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With the development of microelectromechanical system (MEMS), embedded system, and 

wireless communication, it is now feasible to implement and deploy wireless sensor 

network (WSN) in emergency communication environment. However, the positioning 

accuracy of WSN nodes needs to be further improved. To solve the problem, this paper 

improves the initial value calculation method of multi-hop positioning algorithms, which 

are suitable for emergency communication environment, and puts forward a WSN node 

positioning algorithm that narrows the initial values of Kalman filter. By narrowing the 

initial value range of Kalman filter, the specially deployed sensors could accurately derive 

its position from the known positions of anchor nodes. To prevent error accumulation in 

the network, distributed computing was performed to solve the global nonlinear 

optimization problem, and calculate the position of the nodes. Simulation results show that 

the proposed algorithm can improve the WSN positioning accuracy under emergency 

communication environment, while greatly saving computing and communication costs. 

The research further improves the practicability and efficiency of multi-hop positioning 

algorithms in emergency communication environment. 
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1. INTRODUCTION

In recent years, wireless sensor networks (WSNs) have been 

widely adopted in various fields, namely, military 

reconnaissance, traffic monitoring, and emergency 

communications [1], owing to its advantages in information 

acquisition and processing. 

Node positioning algorithm is a hotspot in WSN research. 

Depending on the application scenarios, many WSN 

positioning methods have been developed with varied 

positioning principles [2]. These methods can be classified 

based on the characteristic parameters (e.g. distance or angle 

between nodes [3-6], or categorized by ranging methods [7-9]. 

Hightower and Boriello [10] explored deep into node 

positioning systems, and summed up many node positioning 

algorithms and systems. 

Similar node positioning methods exist in many other 

application fields [11, 12]. For instance, the positioning 

problem in the field of mobile robots bears high resemblance 

with that in WSN. However, there is a marked difference 

between mobile robot positioning system and conventional 

WSN positioning system under emergency communication: 

the former relies on a mileage measurement tool to estimate 

the initial position of the robot, while the latter does not have 

such an instrument. Under emergency communication, special 

consideration should be given to such properties of the WSN 

as scalability, communication efficiency, and power 

consumption, which might not need to be considered under 

other scenarios. 

In actual applications of emergency communication, it is 

necessary to process the error in measured values to improve 

the accuracy of node positioning, if the propagation of wireless 

signal is affected by environments like tunnels, dense forests, 

and cities. Kalman filter algorithm is the most widely used 

method to process the measuring error [13]. This algorithm has 

been constantly improved, creating advanced algorithms like 

extended Kalman filter algorithm [14] and H-infinite filter 

[15].  

In addition, Nicolescu and Nath [16] proposed an ad hoc 

positioning method for WSN nodes. In this method, the 

position information of anchor nodes is propagated in the 

network. Once an anchor node is aware of the position of 

another anchor node, it will derive the mean hop length in its 

neighborhood from this information, and feedback the result 

to the network. In the meantime, each node whose position is 

unknown will record the shortest hop length to each anchor 

node, and multiply it with the mean hop length to obtain its 

approximate distance to each anchor node. In this way, each 

node could preliminarily estimate its position through multiple 

queries.  

For better estimation of node position, Rabaey and 

Langendoen [17] improved the positioning accuracy through 

further refinement, e.g. computing refined node positions by 

least squares (LS) method. Simulation results show that their 

algorithms are independent of ranging technology, and 

capable of accurate positioning within one-third of the 

communication range. 

In most application scenarios, WSN nodes are deployed in 

a specific way. However, with specific deployments, the 

position of each sensor cannot be predicted accurately or 

planned in advance. This calls for accurate positioning of 

sensors under indirect line-of-sight (LOS), using multi-hop 

positions and ranging data. To this end, many node positioning 

algorithms [18] have been developed based on hop count, in 

which the target node is positioned based on the hop count and 

distance between it and the anchor node. Among them, the 
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most common algorithms are distance vector (DV) hop and its 

improved versions [19, 20]: each node measures its distance to 

a neighbor with its ranging sensor, and shares the measured 

value and its position with the anchor node, which is aware of 

its own position.  

In addition, Savvides et al. [21] designed an ad hoc 

localization system (AHLoS) to solve sensor positions in the 

WSN through the iteration of multiple associations. In 

collaboration with multiple extraction algorithms, the AHLoS 

overcomes problems like the sensitivity to anchor node density 

and the error propagation in large networks.  

Drawing on the above research results, this paper attempts 

to solve the limited accuracy and high computing cost of WSN 

node positioning under emergency communication 

environment. Inspired by the strategies of multi-hop 

positioning algorithms and initial value optimization, the 

authors put forward an improved multi-hop collaborative 

positioning algorithm for WSN nodes. The accuracy of multi-

hop node positioning was improved by narrowing the range of 

initial values of Kalman filter. The proposed algorithm was 

proved valid through case analysis. 

The remainder of this paper is organized as follows: Section 

2 presents the improved multi-hop collaborative positioning 

algorithm for WSN nodes based on initial value optimization, 

which overcomes the defects of existing algorithms in 

emergency communication environment; Section 3 verifies 

the proposed algorithm through case analysis, and illustrates 

the effectiveness of the algorithm through contrastive analysis 

on accuracy, computing cost, and energy consumption; 

Section 4 puts forward the conclusions of this research. 

2. METHODOLOGY

2.1 Kalman filter 

Invented in the 1960s, the Kalman filter mainly estimates 

the state of the current moment with the minimum mean 

square error (MMSE) through recursion of the estimate of the 

previous moment and the observation of the current moment. 

A typical Kalman filter can be implemented in two steps: 

estimation and verification. The estimation calculates the a 

priori value of the current state by the time update equation: 

-
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ˆ ˆ ˆ
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The verification calculates the posterior estimation of the 

improved current state by the measurement update equation: 
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2.2 Improved multi-hop collaborative positioning 

algorithm  

Figure 1. The workflow of the improved algorithm 
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Sawides et al. [22] proposed a multi-hop multilateral 

collaborative algorithm based on the AHLoS algorithm. Their 

algorithm iteratively refines the positioning results with 

Kalman filter, curbs the accumulation of error to a certain 

extent, and improves the accuracy of node positioning. 

Moreover, the sufficient conditions are provided for judging 

whether a node could join the multilateral collaboration. 

However, the algorithm faces a certain degree of positioning 

divergence, and requires strong computing power to complete 

the complex calculations. 

To further improve the accuracy and efficiency of the 

algorithm, this paper proposes an improved multi-hop 

collaborative positioning algorithm that narrows the initial 

value range of the Kalman filter. The narrowing weakens the 

positioning divergence, and improves the effects of 

subsequent filtering and positioning. The improved algorithm 

consists of four steps (Figure 1). 

Step 1. Generation of collaborative subtrees 

The collaborative subtree is composed of several unknown 

nodes and anchor nodes. Each unknown node has a unique 

position. The positions of unknown nodes are solved by the 

equation set of each collaborative subtree, including n 

unknown variables and at least n equations. Before solving 

these equations, the uniqueness of node position must be 

confirmed to prevent incorrect positioning. The subtrees of 

different structures need to meet different structural 

requirements for the uniqueness of the position. 

(1) Requirements of single-hop multilateral collaboration 

In single-hop setting, the basic requirement for an unknown 

node to have a unique position on a two-dimensional (2D) 

plane is that it must fall within the range of three noncollinear 

anchor nodes. There are more than one potential positions, if 

the anchor nodes are on the same straight line, and if the node 

configuration is symmetric. 

(2) Requirements of multi-hop multilateral collaboration 

A set of similar criteria are adopted to judge whether a node 

within n hops has a unique position. Starting from an unknown 

node, it is tested whether the node has at least three neighbors 

with temporarily unique positions. If the node has three 

neighbors that do not know whether its position is unique, 

recursive calls will be conducted at each neighbor to determine 

whether its position is unique. To ensure that each node has at 

least one link, every node as an independent reference is 

marked as “used”. This prevents other nodes from reusing the 

node as an independent reference in subsequent recursive calls. 

In each step, each unknown node must use at least one 

reference point, which is not collinear with other reference 

points. 

Step 2. Initial estimation of node position  

The initial estimation of node position is to obtain the x and 

y coordinates of each unknown node by ranging. Figure 2 

explains how to derive the range of x coordinate of unknown 

node C from the coordinates of two anchors nodes A and B. 

Let a be the distance between an unknown node and anchor 

node A. Then, the x coordinate of unknown node C falls 

between xA−a and xA+a. Similarly, the shortest path length of 

the x coordinate of unknown node C is b+c, because anchor 

node B is two hops away from unknown node C. Therefore, 

the x coordinate of unknown node C relative to anchor node B 

is bounded by xB−(b+c) and xB+(b+c). On this basis, the x 

coordinate of unknown node C relative to anchor nodes A and 

B is bounded by xB+(b+c) and xA−a, respectively. This 

operation needs to be performed from the leftmost and 

rightmost of each anchor node to obtain the x coordinate of 

each unknown node. 

The same operation is performed to obtain the y coordinate 

of each unknown node. Then, the bounds of the node on the x 

and y coordinates are merged to obtain the bounding box of 

the node. To build the bounding box, the positions of all 

anchor nodes need to be forwarded to every unknown node 

along the minimum weight paths. The forwarding direction is 

the same as the routing of distance vector. The only difference 

is that the weight is measured distance rather than hop count. 

The initial position of each unknown node is assumed to be in 

the center of its bounding box. To obtain a set of good initial 

estimates, the anchor nodes are arranged on the perimeter of 

the WSN. 

 

 
 

Figure 2. The sketch map of initial estimation of node 

position 

 

Step 3. Optimization of initial node positions 

In the traditional multi-hop collaborative algorithm, the 

accuracy of node positioning is optimized without initial 

estimation of node positions. The quality of initial estimations 

directly bears on the accuracy and efficiency of the positioning 

results. To avoid positioning divergence, this paper improves 

computing efficiency and reduces calculation cost by 

narrowing the range of initial estimation. 

 

 
 

Figure 3. The narrowing of initial value range of Kalman filter  
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As shown in Figure 3, the initial value of conventional 

Kalman filter is obtained by solving the coordinates of the 

centroid PRQS of the box formed by the distances between 

anchor nodes and unknown node. To narrow the search range 

of initial value, two circles centering on the anchor node are 

drawn with the distances from the unknown node to the two 

anchor nodes as the radius, respectively. Then, the coordinates 

of the centroid of the intersection between the two circles, that 

is, those of the midpoint of the connecting line between M and 

N, as the initial value of Kalman filter. In this way, the initial 

value problem of Kalman filter becomes the geometric 

problem of finding the centroid coordinates of the intersection. 

The coordinates M(xM,yM) and N(xN,yN) of the intersection 

points M and N can be solved by: 

 

( ) ( ) ( )

( ) ( )

2 2 2

2 2 2

B B
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x x y y b c

x x y y a

 − + − = +


− + − =

  (6) 

 

Then, the initial value of Kalman filter can be obtained by: 
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Step 4. Solving the accurate node positions 

Referring to the multi-hop multilateral collaborative 

positioning algorithm, the LS estimation is selected to solve 

the initial position of each unknown node accurately. There are 

two possible computing models for the accurate positioning: 

centralized computing or distributed computing. 

(1) Centralized computing of node position 

The positions of unknown nodes are estimated at one central 

point, using the collaborative subtree and the initial position 

estimation. A definite set of equations is set up according to 

the specific structure of the collaborative tree, and then solved 

by nonlinear optimization. The nonlinear optimization of a 

multi-hop network containing five-node subtrees can be 

expressed as: 

 

( ) ( )

( ) ( )
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( ) ( )
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  (8) 

 

where, Ri,j is the measured distance between two nodes; the 

value under the square root is the estimated distance; fi,j is the 

residual between the measured and estimated distances. The 

objective function is the minimize the mean squared error 

(MSE) of all equations: 

 

( ) 2

3 3 4 4 ,, , , min i jF x y x y f=    (9) 

(2) Distributed computing of node position 

Distributed computing takes place across the entire network. 

Each unknown node is responsible for estimating its own 

position through local computing and communication with 

neighbors. This strategy is basically the same as using a 

distributed Kalman filter, except for three minor differences: 

First, the Kalman filtering is performed on the edge of a 

collaborative subtree. Each node executes single-hop multiple 

transforms based on its measured distance and the position 

information from its neighbors. Second, decentralized Kalman 

filter is replaced with an approximation that does not exchange 

covariance information. The calculation cost and energy are 

saved, because of the reduced communication and simplified 

computation. Third, calculation is driven by the ad-hoc 

network protocol. 

The distributed computing of node position adheres to the 

following principles: After the first two steps, each node in the 

collaborative subtree has estimated its position. Since most 

unknown nodes are not directly connected to anchors, they 

take the initial estimates of their neighbors as reference points 

to estimate their positions. Once an unknown node calculates 

a new estimate, it will propagate the new estimate to its 

neighbors, which will update their own position estimates 

based on that estimate. This process will be repeated from 

node to node across the network until all nodes reach the preset 

convergence gradient. 

The distributed computing process is illustrated in Figure 4. 

The first node 4 estimates its position with anchors 1 and 5 and 

node 3 as reference points. Once node 4 propagates its new 

estimate, node 3 will re-estimate its own position based on the 

new estimate, in the light of the distances to anchors 2 and 5. 

Finally, node 4 will make a better estimation based on the new 

estimate from node 3. 

 

 
 

Figure 4. The process of distributed computing 

 

If the above process goes out of control, the position of 

unknown node will converge to the local minimum, resulting 

in incorrect estimates. This is mainly attributable to the 

collaborative subtree with multiple unknown nodes. If two 

adjacent unknown nodes A and B calculate and propagate their 
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new estimates right after receiving the new estimate from the 

other party, the two nodes will update their position estimates 

faster than the other nodes in the subtree. However, this 

introduces local oscillation to the computing process. Despite 

the fast convergence to the final estimate, the convergence is 

not consistent with the global gradient, making the estimates 

incorrect. 

To prevent the problem, the polygon on each node will be 

executed in a consistent order among all unknown nodes of the 

subtree, until the polygons of all unknown nodes on the subtree 

converge to the preset threshold. The sequential execution of 

the polygons establishes a gradient on each node relative to the 

global topological constraint, enabling the nodes to compute 

the global optimal value locally. 

 

 

3. EXAMPLE ANALYSIS 

 

To verify its effects of the proposed improved algorithm, a 

simulation environment was constructed on Matlab and NS2 

for comparative analysis of positioning accuracy. Specifically, 

the Dynamic Source Routing protocol (DSR) and IEEE802.11 

media access control (MAC) protocol was realized through 

NS2; the Kalman filter algorithm was implemented on Matlab, 

and connected with the environment of communication 

protocols via the complier. Under the simulation environment, 

the improved algorithm was compared with the multi-hop 

multilateral collaborative algorithm proposed by Andreas 

Sawides et al. (the original algorithm) under emergency 

communication environment in terms of positioning accuracy, 

calculation cost, and energy consumption. 

(1) Comparison of positioning accuracy 

 

 
 

Figure 5. The comparison of positioning accuracy 

 

Figure 5 compares the positioning accuracies of our 

algorithm and the original algorithm in the above simulation 

environment. It can be seen that the mean distance errors 

(MDEs) of both algorithms were on the rise, under the same 

scenario. But the MDE increment of the improved algorithm 

was relatively small than that of the original algorithm, 

indicating that the improved algorithm is more accurate than 

the original algorithm. The small MDE of the improved 

algorithm comes from the optimization of the initial values of 

Kalman filter. Whereas the original algorithm takes the box 

centroid as the initial position, the improved algorithm defines 

the initial position of an unknown node as the centroid of the 

intersection between two circles with the distances between 

the node and two anchors as radius, respectively. The approach 

of the improved algorithm greatly narrows the uncertain range 

of the unknown node. 

(2) Comparison of calculation cost 

To verify the efficiency of the improved algorithm, the 

computing efficiency was measured by the number of 

iterations to obtain the optimal solution. During the simulation, 

the original and improved algorithms were separately applied 

to position different numbers of unknown nodes under the 

same number of anchor nodes. Figure 6 compares the number 

of iterations of the two algorithms. It can be seen that the 

number of iterations of both algorithms increased with the 

number of unknown nodes. Under the same number of 

unknown nodes, however, the improved algorithm needed 

much fewer iterations than the original algorithm. This means, 

under the same conditions, the improved algorithm outshines 

the original algorithm in computing efficiency, that is, it can 

complete node positioning tasks with relatively few 

computing resources. 

 

 
 

Figure 6. The comparison of calculation cost 

 

(3) Comparison of energy consumption 

During emergency communication, WSN nodes need to 

consume lots of energy. To extend the service life of the nodes, 

the energy consumption in calculation must be minimized. 

Figure 7 compares the energy consumptions of the two 

algorithms under the same simulation environment. It can be 

seen that the two algorithms differed slightly in 

communication cost at the same node. Overall, the improved 

algorithm consumed fewer energy than the original algorithm, 

because it reduces the number of iterations and information 

exchanges between nodes by reducing the range of initial 

values of Kalman filter. Hence, the improved algorithm is 

more in line with the energy-saving requirements on the WSN 

in emergency communication than the original algorithm. 

The above comparisons fully demonstrate the effectiveness 

and practicality of the proposed algorithm. The superiority of 

our algorithm is mainly ascribed to the narrowing of the initial 

value range of Kalman filter, and the distributed Kalman filter. 

The former enables the specially deployed WSN nodes to 
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estimate their positions based on the known positions of 

anchor nodes, while the latter iteratively solves the node 

positions in an accurate manner. As a result, the improved 

algorithm can position the WSN nodes accurately in a simple 

process at a low calculation cost and energy cost, and adapt 

well to the emergency communication environment. 

 

 
 

Figure 7. The comparison of energy consumption 

 

 

4. CONCLUSIONS 

 

This paper mainly explores the WSN node positioning 

under the emergency communication environment. 

Considering the defects of multi-hop multilateral node 

positioning algorithm, the authors improved the positioning 

accuracy by narrowing the initial value range of Kalman filter. 

To demonstrate its effectiveness and practicality, the improved 

algorithm was compared with the original algorithm through 

simulation. The results show that the improved algorithm has 

the edge in positioning accuracy, calculation cost, and energy 

consumption, and greatly improves the applicability of WSN 

in emergency communication environment. However, the 

proposed algorithm does not consider the optimization of the 

termination condition. The future research will try to further 

optimize the algorithm from this angle. 
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