNN still realized much higher 

prediction accuracy than the BPNN, an evidence of obvious 

optimization effect. 

 

 

4. CONCLUSIONS 

 

This paper improves the BPNN with double hidden layers 

with the PSO, and applies the PSO-BPNN to compensate for 

the thermal error of the spindle of a CNC machine tool. The 

main conclusions are as follows: 

(1) The GRA can screen the temperature data and identify 

the best combination of temperature variables, thereby 

reducing the experimental cost and improve the modeling 

accuracy. 

(2) The PSO managed to improve the prediction accuracy, 

stability, and generalization ability of the BPNN. 

(3) The PSO-BPNN could reduce the thermal error 

prediction error in the Z-direction of the spindle from 6.74% 

to 1.82% within the training range, and from 20.63% to 4.76% 

beyond the training range. 

(4) The PSO-BPNN is a suitable algorithm for TEC 

modeling, and a desirable tool for TEC of the spindle of CNC 

machine tools. 

 

 

ACKNOWLEDGMENT 

 

This research was financially supported by Science and 

Technology Planning Project of Quzhou (No. 2020T024), 

Quzhou City - joint fund (No. LZY21E050002). 

 

 

REFERENCES  

 

[1] Deng, X.L., Lin, H., Wang, J.C., Xie, C.X., Fu, J.Z. 

(2018). Review on thermal design of machine tool 

spindles. Optics and Precision Engineering, 26(6): 1415-

1429. https://doi.org/10.3788/OPE.20182606.1415 

[2] Ramesh, R., Mannan, M.A., Poo, A.N. (2000). Error 

compensation in machine tools—a review: Part I: 

geometric, cutting-force induced and fixture-dependent 

errors. International Journal of Machine Tools and 

Manufacture, 40(9): 1235-1256. 

https://doi.org/10.1016/S0890-6955(00)00009-2 

[3] Ramesh, R., Mannan, M.A., Poo, A.N. (2002). Support 

vector machines model for classification of thermal error 

in machine tools. The International Journal of Advanced 

Manufacturing Technology, 20(2): 114-120. 

https://doi.org/10.1007/s001700200132 

[4] Mayr, J., Jedrzejewski, J., Uhlmann, E., Donmez, M. A., 

Knapp, W., Härtig, F., Wendt, K., Moriwaki, T., Shore, 

P., Schmitt, R., Brecheer, C., Würz, T., Brecher, C. 

(2012). Thermal issues in machine tools. CIRP Annals, 

61(2): 771-791. 

https://doi.org/10.1016/j.cirp.2012.05.008 

[5] Ma, T.H., Jiang, L. (2018). Thermal error modeling of 

machine tools based on hybrid particle swarm 

optimization BP neural network. Chinese Journal of 

Construction Machinery, 16(3): 37-46. 

[6] Singh, R.K., Sharma, R.V. (2018). Thermal performance 

of a co-axial borehole heat exchanger. Instrumentation 

Mesure Métrologie, 17(3): 443-453. https://doi.org/ 

10.3166/I2M.17.455-466 

[7] Morishima, T., van Ostayen, R., van Eijk, J., Schmidt, R. 

H.M. (2015). Thermal displacement error compensation 

in temperature domain. Precision Engineering, 42: 66-72. 

https://doi.org/10.1016/j.precisioneng.2015.03.012 

[8] Blaise, K.K., Magloire, K.E.P., Prosper, G. (2018). 

Thermal performance evaluation of an indirect solar 

dryer. Instrumentation Mesure Métrologie, 17(1): 131-

151. https://doi.org/10.3166/I2M.17.131-151 

308



 

[9] Miao, E.M., Gong, Y.Y., Cheng, T.J., Chen, H.D. (2013). 

Application of support vector regression machine to 

thermal error modelling of machine tools. Optics and 

Precision Engineering, 21(4): 980-986. 

https://doi.org/10.3788/OPE.20132104.0980 

[10] Zhao, J.L., Li, Q.L., Huang L.K. (2018). Research on 

thermal error modeling of CNC machine tools based on 

improved LSSV algorithm. Machinery Manufacturing 

and Automation, 47(6): 102-105. 

https://doi.org/10.19344/j.cnki.issn1671-

5276.2018.06.024 

[11] El Ouafi, A., Guillot, M. (2012). A comprehensive 

approach for thermal error model optimization for ANN-

based real-time error compensation in CNC machine 

tools. In Applied Mechanics and Materials, 232: 639-647. 

https://doi.org/10.4028/www.scientific.net/AMM.232.6

39 

[12] Ma, C., Zhao, L., Mei, X., Shi, H., Yang, J. (2017). 

Thermal error compensation of high-speed spindle 

system based on a modified BP neural network. The 

International Journal of Advanced Manufacturing 

Technology, 89(9-12): 3071-3085. 

https://doi.org/10.1007/s00170-016-9254-4 

[13] Zhang, Y., Yang, J.G. (2011). Thermal error modeling of 

neural network machine tools based on gray theory 

pretreatment. Journal of Mechanical Engineering, 47(7): 

134-139. https://doi.org/10.3901/JME.2011.07.134 

[14] El Ouafi, A., Guillot, M., Barka, N. (2013). An integrated 

modeling approach for ANN-based real-time thermal 

error compensation on a CNC turning center. In 

Advanced Materials Research, 664: 907-915. 

https://doi.org/10.4028/www.scientific.net/AMR.664.90

7 

[15] Yan, J.Y., Yang, J.G. (2009). Immune system based RBF 

neural network modeling for machine tool thermal error. 

Journal of Shanghai Jiaotong University, 1: 148-152. 

[16] dos Santos, M.O., Batalha, G.F., Bordinassi, E.C., Miori, 

G.F. (2018). Numerical and experimental modeling of 

thermal errors in a five-axis CNC machining center. The 

International Journal of Advanced Manufacturing 

Technology, 96(5-8): 2619-2642. 

https://doi.org/10.1007/s00170-018-1595-8 

[17] Hu, W.S., Sun, L. (2009). Model error compensation 

based on neural network method. Journal of Southeast 

University (English version), 25(3): 400-403. 

https://doi.org/10.3969/j.issn.1003-7985.2009.03.024 

[18] Miao, E.M., Lu, X.X., Wei, X.Y., Song, X.J., Dong, Y.F. 

(2019). Thermal error modeling of CNC machine tools 

based on state space model. China Mechanical 

Engineering, 30(9): 45-51,60. 

https://doi.org/10.3969/j.issn.1004-132X.2019.09.006 

[19] Kennedy, J., Eberhart, R. (1995). Particle swarm 

optimization. In Proceedings of ICNN'95-International 

Conference on Neural Networks, 4: 1942-1948. 

https://doi.org/10.1109/ICNN.1995.488968 

[20] Shi, Y., Eberhart, R.C. (1999). Empirical study of 

particle swarm optimization. In Proceedings of the 1999 

congress on evolutionary computation-CEC99 (Cat. No. 

99TH8406), 3: 1945-1950. 

https://doi.org/10.1109/CEC.1999.785511 

[21] Ma, T.H., Jiang, L. (2018). Thermal error modeling of 

machine tools based on hybrid particle swarm 

optimization BP neural network. Chinese Journal of 

Construction Machinery, 16(3): 221-224,230. 

[22] Van Den Bergh, F., Engelbrecht, A.P. (2001). Training 

product unit networks using cooperative particle swarm 

optimisers. In IJCNN'01. International Joint Conference 

on Neural Networks. Proceedings (Cat. No. 01CH37222), 

1: 26-131. https://doi.org/10.1109/IJCNN.2001.939004 

[23] Ding, S., Su, C., Yu, J. (2011). An optimizing BP neural 

network algorithm based on genetic algorithm. Artificial 

Intelligence Review, 36(2): 153-162. 

https://doi.org/10.1007/s10462-011-9208-z 

[24] ISO 230-3: 2007. (2007). Test code for machine tools–

part 3: Determination of thermal effects, pp. 20-24. 

[25] Wang, J.C., Lin, S.Q., Shen, Y.X., Xie, C.X., Deng, X.L. 

(2019). Research on thermal error measurement point 

optimization and modeling technology of CNC machine 

tool spindle. Aerospace Manufacturing Technology, 

62(6): 41-46. https://doi.org/10.16080/j.issn1671-

833x.2019.06.041 

[26] Zhang, W., Ye, W.H. (2014). Optimization of 

temperature measuring points of machine tools based on 

grey correlation and fuzzy clustering. China Mechanical 

Engineering, 25(4): 456-460. 

https://doi.org/10.3969/j.issn.1004-132X.2014.04.006  

309




