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ABSTRACT 

In the present study, the numerical simulation of lateral migration of a three-dimensional 

deformable bubble in a compound laminar Couette and Poiseuille flow is studied at finite 

Reynolds numbers. The Navier-Stokes equations are solved for incompressible fluids using 

a finite-difference method on a regular, fixed, and staggered grid. Interface is tracked 

explicitly by connecting marker points through a front-tracking method on a triangular 

moving grid. The effects of surface tension are also accounted for by adding an appropriate 

source term to the governing equations. The results show that a bubble, regardless of its 

original position, will be fixed in an equilibrium position between the wall and the centerline 

of channel. It is observed that by increase of the bubble radius, the bubble migrates to an 

equilibrium position closer to the centerline. Negative pressure gradient causes that the 

deformation of bubble increases, so it reaches a steady-state position closer to the center 

line. 
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1. INTRODUCTION

The suspension of particles, such as drop, bubble and rigid 

particle through channels and pipes is subject of many 

theoretical, numerical and experimental investigations. 

Bubble industrial applications include power generation units, 

such as oil pipelines, steam generators, and cooling systems. 

The idea of using gas liquid to lubricate the motion of floating 

objects backs to 1880, but the first recorded applied research 

in this field was conducted by Mccormick and Bhattacharyya 

in 1973[1]. In this study, they electrolyzed water, followed by 

releasing of hydrogen bubbles around floating hydrofoil in 

water. The results showed that with increasing flow rate and 

increasing the amount of released hydrogens, the model 

velocity compared to normal mode. This happened due to 

changes in viscosity of the fluid near the wall and distortion 

the viscous layer by bubbles. One example of its application 

in underwater industries is reduced surface tensions, followed 

by higher velocity, lower power and energy. One of the 

proposed methods is using second phase, in a way the 

considered underwater structure that can be submarine or 

torpedoes moves on a cushion of air by creating bubbles in the 

boundary layer. Second phase can be created through various 

methods. The second phase can be water vapor, different gases 

or fluid different from the first fluid. Bubbles are created 

through gases soluble in water, as result of chemical reactions 

or as result of cavitation in heavy and strong flows. The other 

applications of bubble in chemical engineering are gas-liquid 

column reactors and gas-liquid-solid reactors, which are 

widely used in industrial operations [2]. 

The migration of dilute suspensions of neutrally buoyant 

solid particles in pipe flow was first shown by Segre and 

Silberberg [3, 4] at finite Reynolds numbers. They found that 

the particles move to an equilibrium lateral position about 

halfway between the centerline and the wall. An experimental 

study of the migration of suspensions of particles in Poiseuille 

flow in a wide range of Reynolds numbers was performed by 

Matas et al. [5] They extended the results of Segre and 

Silberberg and showed that the tubular pinch effect in which 

particles accumulate is moved toward the wall as the Reynolds 

number increases.  

Several numerical methods have been used in the past to 

study the behavior of multiphase systems in the presence of 

solid boundaries. These numerical methods included volume-

of-fluid, Lattice-Boltzmann, finite difference, finite element, 

boundary-integral and Level-set methods. For example, 

Griggs, Zinchenko & Davis [6] used a boundary-integral 

algorithm to investigate the creeping motion of a three-

dimensional deformable drop or bubble in the vicinity of an 

inclined wall. They showed that the steady velocities of drops 

(made dimensionless by the settling velocity of an isolated 

spherical drop) increase with increasing Bond number for 

intermediate-to-large inclination angles (i.e. 
 7545  ). 

However, the steady drop velocity is not always an increasing 

function of Bond number for viscous drops at smaller 

inclination angles. Results of dynamic simulations of the 

pressure-driven flow of a two-dimensional suspension in a 

channel confined between two parallel walls were simulated 

by Li and Pozrikidis[7]. They studied the effect of the capillary 

number, viscosity ratio and the effective viscosity of 

suspension. A three-dimensional study of the motion of a drop 

in plane Poiseuille flow at finite Reynolds numbers was 

conducted by Nourbakhsh and Mortazavi [8]. They showed 

that the drop moves to an equilibrium lateral position about 

halfway between the wall and the centerline (the Segre-

Silberberg effect). As the Reynolds number increases or 

capillary number or viscosity ratio decreases, the equilibrium 

position moves closer to the wall. The deformation of neutrally 

buoyant drops and bubbles moving through straight tubes and 

constrictions in plane Poiseuille flow has been simulated by 
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Tsai and Miksis [9]. They indicated that for small values of 

capillary number a steady-state solution can be found, but the 

drop deformation increases with increasing capillary number 

due to the increase in viscous stresses along the interface. The 

flow of drops suspended on an inclined surface, were studied 

by Mortazavi and Tafreshi [10]. The effect of the Reynolds 

number, the capillary number and density ratio on the 

distribution of drops and the fluctuation energy across the 

channel were investigated. They found that drops tend to stay 

away from the channel floor, which is consistent with the 

behavior observed in the granular flow regime. They also 

indicated that drops that are less deformable will stay further 

away from the channel floor. Also, drops appear at a larger 

distance from the floor as the Reynolds number increases. 

Bayareh and Mortazavi [11] performed a three-dimensional 

study of suspension of drops in simple shear flow at finite 

Reynolds numbers. Results were obtained using a finite 

difference/front tracking method in a periodic domain. They 

studied the effects of the Reynolds number and the capillary 

number at two volume fractions: 0.195 and 0.34 and observed 

that suspensions of deformable drops exhibit a shear-thinning 

behavior. They also found that the effective viscosity, the first 

and the second normal stress differences oscillate around a 

mean value in all cases. The first normal stress difference 

increases with the capillary number, the Reynolds number and 

the volume fraction. Results also showed that drops deform 

more and orient more in the flow direction as the capillary 

number or the volume fraction is increased. The collision of 

two equal-size drops in an immiscible phase undergoing a 

shear flow was simulated by Bayareh and Mortazavi [12] over 

a range of viscosity ratios and different geometries. The 

distance between drop centres along the velocity gradient 

direction (z) was measured as a function of time. They found 

that z  increases after collision and reaches a new steady-

state value after separation. The values of z , during the 

interaction, increases with increasing initial offset. Their 

results show that the time of approaching of drops at low initial 

offset is greater than the other cases, but the maximum 

deformation is the same for equal drop sizes. They showed that 

deformation decreases with decreasing the size of drops. 

Numerical simulation of sedimenting deformable drops inside 

a vertical channel has been performed by Amiri and Mortazavi 

[13]. They illustrated that the wall repulsion is the main 

mechanism of the lateral migration of the drop, and drop 

migrates toward the channel axis. When the Reynolds number 

is relatively low, two different lateral migration regimes were 

observed: migration with monotonic approach and migration 

with damped oscillations. They indicated that when the Bond 

number increases, the oscillations of drop around the 

centerline of channel are stronger and drop reaches the channel 

centerline in a larger period.   

While the numerous studies mentioned above constitute 

considerable progress towards understanding the motion of 

drops and bubbles in channels in a Couette or a Poiseuille 

flow, some important unresolved issues and computational 

challenges still remain. In particular, there is a need for a three-

dimensional systematic assessment of a bubble in both flow 

(Couette and Poiseuille flow) at finite Reynolds numbers. 

Thus, the main objective of the current effort is to employ the 

finite difference/front tracking method to a three-dimensional 

neutrally buoyant bubble between two parallel plates in the 

compound Couette and Poiseuille flow. 

 

 

2. GOVERNING EQUATIONS AND NUMERICAL 

METHOD 

 

The equations govern the motion of unsteady, viscous, 

incompressible, and immiscible two-fluid systems are the 

Navier-Stokes equations  [8]: 
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where, u is the velocity, P is the pressure, and   and   are 

the discontinuous density and viscosity fields, respectively. 
  is the surface tension coefficient and f is a body force . 

Surface forces are added at the interface. The term   is a 

two- or three-dimensional  function constructed by 

repeated multiplication of one-dimensional  functions. The 

dimension is denoted by 2=  or 3,  is the curvature for 

two-dimensional flow and twice the mean curvature for three-

dimensional flows, n is a unit vector normal to the front, x is 

the point at which the equation is evaluated, x  is a 

Lagrangian representation of the interface. 

This equation is solved by a second-order projection method 

using centred differences on a fixed regular staggered grid. 

Both the bubble and the ambient fluid are taken to be 

incompressible, so the velocity field is divergence free [15]: 

 

0. =u       (2) 

 

Equation (3), when combined with the momentum equation, 

leads to a non-separable elliptic equation for the pressure. If 

the density is constant, the elliptic pressure equation is solved 

by fast Poisson solver (FISHPACK), but when the density of 

the bubble is different from the suspending fluid, the equation 

is solved by a multigrid method [18]. 

   Equations of state for the density and the viscosity are: 

 

0=
Dt

D , 0=
Dt

D       (3) 

 

where, DtD /  is the material derivative, and equation (3) 

simply states that the density and the viscosity of each fluid 

remain constant. 

The governing dimensionless numbers are the ratio of the 

viscosity of the bubble fluid to the suspending medium
 

oi  /= , the density ratio
 oi  /= , and the ratio of the 

radius of the bubble to the height of the channel
 

Ha /= . 

The viscosity and density of the bubble liquid are denoted by 

i  and i , respectively, and the suspending fluid has 

viscosity o  and density o . The bulk Reynolds number is 

defined in terms of the undisturbed channel centerline velocity
 

)( cU  and the channel height, as 
ocob HU  /Re = . A 

Reynolds number based on the centerline velocity and the 

bubble diameter (d) is defined by
 ocod dU  /Re = . A 

particle Reynolds number can be defined as
 

HaU cp  /Re 2= . The capillary number,  /ocUCa =  

describes the ratio of the viscous stress to the interfacial 

tension. Dimensionless time is defined by HtUt c /* = .  
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2.1. Numerical method 

 

One of the most important problems of computational fluid 

mechanics is flows with interfaces. Different numerical 

methods are used and developed for simulating these flows. 

These methods can be divided into two groups, depending on 

the type of grids used: moving grid and fixed grid. Two main 

approaches of fixed-grid methods are the volume-of-fluid 

(VOF) and level-set methods. The volume-of-fluid method 

uses a marker function. The main difficulty in using VOF 

method is surface tension term. The level-set method defines 

the interface by a function  . But this approach has some 

difficulties in preserving the mass conservation. Another 

method presented in this paper is front-tracking method which 

improved the disadvantages of the previous methods. This 

approach has been described in detail by Unverdi & 

Tryggvason [15,16] and only a brief outline is given here. The 

present simulations are based on an improved implementation 

of the front-tracking method at finite Reynolds numbers that 

include convective terms. The numerical technique is based on 

a direct discretization of the Navier-Stokes equation.  

 

2.2. Problem setup 

 

The geometry of the problem is shown in Fig. 1. The motion 

of a bubble is studied in a channel that is bounded by two flat 

plates in z-direction. The height and length of the channel are 

H. The boundary condition on the plates is the no-slip 

condition. The domain is periodic in the x- and y-directions. 

Normal stresses show jump across the interface by surface 

tension and tangential stresses are continuous on the surface of 

the drop. To decrease the computational time, the depth of the 

channel in the y-direction is taken to be o.5 H. In addition, the 

previous simulations demonstrated the variation in y-direction 

is negligible [8]. In the absence of the bubble, the undisturbed 

flow is driven by a constant pressure gradient [8-14]): 

 

ppp o
+=      (4) 

 

where op  is the externally specified pressure gradient and 

p  is the perturbation pressure gradient to be computed as 

part of the solution. Gravity is neglected and buoyancy effects 

are negligible.  

 

 
 

Figure 1. The geometry for the simulation of a bubble in a 

channel 

2.3. Resolution test 

In this section, the grid study is conducted to evaluate the 

independence of results from the grid resolution. Fig. 2 shows 

lateral position of a bubble versus dimensionless time at four 

different grid resolutions of 32 × 16 × 32, 48 × 24 × 48, 64 × 

32 × 64 and 96 × 48 × 96. Flow conditions are as follows: 

10Re d = , 9.0Ca = , 8.0==  and 125.0= . The 

computational domain is assumed to be 1 × 0.5 × 1. 

 
 

Figure 2. The lateral position versus the axial  location of a 

bubble at four different grid resolutions. 

 
Since the difference between the results predicted using 64 

× 32 × 64 and 96 × 48 × 96 grid points is smaller than the 

difference between the results predicted using  32 × 16 × 32 

and 64 × 32 × 64 grids, the 64 × 32 × 64 resolution is used for 

all simulations performed in this study to achieve a reasenable 

time. The streamlines for a cross-section at y = 0.25 at steady 

state are shown for a bubble at 3.0Ca = with 64 × 32 × 64 

grid points in Fig. 3. Flow parameters are 10Re d = , α = λ = 

0.8 and ξ = 0.125. The figure shows fluid circulation inside the 

bubble.  The circulation is a difference between the rigid and 

deformable particles. The time step is 10−5 for all simulations. 

In addition, the convergence criterion for the iterative solver is 

a maximum change of 10−6 in the normalized drop trajectory. 

 

 
 

Figure 3. Streamlines in the middle section in the y-direction 

for a bubble with capillary number 3.0Ca = . 
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3. RESULTS AND DISCUSSION 

The flow through the gap between the bubble and the wall 

leads to a repulsive lubrication force called ‘geometric 

blocking’ that pushes the drop away from the wall [19]. The 

negative slip velocity and the curvature of the velocity profile 

in Poiseuille flow, generate a force that drives the drop away 

from the center of the channel. So, these two forces move the 

drop to an equilibrium position about halfway between the 

centerline and the wall (the Segre-Silberberg effect). 

A three-dimensional study of the motion of a bubble in the 

compound couette-poiseuille flow that is presented in this 

section are compared with Poiseuille flow presented in 

numerical reports so that their appellation and differentiate 

with numerical simulations performed in this study to be 

determined. For this purpose, results are compared with 

numerical simulations obtained by Feng et al. [19-20]. 

Figure 4 shows the lateral positions versus the dimensionless 

time for a bubble that is released at different initial positions. 

As could be seen in Fig. 4, the equilibrium distance from upper 

wall is zeq/H= 0.224 and it is zeq/H= 0.288 from lower wall. 

The important result that can be derived by conducting these 

simulations is that Segre-Silberberg effect can be seen also in 

combined Couette and Poiseuille flow. However, in the 

considered flow, equilibrium position is slightly different from 

the simulations conducted by Feng et al. [19-20] in Poiseuille 

flow. The cause of this difference can be found in velocity 

profile curvature. Since the velocity profile in a combined flow 

of Couette and Poiseuille tends towards mid-upper channel, 

the effect of velocity profile curvature is stronger than 

Poiseuille flow and the equilibrium position will be at a closer 

distance to the upper wall. Similarly, in mid-lower part of 

channel, as the effect of velocity profile is lower than 

Poiseuille flow, equilibrium position will be close to the center 

line.  

 
 

Figure 4. Comparison of the simulated Segre-Silberberg 

effect with the simulation of Feng et al. [19-20] 

 

3.1 Effect of the bubble size 

 

In Fig. 5, the lateral position of the bubble is plotted versus 

the axial position for three bubbles with different sizes. Flow 

parameters include: Red = 10, Ca = 0.2 and ξ = 0.18, ξ = 0.2, 

ξ = 0.22. Mortazavi and Trigvason [14] demonstrated that for 

large droplets, periodic length can have a significant impact, 

but this effect is insignificant for the small droplets. As a 

result, in order to reduce the impacts of periodic boundary 

conditions, the length of computational domain has been 

doubled. The size of the computational domain is 2 × 1 × 2 and 

the grid resolution is 96 × 48 × 96 in the x-, y- and z-directions, 

respectively. 

 
 

Figure 5. The lateral position versus the axial position at 

three different bubble sizes 

 

It is observed that with increasing the radius of the bubble, 

after a transition period, which is associated with a fluctuation, 

the centroid of the bubble moves away from the upper wall. 

This is due to the fact that a larger lubrication force results for 

the larger bubble. This force moves the bubble further away 

from the wall. Similar phenomenon was observed by 

Mortazavi and Tryggvason [14] and Nourbakhsh and 

Mortazavi [8]. The bubbles initially migrate towards the upper 

wall, and then move to an equilibrium lateral position. The 

reason behind this cause is explained. The flow through the 

gap between the bubble and the wall leads to a repulsive 

lubrication force called ‘geometric blocking’ by Feng et al. 

[19], that pushes the bubble away from the wall. The negative 

slip velocity and the curvature of the velocity profile in 

Poiseuille flow, generate a force that drives the bubble away 

from the center of the channel. So, these two forces move the 

bubble to an equilibrium position about halfway between the 

centerline and the wall (the Segre-Silberberg effect).  

In Fig. 6, the migration rate or lateral velocity of bubble is 

shown against dimensionless time. It is observed that in the 

transient period, the bubble firstly will move toward the upper 

wall with a positive rate and then will move quickly toward 

the bottom wall with a negative rate, and, after being fixed in 

a state of equilibrium, its migration rate will also be zero which 

agrees with our ideas of this phenomenon. 

To describe the shape of the bubble, the deformation 

parameter )/()( bLbLD +−= is considered, where L and 

b are, respectively, the maximum and minimum bubble 

dimensions (Taylor [21]). The deformation of the bubble is 

plotted versus dimensionless time in Fig. 7. The deformation 

increases with increasing the radius of the bubble. As the area 

of the bubble increases, the effect of the upper plate becomes 

increasingly more important because more fluid is pushed 

through a smaller gap, requiring a greater local pressure 

gradient and increasing deformation. Schelizer & Bonnecaze 

[22], Doddi & Bagchi [23] and Martinez & Udell [24] showed 
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that as the size of the droplet increases, the deformation of the 

drop increases as well. 

 
 

Figure 6. Lateral velocity versus dimensionless time at three 

different bubble sizes 

 
 

Figure 7. Bubble deformation versus dimensionles stime at 

three different bubble sizes 

3.2 Effect of pressure gradient 

In the Couette flow, the driver factor of the flow is velocity 

of the upper wall; also in the Poiseuille flow, the driver factor 

of the flow is the pressure gradient, but in the compound flow 

both factors can be influential. Since in the Poiseuille flow, 

velocity profile is symmetric to the center line of the channel, 

applying the symmetry of pressure gradient only in the axial 

direction of immigration can be effective, but in the compound 

flow, because of the mobility of the upper wall, the velocity 

profile has not been symmetric. In this section, the impact of 

positive or negative pressure gradient on the bubble migration 

is considered. 

For this purpose, two simulations with dimensionless 

pressure gradient   P = 7.8728  and P = −7.8728  have been 

done. Here, the pressure gradient is defined as P = (−
dp

dx
)

h2

2μU
. 

The flow conditions are Red = 10, α = λ = 0.8. In Fig. 8, the 

lateral position based on dimensionless time has been 

observed. As it stands, the bubble with the negative pressure 

gradient is in a state of equilibrium closer to the center line. 

The reason is that in the flow with reverse pressure gradient, 

the shear rate is more and the bubble deforms more; thus the 

lubrication force between the bubble and the wall, which is 

known as ‘geometric blocking’ by Feng et al. [19, 20], will get 

more and pushes the bubble to a state of equilibrium farther to 

the wall. 

 
 

Figure 8. Effect of the pressure gradient on the lateral 

migration of a bubble 

 

In Fig. 9, the quantity of Taylor deformation based on 

dimensionless time is shown; as it is seen, rate of deformation 

in adverse pressure gradient is greater than the positive 

pressure gradient which is consistent with our imaginations 

about this phenomenon. 

 
 

Figure 9. Effect of the pressure gradient on Taylor 

deformation 

 

The lateral velocity of the bubble is plotted versus time in 

Fig. 10. As it is seen, during the transition period, the lateral 

velocity has a negative value. Lateral velocity initially starts 

from zero and after passing the transition period, when the 

bubble reaches an equilibrium lateral position about halfway 

between the centerline and the wall, becomes zero. Also the 

adverse pressure gradient has a greater lateral velocity than the 

positive pressure gradient.  
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Figure 10. Effect of the pressure gradient on the lateral 

velocity 

 

In Fig. 11, the slip velocity has been plotted based on 

dimensionless time. 

As is clear in Figure 12 (a) about the flow with positive 

pressure gradient, when the bubble is in a stable equilibrium 

position, velocity profile in the presence of bubble is little 

further than the unperturbed velocity profile; also similar 

result can be achieved for the flow with negative pressure 

gradient (Figure 12 (b)). 

 

 
 

Figure 11. Effect of the pressure gradient on the slip velocity 

 

 
(a) 

 
(b) 

 

Figure 12. The velocity profile for the unperturbed flow and 

flow with bubble a) positive pressure gradient and b) 

negative pressure gradient 

 

The streamlines at steady state are shown for bubbles with 

positive and adverse pressure gradient in Figs. 13 and 14. As 

it is clear, the flow patterns are similar; the only difference is 

in the angle of the main axis of bubble with the wall of the 

channel. 

 
 

Figure 13. Streamlines for the flow with positive pressure 

gradient 

 

 
 

Figure 14. Streamlines for the flow with negative pressure 

gradient 
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3.3. The impact of bubble presence on the shear tension of 

the wall 

 

In this section, the effect of bubble presence on the shear 

tension of the channel wall is considered. Shear tension on the 

upper wall is shown by (τwt) and shear tension on the bottom 

wall is shown by (τwb). No-bubble state of the flow will be 

calculated with the help of analytical solving. Also in order for 

making the tensions dimensionless, the quantity of τ0 = dp

dx
∙

x𝑙  has been used. The flow conditions are α = λ = 0.9, Red = 

10 and ξ = 0.125. At first, we will consider the effect of initial 

position of bubble on the shear tension. If the bubble is 

released from an initial position located in the bottom half of 

the channel, in this case greater shear tension will be entered 

compared to the no-bubble state. As is clear in Fig. 15, bubbles 

which have been released from the initial position of z0/H = 

0.2 and z0/H = 0.4, bear more amount of shear tension on the 

surface of the bottom wall. 

While in the case of the bubbles which have been released 

from the initial position of z0/H = 0.6 and z0/H= 0.8 (Fig. 16), 

lower shear tension will be entered to the bottom wall 

compared to the no-bubble state. 

 
 

Figure 15. Initial position effect of a bubble on shear tension 

on the bottom wall. The bubble has been released from the 

initial position of 2040 00 .H/zand.H/z ==   

 

 
 

Figure 16. Initial position effect of a bubble on shear tension 

on the bottom wall. The bubble has been released from the 

initial position of  

 

Now, the conditions of shear tension on the upper wall will 

be considered. Here, the reverse of the previous conditions is 

observed. Meaning that bubbles which have been released 

from the initial position of z0/H = 0.2 and z0/H = 0.4, bear a 

lower absolute value of shear tension on the upper wall 

compared to the no-bubble state (Fig. 17). 

Fig. 18 indicates the bubbles that have been released from 

the initial position of 8.0H/zand6.0H/z 00 == . As is 

clear, in this case, shear tension on the upper wall is greater 

compared to no-bubble state. 

Then the effect of bubble’s radius or the geometric ratio on 

the shear tension on the wall will be discussed. The bubble is 

initially released at 7.0H/z0 =  with  relatively large 

geometric ratios, respectively, ξ = 0.18, ξ = 0.2, ξ = 0.22. 

Other governing parameters include: α=λ= 0.8, Red= 10 and 

2.0Ca = . The influence of increase of bubble’s radius on 

shear tension on the bottom sheet can be seen in Fig. 19. Shear 

tension on the bottom sheet decreases with increasing the size 

of the bubble. 

The effect of capillary number on shear tension is shown in 

Fig. 20. It is clear that the amount of shear tension on the 

bottom wall decreases with increasing capillary number or 

decreasing surface tension of bubble. 

 
 

Figure 17. Impact of bubble’s initial position on shear 

tension on the upper wall. Bubble has been released from the 

initial position of z0/H = 0.2 and z0/H = 0.4 

 

 
 

Figure 18. Impact of bubble’s initial position on shear 

tension on the upper wall. Bubble has been released from the 

initial position of z0/H = 0.6 and z0/H = 0.8 
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Figure 19. Effect of the bubble size on shear tension on the 

bottom wall 

 

 
 

Figure 20. Effect of the capillary number on shear tension on 

the bottom wall 

 

 

4. CONCLUSIONS 

 

In the present study, three dimensional numerical 

simulation of lateral migration of a deformable bubble in a 

compound laminar flow of Couette and Poiseuille in a periodic 

domain has been studied. The Navier-Stokes equations have 

been solved using a finite difference/front tracking method. In 

this method, two sets of grids have been considered. Unsteady 

incompressible Navier-Stokes equations have been solved 

with the finite difference method on a staggered regular grid. 

The interface also has been tracked with one dimension less, 

explicitly through front tracking method. Based on the 

obtained predictions it can be concluded that: 

1. In the compound flow of Couette and Poiseuille also the 

Segre Silberberg effect has been observed, but since in the 

considered flow, the profile of the velocity is not symmetrical 

to the center line of the channel, the equilibrium position will 

be slightly different from the simulations performed for only 

Couette or only Poiseuille flow. As can be seen in the 

migration curves, the equilibrium distance from the top wall 

will be zeq H⁄ = 0.224  and from the bottom wall will be 

zeq H⁄ = 0.288, which is different from the previous studies. 

2. It is observed that with increasing the radius of the 

bubble, after a transition period, which is associated with a 

fluctuation, the centroid of the bubble moves away from the 

upper wall. Because by increase of the bubble’s radius, fluid 

flow is forced to move in a lower distance to the wall and so 

the lubrication force between the bubble and wall will be 

increased. This force moves the bubble further away from the 

wall. 

3. Applying a negative pressure gradient will cause the 

deformation of the bubble to get approximately double and 

thus the bubble will be in equilibrium state closer to the center 

line. Because, as a deformable particle is thin, the difference 

in the velocity of pass flow of the bubble is smaller and thus 

the force that pushes it toward the wall will be smaller. 

4. Flow pattern for both flows with positive and negative 

pressure gradient is almost identical, and the only difference is 

in the angle of the main axis of bubble with the wall of the 

channel. 

5. By increase of bubble’s radius, shear tension on the 

bottom wall will be reduced. By increase of capillary number 

or decrease of surface tension of bubble, the amount of shear 

tension on the bottom wall will be reduced. 
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NOMENCLATURE 

 

Ca Capillary number 

d Drop diameter (m) 

H Channel height (m) 

p Pressure (Pa) 

Re Reynolds number 

t Time (s) 

t* Dimensionless time 

u Velocity field (m/s) 

cU  Channel center velocity (m/s) 

x Eulerian coordinate (m) 

xʹ Lagrangian coordinate (m) 

Greek letters 

α Density ratio 

δ Delta Dirac  

ζ Dimensionless diameter 

κ Curvature  

λ Viscosity ratio  

μ Viscosity (Pa.s) 

ρ Density (kg/m3) 

σ Surface tension (N/m)  
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