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This article deals with the designing of fuzzy sliding mode observer in order to fault 

diagnosis in solar power plant. Purpose technique enable to the modulated using Takagi-

Sugeno (TS) fuzzy models. Principal of proposed observer is to uses for estimate the state 

vector of the system; a Linear Matrix Inequalities (LMIs) is performed to ensure stability 

conditions. Foremother, it is deriving a diagnosis signal-residual. The residual is generated 

by the comparison of measured and estimated output. Proposed approach performance is 

tested in solar power plant model through numerical results. 
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1. INTRODUCTION

Exhaustive use of fossil-fuel-based traditional energy has 

reduced them and increased global warming, leading to the 

search for alternative resources. It is possible to achieve this 

by relying on renewable energies [1]. 

Solar power is the most important source on a farm that has 

been recognized as an exponential growth in recent years, 

from which many commercial solar power plants have been 

built [2]. 

For example, it is referred that as a development of three 

plants Andasol (50 MW) by Solar Millennium and located in 

southern Spain [3], Solana 280 MW in Arizona [2] and Shams-

1 station (100 MW) in Abu Dhabi. The facility discussed in 

this paper is a 30 MW SEGS VI plant, which was established 

in 1988 by Luz International Ltd, which is located in the 

Mojave Desert in southern California [4]. 

Failures can occur in various instruments which can have a 

significant impact on the performance of the installation. So it 

is requiring monitoring and the fault diagnosis strategy 

improves productivity and increases their efficiency and 

reliability [5]. 

In the last years, many algorithms have been applied for the 

control of thermal solar power plants [4, 6, 7] but the FDD 

algorithms are poor. FDI methods divided into two areas: data 

analysis methods the most widely used and widely used 

statistical techniques for industrial process monitoring and 

multivariate methods based on artificial intelligence [5, 8-10]; 

model based on linear observers, nonlinear, in sliding mode 

and the Kalman filter [11-14]. The concept of IDEs using these 

methods is done in two steps. The first is the generation of fault 

indicators by calculating the difference between the actual 

states of the system and their estimates and the second 

identifying the defects. Obviously, they need the precise 

mathematical model of the system. Generally, nonlinear 

systems are first linearized around an operating point. Then 

robust techniques are applied to manage the residuals that must 

be insensitive to modeling errors. 

Solar plants are represented by nonlinear differential 

equations [12]. LTE form alone is not accepted, then we 

encounter the multi model ref approach. This consists of a 

collection of linear systems interconnected by non-linear 

functions. Several categories of multi-models exist in the 

literature, notably the Linear Systems with Parameters Variant 

in time (LPV) [15] or the quasi LPV, also called Takagi-

Sugeno (TS) systems [16]. Let us note that the latter possess a 

property of universal approximation of the affine systems in 

the command and have the advantage of being able to 

accurately represent a model of nonlinear knowledge on a 

compact of the state space [16]. Thus, the major interest of this 

type of approach is that it allows to extend many theoretical 

concepts of the linear automaton to the case of nonlinear 

systems. 

Recently, several researches have exploited the fuzzy 

modeling approach for the detection and the isolation of faults 

[17], Gao et al. [18], have proposed an alternative approach to 

the reconstruction of sensor faults using fuzzy observer TS 

based on an increased blurred descriptor system [x], these 

observers are not robust. To achieve robustness, TS observers 

blurred were combined with the sliding mode [19] called TS-

SMO can treat several faults and limited uncertainties in a 

well-defined theoretical framework, including the estimation 

of faults and the possible reconstruction of unknown inputs 

[17]. 

In this article, a methodology for diagnosing solar power 

plants described by T-S models using sliding mode observers 

is proposed. In general, the design of a fuzzy observer requires 

a precise mathematical description of the installation 

(proposed by Stuetzle [4] in the form of a dynamic model, 

which includes both local linear models and data logic 

functions activation. Local linear models are affine models of 

space state that can be derived directly from the first principle 

or empirical models. The paper is structured as follows: 

Section 2 presents the description of the components of the 

solar power plant. A TS model is presented in Section 3. A TS-

SMO and a fault detection method using the equivalent output 

injection signal in combination with operating phase detection 

is developed in Section 4. A simulation study is presented in 

Instrumentation Mesure Métrologie 
Vol. 19, No. 4, August, 2020, pp. 281-287 

Journal homepage: http://iieta.org/journals/i2m 

281

https://crossmark.crossref.org/dialog/?doi=10.18280/i2m.190405&domain=pdf


 

section 5, where the demonstration of the robustness and the 

effectiveness of the proposed FDI scheme are confirmed. At 

the last, a conclusion and some remarks are affirmed. 

 

 

2. PLANT DESCRIPTION 
 

Solar Energy Generating System (SEGS) is a 

thermodynamic solar power plant with parabolic mirrors. The 

parabolic troughs are long parallel rows of curved glass 

mirrors focusing the sun’s energy and are directed to a central 

tube filled with synthetic oil. Proposed solar power plant is a 

combination of two parts: the solar collector field and the 

power plant ("30 MW SEGS VI Plant" by SANDIA) [4]. The 

solar power plant can be present in a simplified model as 

viewing in Figure 1 consisting of four basic components: a 

solar collector, an expansion vessel, a heat exchanger and an 

HTF pump. Each element expresses its temperature change 

with a nonlinear differential equation, this model is used to 

design a quasi-LPV model. For a detailed description of the 

plant and a full description of the modelling procedure you can 

consult [4]. 

 

 
 

Figure 1. The structure of the simplified model 

 

Dynamic model of the plant is described by four nonlinear 

differentials equations as illustrates flowing: 

 
𝑑𝑇𝑜𝑢𝑡(𝑡)

𝑑𝑡
=

1

𝜏𝑐𝑜𝑙(𝑡)
(𝑇𝑖𝑛(𝑡) − 𝑇𝑜𝑢𝑡(𝑡))

+
𝑄𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 −𝑈𝐴𝑐𝑜𝑙(𝑇𝑜𝑢𝑡(𝑡) − 𝑇𝑎𝑚𝑏(𝑡))

𝐴𝑐𝑜𝑙𝜌𝐻𝑇𝐹(𝑇𝑜𝑢𝑡(𝑡))𝑐𝐻𝑇𝐹(𝑇𝑜𝑢𝑡(𝑡))
 

(1) 

 
𝑑𝑇𝐸𝑥𝑝(𝑡)

𝑑𝑡
=

1

𝜏𝐸𝑥𝑝(𝑡)
(𝑇𝑜𝑢𝑡(𝑡) − 𝑇𝐸𝑥𝑝(𝑡)) (2) 

 
𝑑𝑇𝑖𝑛(𝑡)

𝑑𝑡

=
1

𝜏𝐻𝐸(𝑡)
(𝑇𝐸𝑥𝑝(𝑡) − 𝑇𝑖𝑛(𝑡))

+
𝑈𝐴𝐻𝐸 (𝑇𝐸𝑥𝑝(𝑡) + 𝑇𝑖𝑛(𝑡) − 𝑇𝑠𝑡𝑒𝑎𝑚(𝑡) − 𝑇𝑤𝑎𝑡𝑒𝑟(𝑡))

𝐴𝑐𝑜𝑙𝜌𝐻𝑇𝐹(𝑇𝑜𝑢𝑡(𝑡))𝑐𝐻𝑇𝐹(𝑇𝑜𝑢𝑡(𝑡))
 

(3) 

𝑑𝑇𝑠𝑡𝑒𝑎𝑚(𝑡)

𝑑𝑡
= 0.01. ((−𝑇𝑠𝑡𝑒𝑎𝑚)

− 𝜀𝐻𝐸(𝑡) (𝑇𝐸𝑥𝑝(𝑡) − 𝑇𝑤𝑎𝑡𝑒𝑟(𝑡))

− 𝑇𝑤𝑎𝑡𝑒𝑟(𝑡)) 

(4) 

 

The parameters of the model and their units are given in 

Table 1. The density ρHTF and the specific heat capacity CHTF 

depend on the temperature of the fluid, the heat transfer 

coefficients εHE, hHE depend on the on the flow rate. The 

reference flow rates are �̇�𝐻𝑇𝐹,0 = 0.624 m
3s−1  for the HTF 

volume flow rate and �̇�0 = 39.9 𝑘𝑔𝑠−1 for the mass flow rate 

of the working fluid. 

 

 

3. DYNAMIC MODEL AND (T-S) FUZZY MODEL 

REPRESENTATION OF SOLAR POWER PLANT 
 

3.1 The state space model 

 

Based on (1), (2), (3) and (4) and, for a comparison with the 

time-invariant linear state-space model: 

 

{
ẋ(t) = A(x). x(t) + Bu(t)

y(t) = Cx(t)
 (5) 

 

We obtain:  

 

⌊
 
 
 
Tout

.(t)

Texp
.(t)

Tin
.(t)

Tst
.(t) ⌋

 
 
 

= A(x)

⌊
 
 
 
Tout(t)
Texp(t)

Tin(t)

Tst(t) ⌋
 
 
 

+ B(x)

⌊
 
 
 
 
 
V̇HTF(t)

Qabs(t)

Tamb(t)

ṁHTF(t)

Twater(t)⌋
 
 
 
 
 

        (6) 

 

where, A(x) is the system matrix and B(x) is the disturbance 

matrix. 

The state vector is defined below: 

 

 𝑥(𝑡) = [𝑇𝑜𝑢𝑡(𝑡)𝑇𝑒𝑥𝑝(𝑡)𝑇𝑖𝑛(𝑡)𝑇𝑠𝑡𝑒𝑎𝑚(𝑡)]
𝑇 . (7) 

 

The input vector is defined below:  

 

u(t)

= [V̇HTF(t) Qabs(t) Tamb(t) ṁHTF(t)   Twater(t)]
T 

(8a) 

                     

However, a slight variation is used here cannot considered 

to be manipulated for the purpose of the collector outlet 

temperature control (as the steam mass flow rate �̇�𝑯𝑻𝑭(𝒕) in 

this study). In order to control the collector outlet temperature, 

only the HTF volume flow rate �̇�𝑯𝑻𝑭(𝒕) is adjusted using: 

𝑈𝑚(𝑡) =  �̇�𝐻𝑇𝐹(𝑡).  The input variable Um(t) stands for 

manipulable input and vector of non-manipulated inputs is 

defined as: 

 

ud(t) = [Qabs(t) Tamb(t) ṁHTF(t) Twater(t) ]
T (8b) 

 

According to the space model, it finds that the matrix system 

A (x) and the disturbance matrix B are not fixed matrices.  

 

3.2 Procedure for obtaining the Takagi-Sugeno (T-S) fuzzy 

model representation 

 

The use of fuzzy logic theory is a natural tool that increases 
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the performance of control and supervision and especially for 

systems characterized by incomplete information and noise. 

Thus, fuzzy logic techniques are now widely used as a 

powerful tool for modeling and decision support. This 

approach is a mathematical alternative to represent, in order to 

be able to analyze, a nonlinear system by means of a set of 

simple structural models, each valid in a partition of the 

operating space of the system. Local models are then grouped 

together using an interpolation mechanism. LPV models 

describe how the dynamics of the system vary according to 

one or more variable planning parameters. When the variation 

of the scheduling parameters depends on the state space 

variables and / or the input variables, they are referred to as T-

S fuzzy model. The use of this approach makes it possible to 

transfer and generalize several methods developed in the field 

of linear monitoring to nonlinear systems and gives good 

approximation properties that can be used for monitoring. 

T-S fuzzy model obtained is given following: 

 

{     
ẋ(t) = A(ξ)x(t) + B(ξ)u(t)

y(t) = C(ξ)x(t) + D(ξ)u(t)
   (9) 

 

The Quasi-LPV model is derived according to three 

scheduling variables  

 
ξ1(t) = V̇(t). 

ξ2(t) = −0.1 (V̇ 2. V0⁄ +
ṁ(t)

.
m0) + 1.025 

ξ3(t) = TExp(t) 

(10) 

 

These scheduling variables in SPP are assumed to vary 

within the operating range. Notice that several choices of these 

premise variables are possible, due to the existence of different 

equivalent Quasi-LPV forms. 

The system (1) ... (4) can be rewritten as: 

 

�̇� = 𝐴(𝜉(𝑡))𝑥(𝑡) + 𝐵𝑚(𝜉(𝑡))𝑢𝑚(𝑡) + 𝐵𝑑(𝜉(𝑡))𝑢𝑑(𝑡) (11) 

 

where, ξ(t)=[ξ1(t)ξ2(t) ξ2(t)]T and the matrices A(ξ(t)), Bm(ξ(t)) 

and Bd(ξ(t)) are expressed as follows: 

 

A(ξ(t))

=

⌊
 
 
 
 
 
 
ξ1(t)

Vcol
−
Ucol

a1
ξ1(t)

VEXP
0
0

0 
0

(a + b)
ξ1(t)

VHE
 – a2 

ξ2(t)

ξ1(t)

Vcol
0

(a + b)
ξ1(t)

VHE
0

    

    0 
         0       
   a2
−0.01

⌋
 
 
 
 
 
 

 

 

Bm(ξ(t)) =

⌊
 
 
 
 
 
0

ξ3(t)

VEXP
ξ3(t)

VEXP
0 ⌋
 
 
 
 
 

 ; Bd(ξ(t) =

⌊
 
 
 
 
1

a1

uAcol
a2

   0    0

0 0   0   0
0
0

0
0

        0
        0

a2
 ξ2(t)⌋

 
 
 
 

 

 

where, 

 

𝑎1 = 𝐴𝑐𝑜𝑙 . 𝜌𝐻𝑇𝐹(𝑇𝑜𝑢𝑡). 𝐶𝐻𝑇𝐹 

 

𝑎2 = 
𝑈𝐴𝐻𝐸

2. 𝐴𝐻𝐸𝜌𝐻𝑇𝐹 (𝑇𝑖𝑛)𝐶𝐻𝑇𝐹(𝑇𝑖𝑛)
 

a = b = 0.4375. 

(12) 

The set of r=8 local models can be computed by taking ϑj,i, 

for j=1~3 and i=1~8. 

D as the minimum or maximum value for decision variable 

ξi with: d1 ≤ξ1≤D1, d2 ≤ξ2≤D2; d3 ≤ξ3≤D3, respectively. 

And the local weighting functions defined by: 
 

wj
1(ξ) =

Dj − ξj(t)

Dj − dj
, wj

2(ξ) =
ξj(t) − dj

Dj − dj
. j = 1~3 (13) 

 

The weighting functions of the derived T-S model and the 

matrices AiBiC are given in Table 1: 

 

Table 1. The local models 

 
Model ξ1j ξ2ξ3 Matrices weighting functions 

1 

2 

3 

4 

5 

6 

7 

8 

D1D2D3 

D1D2Dd3 

D1d2D3 

D1d2d3 

d1D2D3 

d1D2d3 

d1d2D3 

d1d2d3 

A1B1C 

A2B2C 

A3B3C 

A4B4C 

A5B5C 

A6B6C 

A7B7C 

A8B8C 

𝜇1 = 𝑤1
1𝑤2

1𝑤3
1 

𝜇2 = 𝑤1
1𝑤2

1𝑤3
2 

𝜇3 = 𝑤1
1𝑤2

2𝑤3
1 

𝜇4 = 𝑤1
1𝑤2

2𝑤3
2 

𝜇5 = 𝑤1
2𝑤2

1𝑤3
1 

𝜇6 = 𝑤1
2𝑤2

1𝑤3
2 

𝜇7 = 𝑤1
2𝑤2

2𝑤3
1 

𝜇8 = 𝑤1
2𝑤2

2𝑤3
2 

 

Consequently, the nonlinear model (1-4) can be proposed as: 

 

{
ẋ(t) =∑μi(ξ(t))(Aix(t) + Bmium(t) + Bdiud(t))

8

i=1

y(t) = Cx(t)

 (14) 

 
 

4. FUZZY SLIDING MODE OBSERVER 

 

Different faults and failures can occur in SPP instruments, 

equipment and systems which can have a significant impact on 

the performance and productivity of the installation. The 

design of the thermal measurement system for the detection of 

faults in a power generation system improves the productivity 

of the SPPs [20]. The monitoring of this SPP modeled as a 

state then consists in studying the behavioral coherence of the 

model ender real system. Sliding observers are known for their 

robustness and insensitivity to many types of uncertainty. 

These observers are more robust than the Luenberger 

observers, since the discontinuous term allows observers to 

reject disturbances and are also independent of a class of 

discordance between the system and the observer. Yan and 

Edwards [21] proposed an observer for actuator defect 

detection similar to that proposed by Bergsten et al. [22].  for 

a class of nonlinear systems. However, sensor fault detection 

is not expected. Therefore, this approach is not sufficient to 

guarantee the safety of Tanaka and Wang [16]. However, this 

observer is not robust and fault detection and identification 

(FDI) is not considered. To improve performances, an 

alternative approach to observer based sensor fault 

reconstruction using a TS fuzzy observer based on an 

augmented fuzzy descriptor system has been proposed by Gao 

et al. [18]. In the same objective, TS fuzzy observers have been 

combined with sliding mode in many researches where the 

more important are cited by Gao et al. [18]. Two TS-SM 

observers have been proposed by Bergsten [22] and the 

drawback is the application to FDI is not considered. Edwards 

and Spurgeon [23] proposed residuals of a bank of TS-SM 

observers are evaluated for FDI. Theory and application is 

presented following. 
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Assume that the fuzzy approximation of a nonlinear system 

reads: 

 

{
ẋ =∑μi(ξ)(Aix + Biu) + f(t, x, u)

M

i=1

y = C. x

 (15) 

 

And the following assumptions are satisfied: 

 
𝐴1. 𝑓(𝑡, 𝑥, 𝑢) = 𝑅�̅�(𝑡) 

𝐴2. 𝑅 =∑𝜇𝑖(𝜉). 𝑅𝑖

𝑀

𝑖=1

    

𝐴3.  �̅�(𝑡) ∈ 𝑅
𝑞 , 𝑅𝑖 ∈ 𝑅

𝑛×𝑞 , and 𝐶 ∈ 𝑅𝑝×𝑛 with 𝑝 ≥ 𝑞. 

(16) 

 

The proposed observer for the multiple models (15) is a 

linear combination of local observers, each of them having 

the structure proposed by Walcott and Zak [24]. In this work, 

it considers that the inputs ‖�̅�(𝑡)‖  ≤ Ƞ , where is scalar 

and ‖‖· represents the Euclidean norm. 

The proposed sliding mode fuzzy observer of the T-S model 

has presented on the following form: 
 

{
ẋ̂ =∑μi(ξ)(Aix̂ + Biu + Giey + RiVi + αi)

M

i=1

y = Cx̂

 (17) 

 

where, ey is output error. It is defined on the following form 

 

ey = y − ŷ = C(x − x̂) = Ce(t)    (18) 

 

With e(t) represent the state estimation error, such as: 
 

e(t) = x(t) − x̂(t)   (19) 
 

The matrices Gi and the control variables Vi, with Vi(t)∈ 𝑅𝑡 
must be determined in order to guarantee the asymptotic 

convergence of �̂�(𝑡) towards x(t).  

The terms Vi(t) compensate errors due to the unknown 

inputs. The dynamic of state estimation error is given as 

follows:  

 

ė =∑μi(ξ)(Ai − GiC)e + Riu̅ − RiVi)

M

i=1

 (20) 

 

The matrices Gi and the control variables Vi, with 𝑉𝑖(𝑡) ∈
𝑅𝑡 must be determined in order to guarantee the asymptotic 

convergence of �̂�(𝑡) to wards x(t). The terms Vi(t) compensate 

errors due to the unknown inputs. The dynamic of state 

estimation error is given as following: 

 

If ry ≠ 0   

{
 
 

 
 

𝒱i = ρ
2β3

−1
‖PRi‖

2

2ry
Try

P−1∑μi(ξ)Cj
Try

M

j=1

αi = β1(1 + β2)δi
2 x̂

Tx̂ 

2ry
Try

P−1∑μi(ξ)Cj
Try

M

j=1

If ry = 0              {
𝒱i = 0 
αi = 0

 (21) 

 

 

5. SIMULATION 

 

There are many faults as classify: 

• Defect in steam turbines for example, bearing temperature 

sensor fault, leakage fault in the lubricating oil circuit and 

proximity sensor fault in shaft axial position. These 

defects reduce the efficiency of the steam turbines, thus 

reducing the overall efficiency of the SPP. A dangerous 

situation can occur. 

• Actuator or leakage faults occur in the absorber pipe witch 

pumped the heat fluid to the boiler Impact on the reduced 

combustion efficiency and then the insufficient amount of 

superheated rods of the turbine. 

• Faults in the control of boiler feed water, for example, a 

fault in the actuator that pumps water into the boiler and 

the sensor passes during the change of load, which affects 

the safety and the efficiency of the boiler. 

 

The direct measures available from the plant are the outlet 

and the inlet oil temperature, expansion vessel and the heat 

exchanger temperature and the solar radiation. An observer is 

needed to estimate the intermediate temperatures of the plant 

for the model described in section 2. Since the process is 

described by four non linear PDE, a Proposed T-S model that 

described in section 3 is formed by eight ‘IF-THEN’ logical 

rules. It has a fuzzy antecedent part and a functional 

consequent part. Concerning the dynamics of the solar power 

plant and its nonlinear model structure, three fuzzy variables 

are considered in the antecedent part of the T-S model. 

The local dynamic models are deduced from the nonlinear 

model (1,..,4) through dynamic linearization by sector 

transformation. 

 

5.1 Estimation state 

 

In order to validate the performance of the proposed 

observer, simulation test is realized and obtain results are 

presented in Figures 2 and 3 respectively.  

Figure 2 shows the unknown inputs presented to the system 

while Figure 3 shows the state estimation. Based on these 

figures, it can be seen that the observer performs as expected 

despite the presence of the unknown input and the real and 

estimated states are found to be close. 

 
Figure 2. The unknown input 

 

5.2 Fault detection and isolation for SPP model (sensor 

faults) 

 

In order to identify the sensor fault, we consider that the 

Actuator is faultless ( �̅� = 0 ) while the output vector y is 

corrupted by the sensor fault ∆y=0. Proposed observer (21) is 

designed to estimate the output of the system and generate the 

diagnostic signal– residual that indicates whether or not a fault 

appears. In this work, three fuzzy sliding mode observers are 

used, one based on the outlet collector temperature observer: 
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y1=Tout(f1), the second based on the expansion temperature 

y2=Texp(f2) and the last is based on the steam temperature 

y3=Tsteam(f3). The structured residual is designed to be sensitive 

to a certain group of faults and insensitive to others. The 

sensitivity and insensitivity properties make the faults 

isolation possible. The ideal situation is to make each residual 

sensitive only to a particular fault and insensitive to all others. 

For example, system is sensitive to certain faults (f1,f2,f3) 

which cause that the diagnostic signal–residual to be active or 

not. This response pattern is known as fault signature. For the 

SPP, the response pattern is done by Table 2. It observes that 

a fault in sensor 1 will only activate the residual 1, and a fault 

in sensor 2 will activate the residuals 2, fault in sensor 3 will 

activate the residuals 3. 

 

 
 

Figure 3. The four states: Dotted line: estimated state; solid 

line: real state 

 

Table 2. Fault signatures 

 
 Faults  

Residual f1 f2 f3 Notes 

R1 1 0 0 f1: fault in sensor1 

R2 0 1 0 f2: fault in sensor2 

R3 0 0 1 f3: fault in sensor3 

 

Based on TS fuzzy model and proposed fuzzy observer 

designing, the following three cases have been simulated. 

 

Case 1: Fault–free system: 

Figure 4 shows the response of the residuals for this case. It 

seen that residuals have not been activated, as expected, 

indicating that the system is indeed free of faults. 

 

Case 2: System with faults. 

Scenario 1: residual signals 1, 2 and 3 behaviors are 

illustrated by Figure 5 when a sudden decrease of 10% gain is 

occurs at time [90-120]. It is predicted by the fault signature 

matrix, only the residual 1 (r1) is activated therefore we can 

assume that the fault appears only in the outlet temperature 

sensor. 

Scenario 2: an abrupt fault is introduced in sensor 1 at time 

[60-90] and in sensor 3 at time [130-160]. In the same way 

simultaneous faults in sensors have been simulated. Figure 6 

shows the estimation of sensor faults 𝑓1 and �̂�3. 

 

 
Figure 4. Residuals for a fault–free system 

 

 
 

Figure 5. Comparison between true and measured outlet 

collector temperature in presence of fault in temperature 

measurement (Residuals corresponding to a fault in sensor 1) 

 

 
 

Figure 6. Residuals corresponding to a fault in sensor 1 and 

3 
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6. CONCLUSIONS 

 

This work has successfully developing of a sliding mode 

observer based on Takagi-Sugeno fuzzy model for detection 

fault in solar power plant application. After developing a 

reasonable model based on Takagi-Sugeno fuzzy type, the 

system was tested for many faults conditions. Furthermore, an 

approach for fuzzy adapting failure thresholds was proposed. 

Results were obtained using MATLAB proving that the 

proposed procedure of fault detection in the solar plant was 

provide an effectiveness and height robustness that enable to 

establish more fault diagnosis performance. Finally, result of 

this work opens a new way of researches in this array. 
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NOMENCLATURE 

 

t Time (s) 

Tout outlet collector temperature [K, ℃] 

Texp expansion vessel temperature [K, ℃] 

Tin inlet collector temperature [K, ℃] 

Tsteam heat exchanger temperature [K, ℃] 

ρHTF density of fluid flow rate [kgm3] 

CHTF specific heat of fluid flow rate [Jk-1kg-1]  

qabs the absorbed solar energy [Wm-2] 

εHE the heat exchanger effectiveness 

1/τcol(t) the time constant for the collector 

 

Subscripts 

 

SPP Solar power plant 

TS Takagi-Sugeno 

SMO Sliding mode observer 

LMI Linear Matrix Inequalitie 
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