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 Helical baffles are employed increasingly in shell-and-tube heat exchangers for their 

significant advantages in reducing pressure drop, vibration, and fouling while maintaining a 

higher heat transfer performance. In order to make good use of helical baffles, serial 

improvements have been made by many researchers. In this paper create model of optimal NN 

for prediction analysis in parameters compared to existing works. This hidden layer and neuron 

optimization process fish asked KHO technique used. For more verification, KHO is applied 

to six design problems reported in the literature. Further, the performance of the KH algorithm 

is compared with that of various algorithms representative of the state-of-the-art in the area. 

The results of different algorithms are breaking down and stood out from comparative systems, 

and the finest results rising out of them are discovered by standing out the results from least 

MSE values. From the results our proposed method achieves minimum MSE compared to 

existing works and maximum prediction accuracy in optimization model.  
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1. INTRODUCTION 

 

Heat is a form of energy. Heat transfer is the exchange of 

thermal energy between physical systems. For transferring 

heat by the process of conduction, heat exchangers are the 

most common equipment used in process industries [1]. Heat 

exchangers are the device that facilitating effective heat 

transfer between the two fluids by virtue of their temperature 

differences [2-3]. Here, shell and tube heat exchangers are 

used. In shell and tube heat exchangers, one fluid flows across 

the tube banks while other flows through the tubes, in which 

the heat transfer takes place between the shell and the tube side 

fluids [4]. Due to the important role of shell-and-tube heat 

exchangers, a variety of techniques have been proposed to the 

design optimization problem such as, numerical resolution and 

systematic screening of tube count tables [5]. In general, low-

temperature geothermal heat sources are widely available but 

the electricity production efficiency is low due to the low 

temperature, [6] so that the Organic Rankine Cycle (ORC) 

method is introduced in this paper and thus can generate 

electricity from low-temperature heat sources using organic as 

a working fluid [7]. The main challenges of the ORC are the 

choice of an appropriate working fluid and of the particular 

cycle design with which the optimum objective function can 

be achieved [8].  

ORC system driven by a low-temperature geothermal 

source optimizing the ratios of the total heat transfer area to 

the net power output and electricity production cost and also 

to have a fixed pressure drop, pinch-point temperature 

differences [9].   

The main scope of the present work is to clarify the effect 

of flow, thermodynamic and geometrical parameters on 

energy loss in shell and coiled tube heat exchangers [10]. 

There are different methods for optimization design of shell 

and tube heat exchangers among that the traditional design 

approach is an iterative process based on the past experience 

and the constraints of working conditions, such as allowable 

fouling and pressure drops [11]. The selection of the working 

fluids relates the ORC performance with the distance between 

the critical temperature of the working fluid and the inlet 

temperature of the heat source [12]. Because of the complexity 

of the structure, the working condition is very difficult to 

obtain exact analytical solutions of heat transfer characteristics 

[13]. 

In recent years, numerous approaches for the performance 

design and optimization of practical thermodynamic cycles 

have been explored and applied in engineering [14] and also 

they developed a set of correlations for two-phase evaporators 

with a focus on ammonia as a working fluid that included the 

effect of chevron angle on the thermal and hydraulic 

performance [15]. Many studies on the configuration of shell 

and tube heat exchangers can be carried out. For example, 

systemic optimization designs of structures, equipment 

improvement, parameter optimization under different working 

conditions, and working fluids selection to increase power 

cycle efficiency [16]. From the brief review presented above, 

it can be concluded that the [17] proposed algorithm is 

applicable to find optimum and near optimum alternatives of 

the shell and tube heat exchanger configurations [18]. 

 

 

2. LITERATURE REVIEW 

 

In 2016 Ashkan Alimoradi et al. [19] have proposed that the 

heat transfer of shell and helically coiled tube heat exchangers. 

To investigate the effect of physical properties of fluid, 

operational, and geometrical parameters, numerical and 

experimental methods were used on Nusselt numbers of both 

sides. Under the numerical and experimental analysis, 42 cases 

and 15 tests were investigated respectively. Depend on 
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temperature, viscosity and thermal conductivity of working 

fluids were assumed. Result proved that if the pitch size is 

doubled, the shell side Nusselt number increases by 10%, at 

the same time coil side Nusselt numbers increases by only 

0.8%. Based on results, two correlations were developed to 

predict the coil side and shell side these correlations were 

compared with experimental data for wide range of 

operational and geometrical parameters. 

In 2016 Jian Wen et al. [20] illustrated that the optimization 

of shell and tube heat exchanger to overcome the dependence 

on empirical correlations and to achieve accurate results. 

Optimization parameters are helical angle, baffle overlap 

proportion and inlet volume rate in which the energy and cost 

are optimized by using Kriging met model based on multi-

objective genetic algorithm. The results were obtained by the 

comparison between the optimum and a conventional shell and 

tube heat exchanger with segmental baffles and are beneficial 

to trade off the heat transfer rate and total cost of helical baffles. 

Finally, the shell and tube heat exchanger obtained a better 

performance with helical baffles and it can be concluded that 

are benefit for energy saving and cost reduction. 

In 2016 Alessandro Scattina [21] analyzed that the 

mechanical process of tubes expansion used for the production 

of heat exchangers with two different aspects. Using finite 

element models, 2D model was used to study the influence of 

mandrel geometry and the 3D model was used to investigate 

geometrical errors in tubes. Force required for expansion in 

tube dimensions was investigated and the obtained results 

showed that the fillet radius is important factor of mandrel to 

reduce the expansion force. During tube expansion process, 

the influence of the tube geometrical errors was observed 

which can compromise the performance of the heat exchanger. 

It is concluded that the present study improves tubes expansion 

processes and heat exchanger production. 

In 2016 Noémie Chagnon-Lessard et al. [22] demonstrated 

the optimization of Organic Rankine Cycle by means of 

numerical simulations. Optimization was performed with 

subcritical and transcritical thermodynamic cycles that 

maximizes the specific power output. The operating 

parameters such as pressures, mass flow rates and the working 

fluid were determined by the performance of 36 refrigerants.  

Optimized values are performed for a wide range of geofluid 

temperatures (from 80 to 180 C) and condenser temperature 

(from 0.1 to 50 C). The obtained results used for designing 

optimal geothermal power plants. To predict the maximum 

specific power output of an ORC a new correlation should be 

developed. 

In 2015 Bin Gao et al. [23] analyzed the effects of flow 

resistance and heat transfer of several shell-and-tube heat 

exchangers with discontinuous helical baffles and compared 

with five different helix angle. The second-law of 

thermodynamics was employed to analyze these effects on the 

irreversible loss of heat exchangers. The irreversibility of heat 

exchanger was estimated by the theories of entropy generation 

and entransy dissipation. The result showed that the shell-side 

pressure drops and heat transfer coefficient of the heat 

exchanger with smaller helix angle are higher than those with 

larger helix angle and the flow resistance with larger helix 

angle is lower. In the heat exchange process, the shell-and-tube 

heat exchanger with smaller helix angle baffles produces less 

irreversibility. 

In 2016 Shuangcheng Sun et al. [24] have proposed an 

inverse geometry design of two-dimensional complex 

radiative enclosures to satisfy a uniform distribution of 

radiative heat flux over the design surface using krill herd (KH) 

algorithm. Using the discrete ordinate method, the forward 

radiative heat transfer problem in irregular enclosures was 

solved. To optimize the geometric positions of the control 

points, five kinds of KH algorithms were utilized. Finally, KH 

algorithm proved to be more efficient than the micro genetic 

algorithm and particle swarm optimization algorithms.  In an 

inverse geometry design, the influences of radiative properties 

of the media and the number of control points were also 

investigated. 

In 2015 L.V. Kamble et al. [25] described the prediction of 

heat transfer from horizontal tube immersed in gas–solid 

fluidized bed of large particles by the neural network 

optimization. The effect of fluidizing gas velocity on the 

average heat transfer coefficient between fluidizing bed and 

horizontal tube surface was studied by the Artificial Neural 

Network modeling. For predicting the heat transfer coefficient, 

compare the performances of five training functions 

implemented in the neural network. Based on percentage 

relative error, coefficient of determination, root mean square 

error and sum of the square errors, the function has been 

selected among the five training function for the analysis. 

 

 

3. PROPOSED METHODOLOGY 

 

 
 

Figure 1. Schematic diagram for proposed work 

 

A Heat Exchanger (HX) is a gadget used to exchange warm 

between at least one liquids. The liquids might be isolated by 

a strong divider to avoid blending or they might be in direct 

contact Organic Rankine cycles (ORCs) is taken by improving 

the cycle parameters together with the design of shell-and-tube 

heat exchangers. In our two existing research papers different 

techniques utilized to identify the HX parameters the 

techniques are optimal mathematical modeling and optimal 

Neural Network (NN). In our third research paper we can 

improve the accuracy level and performance of three 

parameters compared to existing works. This third work 

considers the input parameters such as tube configuration, 

different fluids, surface, and temperature. Here also we have 

used NN structure with relevant optimization model. Hidden 

layer and hidden neuron optimization inspired technique that 

is Krill herd optimization (KHO). The krill herd algorithm is 

new heuristic algorithms presented for solving optimization 

 
Shell and tube heat exchanger’s parameters  

NN Model 

Hidden layer and neuron process 

Optimization based KHO 
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tasks. In the algorithm, three main factors define the position 

of the krill individuals that are movement induced by the 

presence of other individuals, foraging activity, and random 

diffusion. The KHO algorithm has better performance for 

optimization problem, but sometimes it may trap into the local 

optima. Figure 1 demonstrates the schematic graph of propose 

approach. 

 

3.1 Neural Network (NN) 

 

ANN models usually do not allow the calculation of 

statistical parameters and diagnostics for a detailed assessment 

of the quality of the model, as in the case of linear regression. 

It is therefore necessary to use other methods, to verify 

whether the model is appropriate for description of the 

phenomenon under study. Neural network is a very flexible 

instrument and can easily lead to a situation where the model 

will suspiciously well describe (fit) the data, but not the 

phenomenon (variables relationship) as a whole. This is 

reflected in very poor prediction of the values of the dependent 

variables for the new independent variables that have not yet 

occurred in the data, although they may be located inside the 

interval of training data, NN model shown in figure 2. This 

structure optimizes hidden layer and neurons of the model fish 

based optimization technique used that is Krill herd 

Optimization (KHO) process. 

 

 
 

Figure 2. NN model 

 

Steps involved in proposed work 

Step 1: Initialize input parameters and number of hidden 

layers and neurons. 

Step 2: Basic NN structure with evaluate basis function 

Step 3: Find activation function 

Step 4 Optimize hidden layers and neurons I n activation 

function. 

Step 6: Optimization based on the krill herd fish 

optimization process 

Step 7: Update krill herd behaviors  

Step 8: If minimum MSE attained means the process will 

stopped otherwise repeat step 2 to 7. 

 

3.2 Initialization process 

 

This initialization process similar for our existing work 

process that is tube configuration, different fluids, surface and 

temperature, hidden layers and hidden neurons of Neural 

network model. 

Basis function  
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where fB  is a basics function, ij
 
is an input layer weight 

and i
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3.3 Activation function process 

 

The question of deciding which activation function will 

require how many neurons to achieve a given order of 

approximation for all such functions. We will describe a very 

general theorem and explain how to construct networks with 

various activation functions. That is shown in below, 
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In condition (2) apply the all the output parameters in shell 

and heat exchangers modeling process. This Training and 

testing investigation diverse nine training algorithms are 

utilized as a part of NN structure.  

 

3.4 Krill herd Optimization (KHO) for NN model 

 

Predators remove individuals, reduce of the average krill 

density, and distance the krill swarm from the food location. 

Therefore, predation can be considered as the initialization of 

the optimization algorithm. The fitness of each individual in 

the natural system, is supposed to be the distances from the 

food centre and the highest density of the krill swarm [26]. 

 

 
 

Figure 3. Flow chart for KHO 

 

The Krill herd algorithm is a new optimization algorithm 

which is inspired the behavior of the krill swarms, this 

optimization technique to optimize hidden layer and neurons 
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in prediction analysis. This KHO process consider two main 

goals such as Increasing krill density and Reaching food, so 

the herding behavior of increasing density and finding food. 

Figure 3 shows the flow diagram of KHO process. 

KHO updating Procedure 

The location of a krill individual is affected by the following 

three factors 

➢ Movement induced by other krill individuals 

➢ Foraging activity 

➢ Random diffusion 

The location of krill is expressed by the following 

Lagrangian model. 

  

i

i i i

dA
M F P

dt
= + +                                                          (3) 

 

where , iM the motion is induced by other krill individuals; iF  

is the foraging motion, and iP  is the physical diffusion of the 

ith krill individuals. 

 

3.4.1 Movement induced by other krill individuals 

In the movement, the direction of motion of a krill 

individual is determined both by the local swarm density (local 

effect), a target swarm density (target effect), and a repulsive 

swarm density (repulsive effect). The krill movement can be 

defined as  
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where arglocal t et

i i i  = +                                               (5)
 

In above equation (8) individual local search and target 

search are calculated by as following equation. 
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In above equations the notations are explained as maxM

 

is 

the maximum induced speed, n is the inertia weight of the 

motion induced in the range [0, 1], old

iM  is the last motion 

induced, old

i  is the  local effect provided by the neighbors 

and argt et

i  is the target direction effect provided by the best 

krill individual and NN is the numbers of individuals. In 

equation (8) the ijB  calculated based on the best and worst 

fitness values.  
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where,
 bestC  is the effective coefficient of the krill individual 

with the best fitness to the thi  krill individual. This coefficient 

is defined since argt et

i leads the solution to the global optima 

and it should be more effective than other krill individuals 

such as neighbors. Herein, the value of bestG  is defined as: 

max

2best

IA
G rand

IA

 
= + 

 
                                           (9) 

 

where rand is a random values between 0 and 1 and it is for 

enhancing exploration, IA
 

is the actual iteration number and 

maxIA   is the maximum number of iterations. 

The sensing distance for each krill individual can be 

determined using different heuristic methods. Here, it is 

determined using the following formula for each iteration. 
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For choosing the neighbor, different strategies can be used. 

For instance, a neighborhood ratio can be simply defined to 

find the number of the closest krill individuals. Using the 

actual behavior of the krill individuals, a sensing distance ds  

should be determined around a krill individual shown in figure. 

Using equation (10), if the distance of two krill individuals is 

less than the defined sensing distance, they are neighbors. 

 

 
 

Figure 4. Fish sensing performance 

 

3.4.2 Foraging motion 

The foraging motion is formulated in terms of two main 

effective parameters. The first one is the food location and the 

second one is the previous experience about the food location. 

This motion can be expressed for the thi  krill individual as 

follows: 
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old

i m i m iF B F = +                                                  (11) 

 

where food best

i i i  = +                                              (12) 

 

Here mF is the foraging speed,
 m  is the inertia weight of 

the foraging motion in the range [0,1], is the last foraging 

motion, food

i is the food attractive and best

i is the effect of 

the best fitness of the thi krill so far. According to the 

measured values of the foraging speed it is taken 0.02 (ms-1). 

Therefore, the food attraction for the thi  krill individual can 

be determined as follows: 

 
food food

i i food i foodG B O =                                               (13) 

 

where 

 

1

1

1

1

N

i
ifood i

N

ii

O
B

O

O

=

=

=



                                                  (14) 

 

where 
 

foodC  is the food coefficient, because the effect of food 

in the krill herding decreases during the time the food 

coefficients is determined as
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2 1food IA
G
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 
= − 

 
                                                (15) 

 

The food attraction is defined to possibly attract the krill 

swarm to the global optima. Based on this definition, the krill 

individuals normally herd around the global optima after some 

iteration.  

The effect of the best fitness of the ith krill individual is also 

handled using the following equation: 

 
best

i ibest ibestB O =                                                       (16) 

 

where 
 i bestB

 
is the best already visited position of the krill 

individual. 

 

3.4.3 Physical diffusion 

The physical diffusion of the krill individuals is considered 

to be a random process. This motion can be express in terms 

of a maximum diffusion speed and a random directional vector. 

It can be formulated as follows:                        

 
max

iP P =                                                           (17) 

 

Here maxP  is the maximum diffusion speed, and d is the 

random directional vector and its arrays are random values 

between -1 and 1. 

 

3.4.4 Motion process of the KH  

The physical diffusion performs a random search in the 

proposed method. Using different effective parameters of the 

motion during the time, the position vector of a krill individual 

during the interval t to t t+   is given by following equations
. 
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Dt  Completely depends on the search space and it seems it 

can be simply obtained from the following formula. 
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where NN is the total number of variables, and UB and LB

are lower and upper bounds of the thj variables 

0,1,2,.....j NN=  respectively. Therefore, the absolute of their 

subtraction shows the search space. It is empirically found that 

tS is a constant number between [0, 2]. 

 

3.4.5 Crossover  

The crossover operator is first used in GA as an effective 

strategy for global optimization. A vectorized version of the 

crossover is also used in DE which can be considered as a 

further development to GA.  The crossover rate calculation as 

follows. 

 

3.4.6 Mutation 

The mutation plays an important role in evolutionary 

algorithms such as ES and DE. The mutation is controlled by 

a mutation probability (Mp). 

 

0.5 / i bestMp B=                                               (20) 

 

Using this new mutation probability, the mutation 

probability for the global best is equal to zero and it increases 

with decreasing the fitness. 

 

3.5 Optimal solution and MSE process 

 

Rely on upon the previously mentioned process accomplish 

the ideal concealed layer and neuron. Furthermore, it is 

utilized to get the ideal wellness capacity which is spoken to 

as optimalF  in this ideal wellness based get the yield.  
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Based on equation (14) analyzed the all output parameters 

like, exegetic plant efficiency, energetic cycle efficiency and 

electrical power of shell and heat exchangers with minimum 

MSE value for prediction process. 

 

 

4. RESULT AND DISCUSSION  

 

The projected technique is executed in the stage of 

MATLAB 2015 with the framework setup is i5 processors 

with 4GB RAM which is utilized for fluffy and NN with 

streamlined foresee the yield parameters. This proposed 

execution parameters assessment contrasted with other 

advancement and existing strategy is like mathematical 

modeling with GWO, and NN with IGWO technique. 
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Table 1. Optimal NN for heat transfer parameters 

 
Parameters 

 
Structure Accuracy 

Exegetic plant 

efficiency 

 

99.2 

Energetic cycle 

efficiency 

 

97.56 

Electrical power 

 

98.52 

 

 
 

Figure 4. Convergence graph 

 

Table 1 illustrates the optimal NN for heat transfer 

parameters. The table shows the clear structure for three 

parameters such as exegetic plant efficiency, energetic cycle 

efficiency and electrical power and finds the optimal accuracy. 

In the exegetic plant efficiency, the structure determines the 4 

inputs, it gets 3 hidden layer neurons (1,2 and 3) In hidden 

layers the weight and the bias are optimized gets 10 neurons 

after that these 10 neurons goes to hidden layer 2 it optimized 

as 4 neurons and finally attains the output as 1 neuron. The 

accuracy obtained for exegetic plant efficiency is 99.2%. 

Similarly, energetic cycle efficiency gets 5 hidden layers the 

weights and bias are optimized to get output 1, the accuracy 

maintained for this parameter is 97.56%. The structure for 

electrical power shows 4 hidden layers and the accuracy level 

attains as 98.52%. 

Figure 4 visualizes the convergence graph for five 

optimized algorithms (GA, GWO, IGWO, KHO, and PSO). 

The fitness value (MSE) has to be found for algorithms such 

as Genetic Algorithm (GA), Grey Wolf Optimization (GWO), 

Improved Grey Wolf Optimization (IGWO), Proposed Khrill 

Herd Optimization (KHO) and Particle Swarm Optimization 

(PSO) in different iterations. In the first iteration, all 

optimization techniques start in the MSE range of 23 to 28. 

The iteration value increases MSE range decreases it helps to 

find the best optimal fitness value. Compare to all these 

optimization techniques proposed KHO gets a better result 

than others. The optimal fitness value (MSE) attains in 78th 

iteration. 

 

  
 

Figure 5. Comparative analysis 

 

 
(a) Exegetic plant efficiency       (b) Energetic cycle efficiency     (c) Electrical power 

 

Figure 6. MSE analysis for different parameters 
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Figure 5 clearly shows the comparative analysis for three 

parameters (exergetic plant efficiency, energetic cycle 

efficiency, and electrical power). This graph compares the 

MSE accuracy of three techniques (mathematical modeling- 

GWO, NN-GWO, and NN-KHO) for three parameters. In 

exergetic plant efficiency, the MSE accuracy for GWO 

techniques as 89, NN-GWO gets 99 and NN-proposed KHO 

attains MSE as 100. Compare to these three techniques the 

neural network with proposed KHO algorithm as better 

optimal MSE than other techniques. Likewise, the energetic 

cycle efficiency and electrical power also obtain best fitness 

accuracy. The NN-GWO techniques also get good accuracy 

but don’t get an optimal result so NN-proposed KHO 

technique is an optimal technique. 

Figure 7(a) (b) and (c) illustrates that the Exergetic Plant 

Efficiency, Energetic Cycle Efficiency and Electrical Power 

of shell and tube heat transfers with dissimilar liquids.  If the 

tube value is 30 then the effectiveness series is from 38.5 to 

52.8 and the complete tube configuration can be achieved 

these values. By the help of Q, the heat is supplementary to the 

cycle. Five dissimilar cases are demonstrated; the first four 

cases (30, 45, 60 or 90) have the similar tube configuration in 

all heat transfers, and the last case uses the 30 configuration in 

the single-phase heat transfers (economizer, super heater and 

de super heater) and the 60 configuration in the two-phase heat 

transfers (evaporator and condenser), which will be indicate 

the 30- & 60-tube configuration in the remains. The outcome 

demonstrates that the 30- & 60-tube configuration carry out 

the finest 30- & 60-tube configuration and merge high heat-

transfer coefficients with comparatively low pressure drop in 

single-phase configurations and two-phase flow, 

correspondingly. Figure (b) the cycle with R218 is a working 

fluid and the 40- & 60-tube configuration has an energetic 

cycle efficiency of 74.3%. By using the 40-tube configuration 

in all heat exchangers, the plant efficiency reduces to 75.86%. 

Table 2 show that real and forecast values of the projected 

KHO optimization method in shell and tube heat transformers. 

To amplify the tube configuration, the presentation will be 

changeable. If the tube configuration is 40 in liquid then the 

Isobutene of the Exegetic Plant Efficiency real value is 39.2 

and projected method is 38.08. Likewise all the output limits 

values are attained in arithmetical modeling with IGWO 

optimization method compared to existing technique GWO 

AND IGWO technique.  

 

 
(a) Exegetic plant efficiency 

 
(b) Energetic cycle efficiency 

 
(c) Electrical power 

 

Figure 7. Parameters analysis based on tube configuration 

 

Table 2. Parameter estimation 

 

Inputs Outputs 

Tube 

Configuration 

Different 

Fluids 
Surface Temperature 

Exergetic Plant 

Efficiency 

Energetic Cycle 

Efficiency 
Electrical Power 

Actual proposed Actual proposed Actual proposed 

30 Propane 1000 125 40 39 10.2 10.8 2.88 3 

30 R227 1000 125 38 38.2 9.6 10 2.55 2.58 

45 R134 2000 125 40 3..99 10.2 9.8 2.8 2.89 

45 R218 2000 125 32 33.2 7.8 1.2 2.3 2.45 

60 R134 3000 125 36 36.9 10 9.2 2.6 2.64 

60 R227 3000 125 36 35.6 9.6 9.4 2.55 2.89 

90 R318 3000 125 34 33.5 9.4 9.1 2.45 2.8 

90 R227 4000 125 36 36.2 9.4 9.85 2.5 2.45 

90 R1234 4000 125 38 38.7 9.8 9.87 2.55 2.89 

 

Figure 8(a) compares the actual and predicted values for 

exegetic plant efficiency and find the optimal algorithm. In 

data 1 actual value for exergetic efficiency as 38 but the 

efficiency value for GWO, GA and KHO get nearby actual 

values. For all the data (2 to 8) the efficiency increased by 

range i.e. 34 to 40.8. By the comparison of all the algorithms, 

KHO reaches nearly equal to the actual value.  
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Figure 8(b) and c shows the analysis of Energetic cycle 

efficiency, Electrical power and compares the actual and 

predicted values. In both analyses, it is severely noted that the 

predicted value for KHO obtains same as the actual value in 

data 2 to 8. The data increases efficiency and the power also 

changed according to the actual value. The values of all 

optimization techniques are predicted based on the efficiencies.  

 

 
(a) Exegetic plant efficiency 

 
(b) Energetic cycle efficiency 

 
(c) Electrical power 

 

Figure 8. Actual vs predicted values 

 

Figure 9 depicts the Graphical User Interface (GUI) process. 

It shows the output values for 30 tube configuration, 4 

different fluids, the surface as 1000, temperature as 125 K. The 

output values for these inputs can be shown as below: For 

energetic plant efficiency, GA achieves 8.8641, GWO as 

7.995, IGWO as 10.3497, LM attains 3.7181, and KHO 

achieves 8 and PSO as 9.2616.  In this efficiency, the value for 

KHO reaches best optimal result than other algorithms. 

Similarly, the KHO obtained for energetic cycle efficiency and 

electrical power as 34, 1.5002. Likewise, the other 

configuration also attains the best optimal result in KHO 

techniques.  

 

 
 

Figure 9. GUI 

 

 

5. CONCLUSION 

 

This study presents the successful application of a new 

algorithm for the optimal design of shell and tube heat 

exchangers. This algorithm is used in most thermal 

engineering problems that consist of several discrete and 

continuous variables and a large amount of discontinuity in the 

objective function. Depending on the applications, different 

design variables are optimized for minimum to MSE with 

better output parameters. Throughout this process, consider 

the dissimilar input restraints and the realistic output results 

are experiential to be almost equivalent to the data set smallest 

error value accomplished in the NN optimal structure along 

the different optimizations compared o existing mathematical 

modeling process. Exegetic Plant Efficiency, Energetic Cycle 

Efficiency and Electrical Power is 99.11%, 97.4% and 98.35% 

of the forecast process correspondingly in optimal NN in KHO 

process. In the future, heat transfer investigators will look 

towards additional incredible development methodologies for 

the achievement of reduced slip-up with their admirable 

methods for the presentation limits of the heat transfer process. 
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