
Containerized microservices: Structures and dynamics

Gang Xue*, Jing Liu, Liwen Wu

School of Software, Yunnan University, Kunming, China

Corresponding Author Email: mess@ynu.edu.cn

https://doi.org/10.18280/ama_a.550101

Received: 16 November 2017

Accepted: 16 April 2018

ABSTRACT

Microservice architecture (MSA) is a new kind of service-oriented architecture.

The architecture requires that system components are implemented in the form of

microservices. Microservices are message-driven services with small size, and

they can be independently developed and automatically deployed. Microservices

can be built and released in software containers, since a software container can

provide an isolated and portable environment for executing programs. This paper

observes structures and functions of containerized microservices from a formal

point of view. A framework of categories is adopted for modelling structures and

dynamics of containerized microservices. Some issues, which include

interoperation, registration and accessing of microservices, are discussed in this

paper, and relevant models are formed under the help of the category-based tools.

The established models show that the adopted framework can be applied in

modelling microservice-oriented applications, and it is able to bring functional

and structural features of applications closer together.

Keywords:

microservices modelling, the category

of mode-dependent networks,

containerized microservices,

microservice architecture

1. INTRODUCTION

Microservice architecture (MSA) is an implementation

approach for constructing service-oriented applications. The

architecture requires that system components are

implemented in the form of microserivces [7]. Microservices

are fine grained services which have the following features in

applications [1]: small in size, messaging enabled, bounded

by contexts, autonomously developed, independently

deployable, decentralized, built and released with automated

processes. MSA has been applied in many fields or products,

such as DevOps movement [3], cloud computing [3-4],

internet of things (IoT) [5-6], Netflix OSS

(https://netflix.github.io), SoundCloud (https://

www.soundcloud.com), and others.

A software container can provide an isolated environment

with necessary resources for executing programs [2]. It is a

kind of lightweight virtualized environment which runs on

operating system kernel. Software containers can provide

technical supports for building, testing, deploying and

maintaining microservices. When microservices are

implemented in software containers, they are called

“containerized microservices”.

This paper focuses on the topic of microservices modelling.

A framework of categories is adopted for modelling main

technical aspects of containerized microservices. The

framework has two constituents: the category of mode-

dependent networks (MDN) and its dynamical systems [8].

The category of mode-dependent networks is a wiring

diagram [13] based language. The language can describe a

system structure comprehensively, and by defining a

dynamical system on the structural model, dynamics of the

system can be revealed.

1.1 Related works

MSA and microservices have been discussed by different

researchers or engineers, some results or conclusions can be

found in [1, 10-12]. Some related topics or issues are

suggested as open problems or future challenges, such as

services cooperation, dependability, security, and others [7].

In the field of service-oriented applications, different tools

are used in researching web services or service compositions,

and some of them are Petri-net [18], Ontology [19], UML [20]

and others. In [18], researchers applied Petri-net in static

analysis of BPEL (Business Process Execution Language)

[21] processes. Based on this, a comprehensive mapping

from BPEL constructs to Petri-net structures is defined, and

the mapping is applied in the implementation of a tool which

can translate BPEL processes into Petri nets [18]. In [19],

researchers proposed the Web Service Modeling Ontology,

and it can be used in describing various aspects related to

semantic web services.

Category theory is a powerful tool for investigating

abstract concepts and their relationships. The category of

mode-dependent networks (MDN) is a kind of symmetric

monoidal category [8], and it provides wiring diagrams [13]

for representing system structures. Wiring diagram is a kind

of graphical language which is defined on the concept of

operad [13], and the method has been extended in discussions

about discrete-time processes [14] and open dynamical

systems [15].

1.2 Organization of the text

The rest of this paper is organized as follows. Section 2

introduces containerized microservices, MDN and its

Advances in Modelling and Analysis A
Vol. 55, No. 1, March, 2018, pp. 1-10

Journal homepage: http://iieta.org/Journals/AMA/AMA_A

1

dynamical systems. Section 3 discusses structural models of

some containerized microservices. The discussion is

organized as four parts which are simple services,

interoperating services, service registration, and proxies.

Dynamical systems on the established structural models are

discussed in section 4. Section 5 introduces some software

tools for constructing MSA applications, and section 6

concludes the whole paper.

2 PRELIMINARIES

This section introduces main concepts and foundations of

the work in this paper. In the following content, the category

of sets is denoted as Set; the category of typed finite sets is

denoted as TFS; the category of wiring diagrams is denoted

as WD, and the category of mode-dependent networks is

denotes as MDN. In a category, the collection of objects is

denoted as 𝑂𝑏(⋅); a morphism f from A to B is denoted as

𝑓: 𝐴 → 𝐵, and the morphism can also be written as 𝐴
𝑓
→𝐵.

The composition of two morphisms f and g is written as 𝑔 ∘ 𝑓.

The following operators are also used in this section: ⊗

(which is a tensor product operator), ⨆ (which is a disjoin

union operator), and × (which is a Cartesian product

operator).

2.1 Containerized microservices

A microservice is defined as a cohesive, independent

process interacting via messages [7]. Microservics can be

independently developed, tested, deployed and maintained.

Software container is a kind of operating system level

virtualization implementation. Container-based virtualization

is applicable to providing higher density of virtual

environment and better performance [2]. There are several

implementations of software containers, such as: Linux-

VServer [16], OpenVZ (https://openvz.org), LXC (Linux

Container, https://linuxcontainers.org/lxc/introduction/),

docker [2] (https://www.docker.com), and others.

With the advantages of container-based virtualization,

microservices can be built and released in software

containers. In addition, containerized microservices could be

organized as clusters. Generally, a container cluster contains

multiple configurable nodes, and each node can be treated as

a container ‘pool’. Similar to applying service-oriented

architecture (SOA), when implementing a MSA-based

system, the following aspects should be considered seriously:

function, interface, messaging, deployment, registration,

accessing, management, and so on.

2.2 MDN and dynamical systems

A category contains four constitutions [9, 17]: objects,

morphisms, identity morphisms, and compositions of

morphisms; in addition, the following laws must be obeyed:

identity law and associative law. Informally, objects are

things in a category. A morphism is a structure-preserving

map from object to object, and an identity morphism is a

special morphism from one object to itself. Under certain

conditions, two morphisms can be composed as a new

morphism, and the symbol ∘ is the operator of composition.

A functor is a ‘bigger’ morphism whose domain and

codomain are categories. The definition of a functor has to

take the following components into account [9, 17]: objects

and morphisms in two different categories; the computing

must obey two rules [9, 17]: preservation of identity

morphisms, and preservation of composition of morphisms.

Let symbol Set be the category of sets. Objects in Set are

sets, and morphisms in Set are functions whose domain and

codomain are sets. Based on the work of paper [8], the

category of typed finite sets, which is denoted as TFS, can be

defined. An object of TFS is a finite set with a typing

function 𝜏; formally, the collection of objects in TFS is [8]:

𝑂𝑏(𝑇𝐹𝑆) ≔ {(𝐴, 𝜏)|𝐴 ∈ 𝑂𝑏(𝐹𝑖𝑛𝑆𝑒𝑡), 𝜏: 𝐴 → 𝑆𝑒𝑡}
A morphism in TFS is defined as a typed function

𝑓: (𝐴, 𝜏) → (𝐴′, 𝜏′), which requires that there is a function

𝑓′: 𝐴 → 𝐴′ such that 𝜏 = 𝜏′ ∘ 𝑓′ [8]. For a typed finite set

(𝐴, 𝜏), (𝐴, 𝜏) ≔ ∏ 𝜏(𝑎)𝑎∈𝐴 is a dependent product, and the

simplified form is 𝐴 [8].

On the basis of TFS, the category of wiring diagrams (WD)

can be defined. According to [8][13], an object of WD is

defined as 𝑋 = (𝑋𝑖𝑛, 𝑋𝑜𝑢𝑡), where 𝑋𝑖𝑛, 𝑋𝑜𝑢𝑡 ∈ 𝑂𝑏(𝑇𝐹𝑆) are

typed input and output ports respectively; for two objects

𝑋, 𝑌 ∈ 𝑂𝑏(𝑊𝐷) , a morphism 𝜑:𝑋 → 𝑌 is a pair of typed

functions 𝜑 = (𝜑𝑖𝑛, 𝜑𝑜𝑢𝑡), where 𝜑𝑖𝑛: 𝑋𝑖𝑛 → 𝑋𝑜𝑢𝑡⨆𝑌𝑖𝑛 and

𝜑𝑜𝑢𝑡: 𝑌𝑜𝑢𝑡 → 𝑋𝑜𝑢𝑡 . The composition of two morphisms is

𝜙 ∘ 𝜑 = ((𝜙 ∘ 𝜑)𝑖𝑛, (𝜙 ∘ 𝜑)𝑜𝑢𝑡): 𝑋 → 𝑍 , where 𝜑:𝑋 → 𝑌

and 𝜙:𝑌 → 𝑍 are morphisms in WD. More relevant

discussions about WD can be found in [13].

Definition 1 (the category of mode-dependent networks)

[8]: the category of mode-dependent networks (MDN) has

the following major constitutions: (1) objects, (2) morphisms,

(3) identities, (4) compositions. These constitutions are

defined as follows: the collection of objects in MDN is

represented as 𝑂𝑏(𝑀𝐷𝑁); an object is a pair (𝑀, 𝑋), where

𝑀 ∈ 𝑆𝑒𝑡 is the mode set and 𝑋:𝑀 → 𝑂𝑏(𝑊𝐷) is the

interface function. For two objects (𝑀, 𝑋), (𝑁, 𝑌) ∈
𝑂𝑏(𝑀𝐷𝑁) , the set of morphisms from (𝑀, 𝑋) to (𝑁, 𝑌) is

denoted as 𝐻𝑜𝑚𝑀𝐷𝑁((𝑀, 𝑋), (𝑁, 𝑌)) ; a morphism in

𝐻𝑜𝑚𝑀𝐷𝑁((𝑀, 𝑋), (𝑁, 𝑌)) is a pair (ϵ, σ) , where 𝜖:𝑀 →
𝑀𝑜𝑟(𝑊𝐷) and 𝜎:𝑀 → 𝑁 are functions which make the

following diagram commutes (in the diagram, 𝑀𝑜𝑟(𝑊𝐷) is

the set of morphisms in WD; map dom can get a domain of a

morphism, and cod can get a codomain of a morphism):

If (𝑀, 𝑋) ∈ 𝑂𝑏(𝑀𝐷𝑁) , (𝜖𝑊𝐷, 𝑖𝑑𝑀) is an identity

morphism on (𝑀, 𝑋) , where 𝑖𝑑𝑀:𝑀 → 𝑀 is an identity

morphism on M, and 𝜖𝑊𝐷:𝑀 → 𝑖𝑑𝑠𝑊𝐷 is a function; in

addition, if 𝑚 ∈ 𝑀 , then 𝑋(𝑚) ∈ 𝑂𝑏(𝑊𝐷) , 𝑖𝑑𝑊𝐷: 𝑋(𝑚) →
𝑋(𝑚) and 𝑖𝑑𝑊𝐷 ∈ 𝑖𝑑𝑠𝑊𝐷;

If (𝜖0, 𝜎0) ∈ 𝐻𝑜𝑚𝑀𝐷𝑁((𝑀0, 𝑋0), (𝑀1, 𝑋1)) and (𝜖1, 𝜎1) ∈

𝐻𝑜𝑚𝑀𝐷𝑁 ((𝑀1, 𝑋1), (𝑀2, 𝑋2)) are two morphisms with
(𝑀0, 𝑋0), (𝑀1, 𝑋1), (𝑀2, 𝑋2) ∈ 𝑂𝑏(𝑀𝐷𝑁), the composition of

(𝜖0, 𝜎0) and (𝜖1, 𝜎1) is defined as (𝜖1, 𝜎1) ∘𝑀𝐷𝑁 (𝜖0, 𝜎0), i.e.

(𝜖, 𝜎) ≔ (𝜖1, 𝜎1) ∘𝑀𝐷𝑁 (𝜖0, 𝜎0) , where 𝜎 ≔ 𝜎1 ∘ 𝜎0 and

𝜖:𝑀0 → 𝑀𝑜𝑟(𝑊𝐷); in addition, if 𝑚0 ∈ 𝑀0, then 𝜖(𝑚0) ≔
𝜖1𝜎0(𝑚0) ∘ 𝜖0(𝑚0) . The computing of (𝜖, 𝜎) is shown as

follows:

2

Since MDN is a category, the following category laws

must be obeyed: the identity law and the associative law. In

MDN, the monoidal structure of (M, X) and (M, Y) is defined

as (𝑀 × 𝑁, 𝑋⨆𝑌) , i.e. (𝑀, 𝑋)⊗ (𝑁, 𝑌) ≔ (𝑀 × 𝑁, 𝑋⨆𝑌) ,

where 𝑋⨆𝑌 is explained as:

𝑀 ×𝑁
𝑋×𝑌
→ 𝑂𝑏(𝑊𝐷) × 𝑂𝑏(𝑊𝐷)

⨆
→𝑂𝑏(𝑊𝐷)

□

Definition 2 (dynamical systems on MDN models) [8]: a

dynamical system on a MDN model is defined by a lax

functor 𝑃:𝑀𝐷𝑁 → 𝑆𝑒𝑡 . To be more specific, P must be

applied on objects and morphisms of the MDN model.

For an object (𝑀, 𝑋) ∈ 𝑂𝑏(𝑀𝐷𝑁), a dynamical system is

𝑃(𝑀,𝑋) ∶= (𝑆, 𝑞, 𝑓), where:

• S is the state set and 𝑆 ∈ 𝑆𝑒𝑡;
• 𝑞: 𝑆 → 𝑀 is the underlying mode function;

• if 𝑠 ∈ 𝑆 and 𝑚 = 𝑞(𝑠), then 𝑓 ∶= (𝑓𝑖𝑛, 𝑓𝑜𝑢𝑡), where

𝑓𝑖𝑛(𝑠): 𝑋𝑖𝑛(𝑚) → 𝑆 is the state update function, and

𝑓𝑜𝑢𝑡(s) ∈ 𝑋𝑜𝑢𝑡(𝑚) is the readout function.

For a morphism (𝜖, 𝜎) ∈ 𝐻𝑜𝑚𝑀𝐷𝑁((𝑀, 𝑋), (𝑁, 𝑌)) , a

dynamical system is 𝑃(𝜖, 𝜎): 𝑃(𝑀, 𝑋) → 𝑃(𝑁, 𝑌). If (𝑆, 𝑞, 𝑓)
is a dynamical system of (𝑀, 𝑋) , then 𝑃(𝜖, 𝜎)(𝑆, 𝑞, 𝑓)
∶= (𝑆, 𝑟, 𝑔), where

• S is the state set of 𝑃(𝑀, 𝑋);

• 𝑟 = 𝜎 ∘ 𝑞, i.e., 𝑆
𝑞
→𝑀

𝜎
→𝑁;

• for 𝑠 ∈ 𝑆 and 𝑚 = 𝑞(𝑠), the following functions can

be given:

• 𝜖𝑖𝑛(𝑚): 𝑌𝑖𝑛(𝑚) × 𝑋𝑜𝑢𝑡(𝑚) → 𝑋𝑖𝑛(𝑚)

𝜖𝑜𝑢𝑡(𝑚): 𝑋𝑜𝑢𝑡(𝑚) → 𝑌𝑜𝑢𝑡(𝑚)
• 𝑔 ∶= (𝑔𝑖𝑛, 𝑔𝑜𝑢𝑡), where

𝑔𝑜𝑢𝑡(𝑠) = 𝜖𝑜𝑢𝑡(𝑚)(𝑓𝑜𝑢𝑡(𝑠))

𝑔𝑖𝑛(𝑠)(𝑦) = 𝑓𝑖𝑛(𝑠)(𝜖𝑖𝑛(𝑚)(𝑦, 𝑓𝑜𝑢𝑡(𝑠)))
For the lax monoidal structures, 𝑃(𝑀, 𝑋) × 𝑃(𝑁, 𝑌) →

𝑃(𝑀 × 𝑁, 𝑋⨆𝑌) is formed by using the following Cartesian

products: 𝑆𝑋×𝑌 ≔ 𝑆𝑋 × 𝑆𝑌 , 𝑞𝑋×𝑌 ≔ 𝑞𝑋 × 𝑞𝑌 , and 𝑓𝑋×𝑌 ≔
𝑓𝑋 × 𝑓𝑌.

Set, TFS, WD, MDN and dynamical systems on MDN

models have been introduced by now. These tools could be

used to model different aspects of containerized

microservices. To be more specific,

• TFS is used to represent a system component; an

element in the set represents a communication port

of the component, and the typing function can

specify a value domain of a port;

• WD is used to represent the structure of a system;

since the objects of WD are typed finite sets, the

nesting system structures and mappings of ports are

defined as morphisms; a parallel structure of objects

is represented as a monoidal structure;

• MDN has the mode set and wiring diagrams; a

diagram in the category is indexed by an element of

the mode set;

• A dynamical system on a MDN model can be used

to describe messaging and functions in a system.

3 STRUCTURAL MODELS OF CONTAINERIZED

MICROSERVICES

This section mainly introduces structural models of

containerized microservices. The models are formed around

some issues in applications.

3.1 Simple services

The simplest structure of a containerized mciroservice has

two components: Container and Service, as shown in Figure

1. The figure also shows that the components have different

ports. For the ‘Service’, i' is an input port and o' is an output

port; but for the ‘Container’, i is an input port and o is an

output port. Considering that container is an environment,

inputs and outputs of the “Service” are passed through the

ports of the ‘Container’.

Figure 1. A simple microservice

According to Definition 1, the structure in Figure 1 can be

represented as:

­ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 ∶= (𝑀𝑐 , 𝐼𝑐), and 𝑀𝑐 = {′𝑜𝑛′};
­ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 ∶= (𝑀𝑠, 𝐼𝑠), and 𝑀𝑠 = {′𝑤𝑜𝑟𝑘𝑖𝑛𝑔′};
­ 𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒 ∶= (𝜖, 𝜎): 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 → 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 with

𝜎:𝑀𝑠 → 𝑀𝑐, 𝜖:𝑀𝑠 → {𝜑}, and 𝜑 ≔ (𝜑𝑖𝑛, 𝜑𝑜𝑢𝑡).
The morphism (𝜖, 𝜎) defines that the object service is

embedded in the object container. Function 𝜎:𝑀𝑠 → 𝑀𝑐
could be defined easily, since Mc or Ms is a mode set with

one element. Interfaces of all components are defined as:

­ 𝐼𝑐(′𝑜𝑛′) = (𝐶
𝑖𝑛, 𝐶𝑜𝑢𝑡);

­ 𝐼𝑠(′𝑤𝑜𝑟𝑘𝑖𝑛𝑔′) = (𝑆
𝑖𝑛, 𝑆𝑜𝑢𝑡).

For the object container, 𝐶𝑖𝑛 is the set of input ports, and

𝐶𝑜𝑢𝑡 is the set of output ports. For the object service, 𝑆𝑖𝑛 is

the set of input ports, and 𝑆𝑜𝑢𝑡 is the set of output ports. In

Figure 1, port i is connected to port i', and port o is connected

to port o'. The connections are described as 𝜑𝑖𝑛: 𝑆𝑖𝑛 → 𝐶𝑖𝑛

and 𝜑𝑜𝑢𝑡: 𝐶𝑜𝑢𝑡 → 𝑆𝑜𝑢𝑡.

Figure 2. A microservice with a database component

A microservice may have a local database component, as

shown in Figure 2. The ‘Service’ in Figure 2 has two input

ports i0, i1 and two output ports o0, o1. In addition, i0 is used

to receive external inputs; i1 is used for receiving database

outputs; o0 is a port for sending outputs, and o1 is a port for

sending database commands. The ‘Container’ in Figure 2 has

an input port i and an output port o. For the ‘Database’, it

uses input port i' for receiving commands, and it uses output

port o' for sending outputs. The whole structure is

represented as:

­ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 ∶= (𝑀𝑐 , 𝐼𝑐), and 𝑀𝑐 = {′𝑜𝑛′};

Service

Container

i

i' o'

o

Database

i1

i0 o0

o1

Service

Container

i
i' o'

o

3

­ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 ∶= (𝑀𝑠, 𝐼𝑠), and 𝑀𝑠 = {′𝑤𝑜𝑟𝑘𝑖𝑛𝑔′};
­ 𝑑𝑏 ∶= (𝑀𝑑 , 𝐼𝑑), and 𝑀𝑑 = {′𝑟𝑢𝑛𝑛𝑖𝑛𝑔′};
­ 𝑚𝑠 ∶= (𝜖, 𝜎): 𝑠𝑒𝑟𝑣𝑖𝑐𝑒⨂𝑑𝑏 → 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 with 𝜎:𝑀𝑠 ×

𝑀𝑑 → 𝑀𝑐, 𝜖:𝑀𝑠 ×𝑀𝑑 → {𝜑}, and 𝜑 ≔ (𝜑𝑖𝑛, 𝜑𝑜𝑢𝑡).
The morphism (𝜖, 𝜎) defines that the object service and db

are embedded in the object container. Function 𝜎:𝑀𝑠 ×
𝑀𝑑 → 𝑀𝑐 can be defined easily, since Md, Mc and Ms are one-

element sets. Interfaces of all components are defined as:

­ 𝐼𝑐(′𝑜𝑛′) = (𝐶
𝑖𝑛, 𝐶𝑜𝑢𝑡);

­ 𝐼𝑠(′𝑤𝑜𝑟𝑘𝑖𝑛𝑔′) = (𝑆
𝑖𝑛, 𝑆𝑜𝑢𝑡);

­ 𝐼𝑑(′𝑟𝑢𝑛𝑛𝑖𝑛𝑔′) = (𝐷
𝑖𝑛, 𝐷𝑜𝑢𝑡).

The definition shows that (𝐶𝑖𝑛, 𝐶𝑜𝑢𝑡) , (𝑆𝑖𝑛, 𝑆𝑜𝑢𝑡) ,

(𝐷𝑖𝑛, 𝐷𝑜𝑢𝑡) are the port sets of the object container, service

and db respectively. In Figure 2, port i0, i1, and i' are

connected to port i, o', and o1 respectively; and port o is

connected to port o0. All connections are described as

𝜑𝑖𝑛: 𝑆𝑖𝑛⨆𝐷𝑖𝑛 → 𝐶𝑖𝑛⨆𝐷𝑜𝑢𝑡⨆𝑆𝑜𝑢𝑡 and 𝜑𝑜𝑢𝑡: 𝐶𝑜𝑢𝑡 →
𝑆𝑜𝑢𝑡⨆𝐷𝑜𝑢𝑡.

3.2 Interoperating services

A microservice is able to work with others. Figure 3

displays two containerized microservices, and the ‘DB’ is a

service that can provide data persistence functions. The

whole configuration of Figure 3 contains 5 components: a

‘VM’ (which is a virtual machine) with input port i and

output port o; a ‘Service’ with input ports i0, i1 and output

ports o0, o1; a ‘DB’ (which is a database component) with

input port i' and output port o'; a ‘Container1’ with input ports

p1, p4 and output ports p2, p3; a ‘Container2’ with input port

pin and output port pout.

Figure 3. Two interoperating containerized microservices

According to Definition 1, the structure in Figure 3 can be

defined as:

­ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 ∶= (𝑀𝑠, 𝐼𝑠), and 𝑀𝑠 = {′𝑤𝑜𝑟𝑘𝑖𝑛𝑔′};
­ 𝑑𝑏 ∶= (𝑀𝑑 , 𝐼𝑑), and 𝑀𝑑 = {′𝑟𝑢𝑛𝑛𝑖𝑛𝑔′};
­ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟1 ∶= (𝑀1, 𝐼1), and 𝑀1 = {′𝑜𝑛1′};
­ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟2 ∶= (𝑀2, 𝐼2), and 𝑀2 = {′𝑜𝑛2′};
­ 𝑣𝑚 ∶= (𝑀, 𝐼), and 𝑀 = {′𝑢𝑝′}.

All objects are organized as:

 𝑠𝑒𝑟𝑣𝑖𝑐𝑒⨂𝑑𝑏
(𝜖0,𝜎0)
→ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟1⨂𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟2

(𝜖1,𝜎1)
→ 𝑣𝑚

where (𝜖0, 𝜎0) shows that the object service and db are

embedded in the object container1 and container2, and

(𝜖1, 𝜎1) shows that the object container1 and container2 are

deployed in the object vm. (𝜖0, 𝜎0) and (𝜖1, 𝜎1) can be

composed as a morphism: 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠
∶= (𝜖, 𝜎): 𝑠𝑒𝑟𝑣𝑖𝑐𝑒⨂𝑑𝑏 → 𝑣𝑚

where (𝜖, 𝜎) ≔ (𝜖1, 𝜎1) ∘𝑀𝐷𝑁 (𝜖0, 𝜎0), and:

­ 𝜎0:𝑀𝑠 ×𝑀𝑑 → 𝑀1 ×𝑀2;
­ 𝜎1:𝑀1 ×𝑀2 → 𝑀;

­ 𝜖0:𝑀𝑠 ×𝑀𝑑 → {𝜑}, and 𝜑 ≔ (𝜑𝑖𝑛, 𝜑𝑜𝑢𝑡);
­ 𝜖1:𝑀1 ×𝑀2 → {𝜓}, and 𝜓 ≔ (𝜓𝑖𝑛, 𝜓𝑜𝑢𝑡).

Function 𝜎0 and 𝜎1 can be defined easily. Interfaces of

components are defined as the following

functions: 𝐼𝑠(′𝑤𝑜𝑟𝑘𝑖𝑛𝑔′) = (𝑆
𝑖𝑛, 𝑆𝑜𝑢𝑡) , 𝐼𝑑(′𝑟𝑢𝑛𝑛𝑖𝑛𝑔′) =

(𝐷𝑖𝑛, 𝐷𝑜𝑢𝑡) , 𝐼(′𝑢𝑝′) = (𝑉𝑖𝑛, 𝑉𝑜𝑢𝑡) , 𝐼1(′𝑜𝑛1′) = (𝐶1
𝑖𝑛, 𝐶1

𝑜𝑢𝑡) ,

and 𝐼2(′𝑜𝑛2′) = (𝐶2
𝑖𝑛, 𝐶2

𝑜𝑢𝑡) . The ports of ‘Service’, ‘DB’,

‘Container1’ and ‘Container2’ are interconnected, and the

connections are summarized as 𝜑𝑖𝑛: 𝑆𝑖𝑛⨆𝐷𝑖𝑛 → 𝐶1
𝑖𝑛⨆𝐶2

𝑖𝑛

and 𝜑𝑜𝑢𝑡: 𝐶1
𝑜𝑢𝑡⨆𝐶2

𝑜𝑢𝑡 → 𝑆𝑜𝑢𝑡⨆𝐷𝑜𝑢𝑡 . Similarly, ports of

‘Container1’, ‘Container2’ and ‘VM’ are interconnected, so

the following functions can be given: 𝜓𝑖𝑛: 𝐶1
𝑖𝑛⨆𝐶2

𝑖𝑛 →
𝑉𝑖𝑛⨆𝐶1

𝑜𝑢𝑡⨆𝐶2
𝑜𝑢𝑡, and 𝜓𝑜𝑢𝑡: 𝑉𝑜𝑢𝑡 → 𝐶1

𝑜𝑢𝑡⨆𝐶2
𝑜𝑢𝑡.

3.3 Service registration

Figure 4. An example of service registration

Service registration is a process of recording states

information about working services. The information is

stored in a registry, and the data will be used during service

discovery or service accessing. The registering work can be

performed by a component, and basic tasks include: (a)

collecting states of working services; (b) sending states to a

registry. Figure 4 shows a simple scenario of service

registration. The configuration contains: a ‘VM’ (which is a

virtual machine) with output port o; two services with output

ports p1, p2; a ‘Registrator’ (which is a registering component)

with input port i' and output port o'; a ‘Registry’ with input

port i1 and output port o1. In addition, “Service1”, “Service2”,

“Registry”, “Registrator” are containerized microservices.

The structure in Figure 4 is represented as:

­ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒1 ∶= (𝑀1, 𝐼1), and 𝑀1 = {′𝑤𝑜𝑟𝑘𝑖𝑛𝑔1′};
­ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒2 ∶= (𝑀2, 𝐼2), and 𝑀2 = {′𝑤𝑜𝑟𝑘𝑖𝑛𝑔2′};
­ 𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦 ∶= (𝑀𝑟 , 𝐼𝑟), and 𝑀𝑟 = {′𝑟𝑢𝑛𝑛𝑖𝑛𝑔′};
­ 𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑜𝑟 ≔ (𝑀𝑠, 𝐼𝑠), and 𝑀𝑠 = {1, 2};
­ 𝑣𝑚 ∶= (𝑀, 𝐼), and 𝑀 = {′𝑢𝑝′};
­ 𝑠𝑦𝑠
∶= (𝜖, 𝜎): 𝑠𝑒𝑟𝑣𝑖𝑐𝑒1⨂𝑠𝑒𝑟𝑣𝑖𝑐𝑒2⨂𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦⨂𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑜𝑟 →

𝑣𝑚 with 𝜑1 ≔ (𝜑1
𝑖𝑛, 𝜑1

𝑜𝑢𝑡) , 𝜑2 ≔ (𝜑2
𝑖𝑛, 𝜑2

𝑜𝑢𝑡) , 𝜑1, 𝜑2 ∈

𝑀𝑜𝑟(𝑊𝐷) , 𝜖: 𝑀1 ×𝑀2 ×𝑀𝑟 ×𝑀𝑠 → 𝑀𝑜𝑟(𝑊𝐷) ,

and 𝜎:𝑀1 ×𝑀2 ×𝑀𝑟 ×𝑀𝑠 → 𝑀.

The morphism (𝜖, 𝜎) shows that the objects (which are

registrator, registry, service1 and service2) are embedded in

the object vm. Function 𝜎:𝑀1 ×𝑀2 ×𝑀𝑟 ×𝑀𝑠 → 𝑀 could

be defined easily. Considering that 𝜖:𝑀1 ×𝑀2 ×𝑀𝑟 ×𝑀𝑠 →
𝑀𝑜𝑟(𝑊𝐷) , and 𝑀𝑠 has two elements, the function 𝜖 can

generate two wiring diagrams which are denoted as 𝜑1 and

𝜑2 . The two diagrams are shown in Figure 4, the main

difference is port i' can be connected to port p1 or p2. When

port i' is connected to port p1, the situation is represented as a

wiring diagram 𝜑1 ; and for the situation that port i' is

connected to port p2, a wiring diagram 𝜑2 can be defined.

Interfaces of components are defined as:

­ 𝐼(′𝑢𝑝′) = (𝑉𝑖𝑛, 𝑉𝑜𝑢𝑡);
­ 𝐼𝑟(′𝑟𝑢𝑛𝑛𝑖𝑛𝑔′) = (𝑅

𝑖𝑛, 𝑅𝑜𝑢𝑡);
­ 𝐼𝑠 = (𝑆

𝑖𝑛, 𝑆𝑜𝑢𝑡);

­ 𝐼1(′𝑤𝑜𝑟𝑘𝑖𝑛𝑔1′) = (𝑆1
𝑖𝑛, 𝑆1

𝑜𝑢𝑡);

­ 𝐼2(′𝑤𝑜𝑟𝑘𝑖𝑛𝑔2′) = (𝑆2
𝑖𝑛, 𝑆2

𝑜𝑢𝑡).

(𝑆1
𝑖𝑛, 𝑆1

𝑜𝑢𝑡), (𝑆2
𝑖𝑛, 𝑆2

𝑜𝑢𝑡), (𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡), (𝑆𝑖𝑛, 𝑆𝑜𝑢𝑡), (𝑉𝑖𝑛, 𝑉𝑜𝑢𝑡)

are input and output ports of service1, service2, registry,

Service1

Service2

VM

Registrator

Registry

p1

p2
i'

o'
i1

o
o1

Container1

Service

Container2

DB

VM

o'

i'

o

i i0

i1

o1

o0

pin

pout

p1

p2

p3

p4

4

registrator and vm respectively. Since vm, service1 and

service2 only have output ports, so 𝑆1
𝑖𝑛 = 𝑆2

𝑖𝑛 = 𝑉𝑖𝑛 = ∅. The

connections of ports are summarized as: 𝜑1
𝑜𝑢𝑡, 𝜑2

𝑜𝑢𝑡 ∶ 𝑉𝑜𝑢𝑡 →
𝑆1
𝑜𝑢𝑡⨆𝑆2

𝑜𝑢𝑡⨆𝑆𝑜𝑢𝑡⨆𝑅𝑜𝑢𝑡 and 𝜑1
𝑖𝑛, 𝜑2

𝑖𝑛: 𝑆𝑖𝑛⨆𝑅𝑖𝑛 →
𝑆1
𝑜𝑢𝑡⨆𝑆2

𝑜𝑢𝑡⨆𝑆𝑜𝑢𝑡⨆𝑅𝑜𝑢𝑡. When port i' is connected to port p1,

𝜑1
𝑖𝑛 is defined. Similarly, when port i' is connected to port p2,

𝜑2
𝑖𝑛 can be given.

3.4 Proxies

Figure 5. An example of using proxy

In applications, a proxy can be set up for isolating services

from clients, and it can provide a unified accessing gateway

for clients. Basic tasks of this component include: redirecting

requests to different working services and delivering

responses to different clients. Figure 5 shows a simple

demonstration of using a proxy. The figure contains: a

working environment named ‘Env’ with input ports i1, i2 and

output port o1; two virtual machines (‘VM1’ and ‘VM2’) with

input ports p, p1, p2 and output ports p3, p4; three

containerized services (which are ‘Proxy’, ‘Service1’ and

‘Service2’) with input ports a, b, e, i, i' and output ports o, d,

c, f.

The demonstration is specified as follows: (1) ‘Service1’ is

deployed in ‘VM1’, and it can be triggered by an input of port

i'; (2) ‘Service1’ and ‘Proxy’ are running in ‘VM2’; (3) inputs

of port i1 will be redirected to port i' through ports p1, a, f, p4

and p; (4) inputs of port i2 will be redirected to port i through

ports p2, b and d; (5) outputs of port o will be send to port o1

through ports e, c and p3. According to Definition 1, the

structure in Figure 5 is represented as:

­ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒1 ∶= (𝑀1, 𝐼1), and 𝑀1 = {′𝑤𝑜𝑟𝑘𝑖𝑛𝑔1′};
­ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒2 ∶= (𝑀2, 𝐼2), and 𝑀2 = {′𝑤𝑜𝑟𝑘𝑖𝑛𝑔2′};

­ 𝑝𝑟𝑜𝑥𝑦 ∶= (𝑀𝑝, 𝐼𝑝), and 𝑀𝑝 = {′𝑟𝑢𝑛𝑛𝑖𝑛𝑔′};

­ 𝑣𝑚1 ∶= (𝑀′, 𝐼′), and 𝑀′ = {′𝑢𝑝1′};
­ 𝑣𝑚2 ∶= (𝑀′′, 𝐼′′), and 𝑀′′ = {′𝑢𝑝2′};
­ 𝑒𝑛𝑣 ∶= (𝑀, 𝐼), and 𝑀 = {′𝑜𝑛′}.

All objects are organized as:

𝑠𝑒𝑟𝑣𝑖𝑐𝑒1⨂𝑠𝑒𝑟𝑣𝑖𝑐𝑒2⨂𝑝𝑟𝑜𝑥𝑦
(𝜖0,𝜎0)
→ 𝑣𝑚1⨂𝑣𝑚2

(𝜖1,𝜎1)
→ 𝑒𝑛𝑣

where morphism (𝜖0, 𝜎0) shows that service1, service2 and

proxy are embedded in the object vm1 and vm2; morphism

(𝜖1, 𝜎1) shows that vm1 and vm2 are embedded in the object

env. The following morphism can be defined:

𝑠𝑦𝑠𝑡𝑒𝑚 ∶= (𝜖, 𝜎): 𝑠𝑒𝑟𝑣𝑖𝑐𝑒1⨂𝑠𝑒𝑟𝑣𝑖𝑐𝑒2⨂𝑝𝑟𝑜𝑥𝑦 → 𝑒𝑛𝑣

where (𝜖, 𝜎) ≔ (𝜖1, 𝜎1) ∘𝑀𝐷𝑁 (𝜖0, 𝜎0), and:

­ 𝜎0:𝑀1 ×𝑀2 ×𝑀𝑝 → 𝑀′ ×𝑀′′;

­ 𝜎1:𝑀′ × 𝑀′′ → 𝑀;

­ 𝜖0:𝑀1 ×𝑀2 ×𝑀𝑝 → {𝜑}, and 𝜑 ≔ (𝜑𝑖𝑛, 𝜑𝑜𝑢𝑡);

­ 𝜖1:𝑀′ × 𝑀′′ → {𝜓}, and 𝜓 ≔ (𝜓𝑖𝑛, 𝜓𝑜𝑢𝑡).
Function 𝜎0 and 𝜎1 could be defined easily. Interfaces of

components are summarized as:

­ 𝐼1(′𝑤𝑜𝑟𝑘𝑖𝑛𝑔1′) = (𝑆1
𝑖𝑛, 𝑆1

𝑜𝑢𝑡);

­ 𝐼2(′𝑤𝑜𝑟𝑘𝑖𝑛𝑔2′) = (𝑆2
𝑖𝑛, 𝑆2

𝑜𝑢𝑡);

­ 𝐼(′𝑜𝑛′) = (𝐸𝑖𝑛, 𝐸𝑜𝑢𝑡);

­ 𝐼′(′𝑢𝑝1′) = (𝑉1
𝑖𝑛, 𝑉1

𝑜𝑢𝑡);

­ 𝐼′′(′𝑢𝑝2′) = (𝑉2
𝑖𝑛, 𝑉2

𝑜𝑢𝑡);

­ 𝐼𝑝(′𝑟𝑢𝑛𝑛𝑖𝑛𝑔′) = (𝑃
𝑖𝑛, 𝑃𝑜𝑢𝑡).

The ports of components are interconnected, so the

following functions can be given:

­ 𝜑𝑖𝑛: 𝑆1
𝑖𝑛⨆𝑆2

𝑖𝑛⨆𝑃𝑖𝑛 → 𝑉1
𝑖𝑛⨆𝑃𝑜𝑢𝑡⨆𝑉2

𝑖𝑛⨆𝑆2
𝑜𝑢𝑡 , and

𝜑𝑜𝑢𝑡: 𝑉2
𝑜𝑢𝑡 → 𝑆2

𝑜𝑢𝑡⨆𝑃𝑜𝑢𝑡;
­ 𝜓𝑖𝑛: 𝑉1

𝑖𝑛⨆𝑉2
𝑖𝑛 → 𝐸𝑖𝑛⨆𝑉2

𝑜𝑢𝑡, and 𝜓𝑜𝑢𝑡: 𝐸𝑜𝑢𝑡 → 𝑉2
𝑜𝑢𝑡.

4. DYNAMICS OF MICROSERVICES

This section discusses dynamics of models which are

established in section 3. In this section, an isomorphism is

denoted as ≅.

Table 1. A working process of containerized microservice in Figure 2

CURRENT STATES OUTPUTS INPUTS NEXT STATES

service db o0 o1 o' i0 i1 i' service db

waiting ready null null null get null null conn ready

conn ready null open null null null open conn opened

conn opened null open connected null connected open querying opened

querying opened null query connected null connected query querying answering

querying answering null query data null data query disconn answering

disconn answering data close data null data close disconn ready

disconn ready data close null null null close waiting ready

4.1 Behaviors of simple microservice

For the microservice in Figure 2, it is supposed that a

procedure of data querying includes the following operations:

(i) opening a database; (ii) selecting data; (iii) closing the

database. Table 1 lists a working process of the containerized

microservice, and the work have the following tasks: (1)

‘Service’ receives a request; (2) the ‘Service’ initiates a

connection to ‘Database’; (3) the ‘Database’ returns the

connection state; (4) the ‘Service’ sends a query command to

the ‘Database’; (5) the ‘Database’ returns data; (6) the

‘Service’ closes the database connection, and responds to the

request.

According to Table 1, interfaces of components in Figure 2

are specified as:

­ 𝐷𝑖𝑛 ≔ {({𝑖′}, 𝜏𝐷
𝑖𝑛)| 𝜏𝐷

𝑖𝑛(𝑖′) =

{′𝑛𝑢𝑙𝑙′, ′𝑜𝑝𝑒𝑛′, ′𝑞𝑢𝑒𝑟𝑦′, ′𝑐𝑙𝑜𝑠𝑒′}};
­ 𝐷𝑜𝑢𝑡 ≔ {({𝑜′}, 𝜏𝐷

𝑜𝑢𝑡)| 𝜏𝐷
𝑜𝑢𝑡(𝑜′) =

{′𝑛𝑢𝑙𝑙′, ′𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑′, ′𝑑𝑎𝑡𝑎′}};

­ 𝑆𝑖𝑛 ≔ {({𝑖0, 𝑖1}, 𝜏𝑆
𝑖𝑛)}, and

Service2

VM2

Proxy

VM1
Service1

Env

i1

i2

o1

p1

p2

p3

p4
p

i

o

i'

a

b

c

d

e f

5

 𝜏𝑆
𝑖𝑛(𝑖) ∶= {

{′𝑔𝑒𝑡′, ′𝑛𝑢𝑙𝑙′}, 𝑖𝑓 𝑖 = 𝑖0
{′𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑′, ′𝑑𝑎𝑡𝑎′, ′𝑛𝑢𝑙𝑙′}, 𝑖𝑓 𝑖 = 𝑖1

­ 𝑆𝑜𝑢𝑡 ≔ {({𝑜0, 𝑜1}, 𝜏𝑆
𝑜𝑢𝑡)}, and

 𝜏𝑆
𝑜𝑢𝑡(𝑜) ∶= {

{′𝑑𝑎𝑡𝑎′, ′𝑛𝑢𝑙𝑙′}, 𝑖𝑓 𝑜 = 𝑜0
{′𝑛𝑢𝑙𝑙′, ′𝑜𝑝𝑒𝑛′, ′𝑞𝑢𝑒𝑟𝑦′, ′𝑐𝑙𝑜𝑠𝑒′}, 𝑖𝑓 𝑜 = 𝑜1

For the object db (which is the model of the component

‘Database’), a dynamical system can be defined as 𝑃(𝑀𝑑 , 𝐼𝑑)
∶= (𝑆𝑑 , 𝑞𝑑, 𝑓𝑑) , where the state set is 𝑆𝑑 =
{′𝑟𝑒𝑎𝑑𝑦′, ′𝑜𝑝𝑒𝑛𝑒𝑑′, ′𝑎𝑛𝑠𝑤𝑒𝑟𝑖𝑛𝑔′} ; 𝑞𝑑: 𝑆𝑑 → 𝑀𝑑 is the

underlying mode function, and 𝑓𝑑 ∶= (𝑓𝑑
𝑖𝑛, 𝑓𝑑

𝑜𝑢𝑡) . The

component has three states: ‘ready’, ‘opened’ and

‘answering’. The ‘ready’ state indicates that the component

is ready for work; the database is ‘opened’ after it is

connected by others; and the ‘answering’ state shows that the

database is making a response to its client. For a state 𝑠 ∈ 𝑆𝑑

and an input 𝑐 ∈ 𝐷𝑖𝑛 , the state update function is

𝑓𝑑
𝑖𝑛(𝑠): 𝐷𝑖𝑛 → 𝑆𝑑, and 𝐷𝑖𝑛 = 𝜏𝐷

𝑖𝑛(𝑖′); specifically,

𝑓𝑑
𝑖𝑛(𝑠)(𝑐) ∶= {

‘𝑜𝑝𝑒𝑛𝑒𝑑’, 𝑖𝑓 𝑠 = ‘𝑟𝑒𝑎𝑑𝑦’, 𝑐 = ‘𝑜𝑝𝑒𝑛’
‘𝑎𝑛𝑠𝑤𝑒𝑟𝑖𝑛𝑔’, 𝑖𝑓 𝑠 = ‘𝑜𝑝𝑒𝑛𝑒𝑑’, 𝑐 = ‘𝑞𝑢𝑒𝑟𝑦’
‘𝑟𝑒𝑎𝑑𝑦’, 𝑖𝑓 𝑠 = ‘𝑎𝑛𝑠𝑤𝑒𝑟𝑖𝑛𝑔’, 𝑐 = ‘𝑐𝑙𝑜𝑠𝑒’

𝑠, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The readout function is 𝑓𝑑
𝑜𝑢𝑡: 𝑆𝑑 → 𝐷

𝑜𝑢𝑡 , where 𝐷𝑜𝑢𝑡 =
𝜏𝐷
𝑜𝑢𝑡(𝑜′) ; specifically, 𝑓𝑑

𝑜𝑢𝑡(𝑠)

∶= {
‘𝑑𝑎𝑡𝑎’, 𝑖𝑓 𝑠 = ‘𝑎𝑛𝑠𝑤𝑒𝑟𝑖𝑛𝑔’
‘𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑’, 𝑖𝑓 𝑠 = ‘𝑜𝑝𝑒𝑛𝑒𝑑’

‘𝑛𝑢𝑙𝑙’, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The dynamics of the object service (which is the model of

the component ‘Service’) is given by 𝑃(𝑀𝑠, 𝐼𝑠) ≔ (𝑆𝑠, 𝑞𝑠, 𝑓𝑠),
where 𝑞𝑠: 𝑆𝑠 → 𝑀𝑠 is the underlying mode function; 𝑆𝑠 =
{′𝑤𝑎𝑖𝑡𝑖𝑛𝑔′, ′𝑐𝑜𝑛𝑛′, ′𝑞𝑢𝑒𝑟𝑦𝑖𝑛𝑔′, ′𝑑𝑖𝑠𝑐𝑜𝑛𝑛′} is the state set,

and 𝑓𝑠 ∶= (𝑓𝑠
𝑖𝑛, 𝑓𝑠

𝑜𝑢𝑡) . The ‘Service’ has four states. The

‘waiting’ state shows that the component is ready for work;

the ‘conn’ state indicates that the component is opening a

database; the ‘querying’ state shows that the component is

working with a database component; the ‘disconn’ state

indicates the component is sending a response. For a state 𝑠 ∈

𝑆𝑠 and an input 𝑐 ∈ 𝑆𝑖𝑛 , the state update function is

𝑓𝑠
𝑖𝑛(𝑠): 𝑆𝑖𝑛 → 𝑆𝑠, where 𝑆𝑖𝑛 = 𝜏𝑆

𝑖𝑛(𝑖0) × 𝜏𝑆
𝑖𝑛(𝑖1); specifically,

𝑓𝑠
𝑖𝑛(𝑠)(𝑐)

∶=

{

 ‘𝑐𝑜𝑛𝑛’,

𝑖𝑓 𝑠 = ‘𝑤𝑎𝑖𝑡𝑖𝑛𝑔’, 𝑐 = (‘𝑔𝑒𝑡’, ‘𝑛𝑢𝑙𝑙’)

‘𝑞𝑢𝑒𝑟𝑦𝑖𝑛𝑔’,

𝑖𝑓 𝑠 = ‘𝑐𝑜𝑛𝑛’, 𝑐 = (‘𝑛𝑢𝑙𝑙’, ‘𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑’)
‘𝑑𝑖𝑠𝑐𝑜𝑛𝑛’, 𝑖𝑓 𝑠 = ‘𝑞𝑢𝑒𝑟𝑦𝑖𝑛𝑔’, 𝑐 = (‘𝑛𝑢𝑙𝑙’, ‘𝑑𝑎𝑡𝑎’)

‘𝑤𝑎𝑖𝑡𝑖𝑛𝑔’, 𝑖𝑓 𝑠 = ‘𝑑𝑖𝑠𝑐𝑜𝑛𝑛’, 𝑐 = (‘𝑛𝑢𝑙𝑙’, ‘𝑛𝑢𝑙𝑙’)
𝑠, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The readout function is 𝑓𝑠
𝑜𝑢𝑡: 𝑆𝑠 → 𝑆

𝑜𝑢𝑡 , where 𝑆𝑜𝑢𝑡 =
𝜏𝑆
𝑜𝑢𝑡(𝑜0) × 𝜏𝑆

𝑜𝑢𝑡(𝑜1); specifically,

𝑓𝑠
𝑜𝑢𝑡(𝑠) ∶= {

(‘𝑛𝑢𝑙𝑙’, ’𝑛𝑢𝑙𝑙’), 𝑖𝑓 𝑠 = ‘𝑤𝑎𝑖𝑡𝑖𝑛𝑔’
(‘𝑛𝑢𝑙𝑙’, ’𝑜𝑝𝑒𝑛’), 𝑖𝑓 𝑠 = ‘𝑐𝑜𝑛𝑛’

(‘𝑛𝑢𝑙𝑙’, ’𝑞𝑢𝑒𝑟𝑦’), 𝑖𝑓 𝑠 = ‘𝑞𝑢𝑒𝑟𝑦𝑖𝑛𝑔’
(‘𝑑𝑎𝑡𝑎’, ’𝑐𝑙𝑜𝑠𝑒’), 𝑖𝑓 𝑠 = ‘𝑑𝑖𝑠𝑐𝑜𝑛𝑛’

For the object container (which is the model of the

component ‘Container’), it has interfaces 𝐶𝑖𝑛 ≔ {({𝑖}, 𝜏𝐶
𝑖𝑛)}

and 𝐶𝑜𝑢𝑡 ≔ {({𝑜}, 𝜏𝐶
𝑜𝑢𝑡)} . A dynamical system on the

morphism (𝜖, 𝜎): 𝑠𝑒𝑟𝑣𝑖𝑐𝑒⨂𝑑𝑏 → 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 can be

summarized as 𝑃(𝜖, 𝜎)(𝑆, 𝑞, 𝑓) ∶= (𝑆, 𝑟, 𝑔) , where the state

set is 𝑆 = 𝑆𝑠 × 𝑆𝑑 ; 𝑞 = 𝑞𝑠 × 𝑞𝑑 is the underlying mode

function, and 𝜎:𝑀𝑠 ×𝑀𝑑 → 𝑀𝑐. The state update function is

𝑓𝑖𝑛 ∶= 𝑓𝑠
𝑖𝑛 × 𝑓𝑑

𝑖𝑛, and the readout function is 𝑓𝑜𝑢𝑡 ≔ 𝑓𝑠
𝑜𝑢𝑡 ×

𝑓𝑑
𝑜𝑢𝑡 . The function r is defined by 𝜎 ∘ 𝑞 , i.e., 𝑆𝑠 × 𝑆𝑑

𝑞𝑠×𝑞𝑑
→ 𝑀𝑠 ×𝑀𝑑

𝜎
→𝑀𝑐. Function 𝜖 can be detailed as follows:

­ 𝑚 = (‘𝑤𝑜𝑟𝑘𝑖𝑛𝑔’, ‘𝑟𝑢𝑛𝑛𝑖𝑛𝑔’);

­ 𝜖𝑜𝑢𝑡(𝑚): 𝜏𝑆
𝑜𝑢𝑡(𝑜0) × 𝜏𝑆

𝑜𝑢𝑡(𝑜1) × 𝜏𝐷
𝑜𝑢𝑡(𝑜′) → 𝜏𝐶

𝑜𝑢𝑡(𝑜);

­ 𝜖𝑖𝑛(𝑚): 𝜏𝐶
𝑖𝑛(𝑖) × 𝜏𝑆

𝑜𝑢𝑡(𝑜0) × 𝜏𝑆
𝑜𝑢𝑡(𝑜1) × 𝜏𝐷

𝑜𝑢𝑡(𝑜′) →
𝜏𝑆
𝑖𝑛(𝑖0) × 𝜏𝐷

𝑖𝑛(𝑖′) × 𝜏𝑆
𝑖𝑛(𝑖1).

Function 𝜖𝑜𝑢𝑡(𝑚) shows that port o is depended on port o0,

o1, or o'. Since port o is connected to port o0, so outputs of

port o are same as outputs of port o0, so 𝜏𝐶
𝑜𝑢𝑡(𝑜) ≅ 𝜏𝑆

𝑜𝑢𝑡(𝑜0)

can be get. Function 𝜖𝑖𝑛(𝑚) can be explained as follows:

inputs of i are same as inputs of port i0; outputs of o1 are

same as inputs of port i', and outputs of o' are same as inputs

of port i1. Therefore, 𝜏𝐶
𝑖𝑛(𝑖) ≅ 𝜏𝑆

𝑖𝑛(𝑖0) , 𝜏𝑆
𝑜𝑢𝑡(𝑜1) ≅ 𝜏𝐷

𝑖𝑛(𝑖′)
and 𝜏𝐷

𝑜𝑢𝑡(𝑜′) ≅ 𝜏𝑆
𝑖𝑛(𝑖1) can be given.

Until now, 𝑃(𝜖, 𝜎)(𝑆, 𝑞, 𝑓) ∶= (𝑆, 𝑟, 𝑔) can be defined

according to Definition 2, and it is a dynamical system on the

model of the microservice in Figure 2.

4.2 Interoperation of microservices

For Figure 3, the ‘DB’ can provide data persistence

functions for others. It is supposed that the procedure of

accessing ‘DB’ includes the following steps: (i) opening a

database; (ii) selecting data; (iii) closing the database. Table

2 lists a working process which contains the following tasks:

(1) ‘Service’ is triggered; (2) the ‘Service’ initiates a

connection to ‘DB’; (3) the ‘DB’ returns the connection state

to the ‘Service’; (4) the ‘DB’ receives a query command; (5)

the ‘DB’ returns data; (6) the ‘Service’ closes the database

connection, and responds to a request. According to the

process, interfaces of ‘Service’ and ‘DB’ are detailed as

follows.

­ 𝑆𝑖𝑛 ≔ {({𝑖0, 𝑖1}, 𝜏𝑆
𝑖𝑛)}, and

 𝜏𝑆
𝑖𝑛(𝑖) ∶= {

{′𝑔𝑒𝑡′, ′𝑛𝑢𝑙𝑙′}, 𝑖𝑓 𝑖 = 𝑖0
{′𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑′, ′𝑑𝑎𝑡𝑎′, ′𝑛𝑢𝑙𝑙′}, 𝑖𝑓 𝑖 = 𝑖1

­ 𝑆𝑜𝑢𝑡 ≔ {({𝑜0, 𝑜1}, 𝜏𝑆
𝑜𝑢𝑡)}, and

 𝜏𝑆
𝑜𝑢𝑡(𝑜) ∶= {

{′𝑑𝑎𝑡𝑎′, ′𝑛𝑢𝑙𝑙′}, 𝑖𝑓 𝑜 = 𝑜0
{′𝑛𝑢𝑙𝑙′, ′𝑜𝑝𝑒𝑛′, ′𝑞𝑢𝑒𝑟𝑦′, ′𝑐𝑙𝑜𝑠𝑒′}, 𝑖𝑓 𝑜 = 𝑜1

­ 𝐷𝑖𝑛 ≔ {({𝑖′}, 𝜏𝐷
𝑖𝑛)| 𝜏𝐷

𝑖𝑛(𝑖′) =

{′𝑛𝑢𝑙𝑙′, ′𝑜𝑝𝑒𝑛′, ′𝑞𝑢𝑒𝑟𝑦′, ′𝑐𝑙𝑜𝑠𝑒′}};
­ 𝐷𝑜𝑢𝑡 ≔ {({𝑜′}, 𝜏𝐷

𝑜𝑢𝑡)| 𝜏𝐷
𝑜𝑢𝑡(𝑜′) =

{′𝑛𝑢𝑙𝑙′, ′𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑′, ′𝑑𝑎𝑡𝑎′}}.
Let dynamical systems 𝑃(𝑀𝑠, 𝐼𝑠) and 𝑃(𝑀𝑑 , 𝐼𝑑) have the

same definitions which are summarized in section 4.1. For

the containers, interfaces of ‘Container1’ and ‘Container2’ are

specified as:

­ 𝐶1
𝑖𝑛 ≔ {({𝑝1, 𝑝4}, 𝜏1

𝑖𝑛)} , and 𝐶1
𝑜𝑢𝑡 ≔

{({𝑝2, 𝑝3}, 𝜏1
𝑜𝑢𝑡)};

­ 𝐶2
𝑖𝑛 ≔ {({𝑝𝑖𝑛}, 𝜏2

𝑖𝑛)} , and 𝐶2
𝑜𝑢𝑡 ≔

{({𝑝𝑜𝑢𝑡}, 𝜏2
𝑜𝑢𝑡)}.

Denote 𝑃(𝜖0, 𝜎0)(𝑆, 𝑞, 𝑓) ∶= (𝑆, 𝑟, 𝑔) as a dynamical

system on the morphism (𝜖0, 𝜎0), where 𝑆 = 𝑆𝑠 × 𝑆𝑑 is the

state set; 𝑞 = 𝑞𝑠 × 𝑞𝑑 is the underlying mode function, and

𝜎0:𝑀𝑠 ×𝑀𝑑 → 𝑀1 ×𝑀2. The state update function is 𝑓𝑖𝑛 ≔
𝑓𝑠
𝑖𝑛 × 𝑓𝑑

𝑖𝑛 , and the readout function is 𝑓𝑜𝑢𝑡 ≔ 𝑓𝑠
𝑜𝑢𝑡 × 𝑓𝑑

𝑜𝑢𝑡 .

The function r is defined by 𝜎0 ∘ 𝑞 , i.e., 𝑆𝑠 × 𝑆𝑑
𝑞𝑠×𝑞𝑑
→ 𝑀𝑠 ×𝑀𝑑

𝜎0
→𝑀1 ×𝑀2 . Function 𝜖0 can be detailed as

follows:

­ 𝑚 = (‘𝑤𝑜𝑟𝑘𝑖𝑛𝑔’, ‘𝑟𝑢𝑛𝑛𝑖𝑛𝑔’);

­ 𝜖0
𝑜𝑢𝑡(𝑚): 𝜏𝑆

𝑜𝑢𝑡(𝑜0) × 𝜏𝑆
𝑜𝑢𝑡(𝑜1) × 𝜏𝐷

𝑜𝑢𝑡(𝑜′) →
𝜏1
𝑜𝑢𝑡(𝑝2) × 𝜏1

𝑜𝑢𝑡(𝑝3) × 𝜏2
𝑜𝑢𝑡(𝑝𝑜𝑢𝑡);

6

­ 𝜖0
𝑖𝑛(𝑚): 𝜏1

𝑖𝑛(𝑝1) × 𝜏1
𝑖𝑛(𝑝4) × 𝜏2

𝑖𝑛(𝑝𝑖𝑛) → 𝜏𝑆
𝑖𝑛(𝑖0) × 𝜏𝑆

𝑖𝑛(𝑖1) × 𝜏𝐷
𝑖𝑛(𝑖′).

Table 2. A working process of interoperating services in Figure 3

CURRENT STATES OUTPUTS INPUTS NEXT STATES

service db o0 o1 o' o i0 i1 i' i service db

waiting ready null null null null get null null get conn ready

conn ready null open null null null null open null conn opened

conn opened null open connected null null connected open null querying opened

querying opened null query connected null null connected query null querying answering

querying answering null query data null null data query null disconn answering

disconn answering data close data data null data close null disconn ready

disconn ready data close null data null null close null waiting ready

Function 𝜖0
𝑜𝑢𝑡(𝑚) shows that outputs of ‘Container1’ are

same as outputs of ‘Service’, and outputs of ‘Container2’ are

same as outputs of ‘DB’. So 𝜏1
𝑜𝑢𝑡(𝑝2) ≅ 𝜏𝑆

𝑜𝑢𝑡(𝑜0) ,

𝜏1
𝑜𝑢𝑡(𝑝3) ≅ 𝜏𝑆

𝑜𝑢𝑡(𝑜1) , and 𝜏2
𝑜𝑢𝑡(𝑝𝑜𝑢𝑡) ≅ 𝜏𝐷

𝑜𝑢𝑡(𝑜′) can be

given. Function 𝜖0
𝑖𝑛(𝑚) shows that inputs of ‘Service’ are

same as inputs of ‘Container1’, and inputs of ‘DB’ are same

as inputs of ‘Container2’. So 𝜏1
𝑖𝑛(𝑝1) ≅ 𝜏𝑆

𝑖𝑛(𝑖0) , 𝜏1
𝑖𝑛(𝑝4) ≅

𝜏𝑆
𝑖𝑛(𝑖1) , and 𝜏2

𝑖𝑛(𝑝𝑖𝑛) ≅ 𝜏𝐷
𝑖𝑛(𝑖′) can be get. The dynamical

system 𝑃(𝜖0, 𝜎0)(𝑆, 𝑞, 𝑓) ∶= (𝑆, 𝑟, 𝑔) can be defined

according to Definition 2.

Interfaces of ‘VM’ are 𝑉𝑖𝑛 ≔ {({𝑖}, 𝜏𝑖𝑛)} and 𝑉𝑜𝑢𝑡 ≔
{({𝑜}, 𝜏𝑜𝑢𝑡)}. Dynamical system on the morphism (𝜖1, 𝜎1) is

defined as 𝑃(𝜖1, 𝜎1)(𝑆, 𝑟, 𝑔) ∶= (𝑆, 𝑡, ℎ) , where 𝑆 = 𝑆𝑠 × 𝑆𝑑

is the state set; 𝑟 is the underlying mode function; 𝜎1:𝑀1 ×
𝑀2 → 𝑀 and 𝑔 ≔ (𝑔𝑖𝑛, 𝑔𝑜𝑢𝑡). The function t is defined by

𝜎1 ∘ 𝑟 , i.e., 𝑆𝑠 × 𝑆𝑑
𝑟
→𝑀1 ×𝑀2

𝜎1
→𝑀 . Function 𝜖1 can be

detailed as follows:

­ 𝑚′ = (‘𝑜𝑛1’, ‘𝑜𝑛2’);

­ 𝜖1
𝑜𝑢𝑡(𝑚′): 𝜏1

𝑜𝑢𝑡(𝑝2) × 𝜏1
𝑜𝑢𝑡(𝑝3) × 𝜏2

𝑜𝑢𝑡(𝑝𝑜𝑢𝑡) →
𝜏𝑜𝑢𝑡(𝑜);

­ 𝜖1
𝑖𝑛(𝑚′): 𝜏𝑖𝑛(𝑖) × 𝜏2

𝑜𝑢𝑡(𝑝𝑜𝑢𝑡) × 𝜏1
𝑜𝑢𝑡(𝑝3) ×

𝜏1
𝑜𝑢𝑡(𝑝2) → 𝜏1

𝑖𝑛(𝑝1) × 𝜏1
𝑖𝑛(𝑝4) × 𝜏2

𝑖𝑛(𝑝𝑖𝑛).

Function 𝜖1
𝑜𝑢𝑡(𝑚′) shows that outputs of ‘VM’ are same as

outputs of port p2, so 𝜏𝑜𝑢𝑡(𝑜) ≅ 𝜏1
𝑜𝑢𝑡(𝑝2) ≅ 𝜏𝑆

𝑜𝑢𝑡(𝑜0) .

Function 𝜖1
𝑖𝑛(𝑚′) shows that inputs of port p1 are same as

inputs of port i, so 𝜏𝑖𝑛(𝑖) ≅ 𝜏1
𝑖𝑛(𝑝1); inputs of port p4 are

same as outputs of pout, so 𝜏2
𝑜𝑢𝑡(𝑝𝑜𝑢𝑡) ≅ 𝜏1

𝑖𝑛(𝑝4); and inputs

of port pin are same as outputs of p3, so 𝜏2
𝑖𝑛(𝑝𝑖𝑛) ≅ 𝜏1

𝑜𝑢𝑡(𝑝3).
Until now, 𝑃(𝜖1, 𝜎1)(𝑆, 𝑟, 𝑔) ∶= (𝑆, 𝑡, ℎ) can be defined

according to Definition 2, and dynamics of the morphism
(𝜖, 𝜎): 𝑠𝑒𝑟𝑣𝑖𝑐𝑒⨂𝑑𝑏 → 𝑣𝑚 can be checked.

4.3 Registering microservices

For Figure 4, it is supposed that ‘Service1’ and ‘Service2’

is able to share their working states, so their interfaces are

specified as:

­ 𝑆1
𝑖𝑛 ≔ {(∅, !)|!: ∅ → 𝑠𝑒𝑡, 𝑠𝑒𝑡 ∈ 𝑆𝑒𝑡};

­ 𝑆1
𝑜𝑢𝑡 ≔ {({𝑝1}, 𝜏1

𝑜𝑢𝑡)|𝜏1
𝑜𝑢𝑡(𝑝1) = {′𝑜𝑘′, ′𝑓𝑎𝑖𝑙𝑒𝑑′}};

­ 𝑆2
𝑖𝑛 ≔ {(∅, !)|!: ∅ → 𝑠𝑒𝑡, 𝑠𝑒𝑡 ∈ 𝑆𝑒𝑡};

­ 𝑆2
𝑜𝑢𝑡 ≔ {({𝑝2}, 𝜏2

𝑜𝑢𝑡)|𝜏2
𝑜𝑢𝑡(𝑝2) = {′𝑜𝑘′, ′𝑓𝑎𝑖𝑙𝑒𝑑′}}.

‘Service1’ and ‘Service2’ have no input ports, and !: ∅ →
𝑠𝑒𝑡 is a special function that it sends an empty set ∅ to a

given set. A dynamical system 𝑃(𝑀1, 𝐼1) ∶= (𝑆1, 𝑞1, 𝑓1) can

be defined on the object service1, where 𝑞1: 𝑆1 → 𝑀1 is the

underlying mode function; 𝑆1 = {′𝑒𝑟𝑟𝑜𝑟′, ′𝑛𝑜_𝑒𝑟𝑟𝑜𝑟′} is the

set of states, and 𝑓1 ∶= (𝑓1
𝑖𝑛, 𝑓1

𝑜𝑢𝑡) . It is obvious that the

service has two different states: ‘error’ and ‘no_error’.

Function 𝑞1: 𝑆1 → 𝑀1 can be defined easily, since M1 has one

element. The state update function is 𝑓1
𝑖𝑛 ≔ 𝑖𝑑𝑠1: 𝑆1 → 𝑆1 .

The readout function is 𝑓1
𝑜𝑢𝑡: 𝑆1 → 𝑆1

𝑜𝑢𝑡; specifically,

𝑓1
𝑜𝑢𝑡(𝑠) ∶= {

‘𝑜𝑘’, 𝑖𝑓 𝑠 = ‘𝑛𝑜_𝑒𝑟𝑟𝑜𝑟’
‘𝑓𝑎𝑖𝑙𝑒𝑑’, 𝑖𝑓 𝑠 = ‘𝑒𝑟𝑟𝑜𝑟’

Table 3. An example of registering microservices in Figure 4

CURRENT

STATES

OUTPUTS INPUTS NEXT STATES

registr

ator

regist

ry

p

1

p2 o' o1 i1 i' registr

ator

regist

ry

(ok, 1) record

ing

o

k

fail

ed

ok2 do

ne

ok2 ok (ok, 2) record

ing

(ok, 2) record

ing

o

k

fail

ed

ok1 do

ne

ok1 fail

ed

(failed,

1)

record

ing

(failed,

1)

record

ing

o

k

fail

ed

faile

d2

do

ne

faile

d2

ok (ok, 2) record

ing

Dynamical system 𝑃(𝑀2, 𝐼2) ∶= (𝑆2, 𝑞2, 𝑓2) for the object

service2 is defined similarly as 𝑃(𝑀1, 𝐼1). In Figure 4, the

work of service registration is performed by the component

‘Registrator’. A working process is listed in Table 3, and it

contains the following steps: (1) ‘Registrator’ collects state of

‘Service1’, and reports last state of ‘Service2’; (2) the

‘Registrator’ collects state of the ‘Service2’, and reports last

state of the ‘Service1’; (3) the ‘Registrator’ collects state of

the ‘Service1’, and reports last state of the ‘Service2’. The

‘Registrator’ is defined as (𝑀𝑠, 𝐼𝑠) , where 𝑀𝑠 = {1, 2} and

𝐼𝑠:𝑀𝑠 → 𝑂𝑏(𝑊𝐷). For the component, mode 1 and mode 2

have the same interfaces, so 𝐼𝑠(1) = 𝐼𝑠(2) = (𝑆
𝑖𝑛, 𝑆𝑜𝑢𝑡) ,

where

­ 𝑆𝑖𝑛 ≔ {({𝑖′}, 𝜏𝑆
𝑖𝑛)|𝜏𝑆

𝑖𝑛(𝑖′) = {′𝑜𝑘′, ′𝑓𝑎𝑖𝑙𝑒𝑑′}};
­ 𝑆𝑜𝑢𝑡 ≔ {({𝑜′}, 𝜏𝑆

𝑜𝑢𝑡)|𝜏𝑆
𝑜𝑢𝑡(𝑜′) =

{′𝑜𝑘1′, ′𝑓𝑎𝑖𝑙𝑒𝑑1′, ′𝑜𝑘2′, ′𝑓𝑎𝑖𝑙𝑒𝑑2′}}.
Let 𝑃(𝑀𝑠, 𝐼𝑠) ∶= (𝑆𝑠, 𝑞𝑠, 𝑓𝑠) be a dynamical system of the

object registrator, where the state set is 𝑆𝑠 ≔
{′𝑜𝑘′, ′𝑓𝑎𝑖𝑙𝑒𝑑′} × 𝑀𝑠 ; the underlying mode function is

𝑞𝑠: {′𝑜𝑘′, ′𝑓𝑎𝑖𝑙𝑒𝑑′} × 𝑀𝑠 → 𝑀𝑠 , and 𝑓𝑠 ∶= (𝑓𝑠
𝑖𝑛, 𝑓𝑠

𝑜𝑢𝑡) . The

update function is 𝑓𝑠
𝑖𝑛(𝑣, 𝑖)(𝑣′) ∶= (𝑣′, (𝑖 𝑚𝑜𝑑 2) + 1) ,

where 𝑣′, 𝑣 ∈ {‘𝑜𝑘’, ‘𝑓𝑎𝑖𝑙𝑒𝑑’} and 𝑖, ((𝑖 𝑚𝑜𝑑 2) + 1) ∈ 𝑀𝑠 .

The readout function is 𝑓𝑠
𝑜𝑢𝑡: 𝑆𝑠 → 𝑆

𝑜𝑢𝑡 ; specifically,

𝑓𝑠
𝑜𝑢𝑡(𝑣, 𝑖) ≔ {

‘𝑜𝑘1’, 𝑖𝑓 𝑣 = ‘𝑜𝑘’, 𝑖 = 2
‘𝑓𝑎𝑖𝑙𝑒𝑑1’, 𝑖𝑓 𝑣 = ‘𝑓𝑎𝑖𝑙𝑒𝑑’, 𝑖 = 2

‘𝑜𝑘2’, 𝑖𝑓 𝑣 = ‘𝑜𝑘’, 𝑖 = 1
‘𝑓𝑎𝑖𝑙𝑒𝑑2’, 𝑖𝑓 𝑣 = ‘𝑓𝑎𝑖𝑙𝑒𝑑’, 𝑖 = 1

Interfaces of ‘Registry’ are detailed as follows:

7

­ 𝑅𝑖𝑛 ≔ {({𝑖1}, 𝜏𝑅
𝑖𝑛)| 𝜏𝑅

𝑖𝑛(𝑖1) =

{′𝑜𝑘1′, ′𝑓𝑎𝑖𝑙𝑒𝑑1′, ′𝑜𝑘2′, ′𝑓𝑎𝑖𝑙𝑒𝑑2′}};
­ 𝑅𝑜𝑢𝑡 ≔ {({𝑜1}, 𝜏𝑅

𝑜𝑢𝑡)| 𝜏𝑅
𝑜𝑢𝑡(𝑜1) = {′𝑑𝑜𝑛𝑒′}}.

A dynamical system on the object registry is 𝑃(𝑀𝑟 , 𝐼𝑟)
∶= (𝑆𝑟 , 𝑞𝑟 , 𝑓𝑟) , where 𝑆𝑟 = {‘𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔’} is the state set;

𝑞𝑟: 𝑆𝑟 → 𝑀𝑟 is the underlying mode function, and 𝑓𝑟
∶= (𝑓𝑟

𝑖𝑛, 𝑓𝑟
𝑜𝑢𝑡). The state update function is 𝑓𝑟

𝑖𝑛(𝑠): 𝑅𝑖𝑛 → 𝑆𝑟,
where 𝑓𝑟

𝑖𝑛(𝑠)(𝑟): = 𝑠 with 𝑠 ∈ 𝑆𝑟 and 𝑟 ∈ 𝜏𝑅
𝑖𝑛(𝑖1) . The

readout function is 𝑓𝑟
𝑜𝑢𝑡(𝑠):= ‘𝑑𝑜𝑛𝑒’.

The last component is ‘VM’. Let 𝑉𝑖𝑛 ≔
{(∅, !)|!: ∅ → 𝑠𝑒𝑡, 𝑠𝑒𝑡 ∈ 𝑆𝑒𝑡} and 𝑉𝑜𝑢𝑡 ≔ {({𝑜}, 𝜏𝑉

𝑜𝑢𝑡)} be its

interfaces. For
(𝜖, 𝜎): 𝑠𝑒𝑟𝑣𝑖𝑐𝑒1⨂𝑠𝑒𝑟𝑣𝑖𝑐𝑒2⨂𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦 ⨂𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑜𝑟 → 𝑣𝑚,

let 𝑃(𝜖, 𝜎)(𝑆, 𝑞, 𝑓) ∶= (𝑆, 𝑟, 𝑔) be a dynamical system, where

the state set is 𝑆 = 𝑆1 × 𝑆2 × 𝑆𝑟 × 𝑆𝑠 ; the underlying mode

function is 𝑞 = 𝑞1 × 𝑞2 × 𝑞𝑟 × 𝑞𝑠: 𝑆1 × 𝑆2 × 𝑆𝑟 × 𝑆𝑠 →
𝑀1 ×𝑀2 ×𝑀𝑟 ×𝑀𝑠 ; and 𝜎:𝑀1 ×𝑀2 ×𝑀𝑟 ×𝑀𝑠 → 𝑀. The

state update function is 𝑓𝑖𝑛 ≔ 𝑓1
𝑖𝑛 × 𝑓2

𝑖𝑛 × 𝑓𝑟
𝑖𝑛 × 𝑓𝑠

𝑖𝑛, and the

readout function is 𝑓𝑜𝑢𝑡 ≔ 𝑓1
𝑜𝑢𝑡 × 𝑓2

𝑜𝑢𝑡 × 𝑓𝑟
𝑜𝑢𝑡 × 𝑓𝑠

𝑜𝑢𝑡 . The

function r is defined by 𝜎 ∘ 𝑞, i.e., 𝑆
𝑞
→𝑀1 ×𝑀2 ×𝑀𝑟 ×𝑀𝑠

𝜎
→𝑀. 𝜖 can be detailed as follows:

­ 𝑚1 = (‘𝑤𝑜𝑟𝑘𝑖𝑛𝑔1’, ‘𝑤𝑜𝑟𝑘𝑖𝑛𝑔2’, ‘𝑟𝑢𝑛𝑛𝑖𝑛𝑔’, 1);
­ 𝑚2 = (‘𝑤𝑜𝑟𝑘𝑖𝑛𝑔1’, ‘𝑤𝑜𝑟𝑘𝑖𝑛𝑔2’, ‘𝑟𝑢𝑛𝑛𝑖𝑛𝑔’, 2);

­ 𝜖𝑜𝑢𝑡(𝑚1), 𝜖
𝑜𝑢𝑡(𝑚2): 𝜏1

𝑜𝑢𝑡(𝑝1) × 𝜏2
𝑜𝑢𝑡(𝑝2) ×

𝜏𝑆
𝑜𝑢𝑡(𝑜′) × 𝜏𝑅

𝑜𝑢𝑡(𝑜1) → 𝜏𝑉
𝑜𝑢𝑡(𝑜);

­ 𝜖𝑖𝑛(𝑚1), 𝜖
𝑖𝑛(𝑚2): ! × 𝜏1

𝑜𝑢𝑡(𝑝1) × 𝜏2
𝑜𝑢𝑡(𝑝2) ×

𝜏𝑆
𝑜𝑢𝑡(𝑜′) × 𝜏𝑅

𝑜𝑢𝑡(𝑜1) → ! × ! × 𝜏𝑆
𝑖𝑛(𝑖′) × 𝜏𝑅

𝑖𝑛(𝑖1).

Function 𝜖𝑜𝑢𝑡 shows that port o is depended on ports p1, p2,

o1, and o'. In fact, outputs of port o are same as outputs of

port o1, so 𝜏𝑉
𝑜𝑢𝑡(𝑜) ≅ 𝜏𝑅

𝑜𝑢𝑡(𝑜1) can be given. Function 𝜖𝑖𝑛

shows that ports i' and i1 are depended on p1, p2, o1, and o'. In

the case of m1, outputs of port p1 are same as inputs of i',

therefore 𝜏1
𝑜𝑢𝑡(𝑝1) ≅ 𝜏𝑆

𝑖𝑛(𝑖′) and 𝜏𝑅
𝑖𝑛(𝑖1) ≅ 𝜏𝑆

𝑜𝑢𝑡(𝑜′) can be

get. In the case of m2, outputs of port p2 are same as inputs of

i', so 𝜏2
𝑜𝑢𝑡(𝑝2) ≅ 𝜏𝑆

𝑖𝑛(𝑖′) and 𝜏𝑅
𝑖𝑛(𝑖1) ≅ 𝜏𝑆

𝑜𝑢𝑡(𝑜′) can be given.

Until now, 𝑃(𝜖, 𝜎)(𝑆, 𝑞, 𝑓) ∶= (𝑆, 𝑟, 𝑔) can be defined

according to Definition 2, dynamics of the morphism
(𝜖, 𝜎): 𝑠𝑒𝑟𝑣𝑖𝑐𝑒1⨂𝑠𝑒𝑟𝑣𝑖𝑐𝑒2⨂𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦⨂𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑜𝑟 → 𝑣𝑚

can be checked.

4.4 Accessing services

Table 4. A process of accessing services in Figure 5

CURRENT STATES INPUTS AND OUTPUTS NEXT STATES

service1 service2 proxy
output port c d f o

service1 service2 proxy
input port a b e i i'

ready ready free

output null null null null

ready ready set1
input cmd null null null null

ready ready set1

output null null cmd null

executing ready free

input null null null null cmd

executing ready free
output null null null null

ready ready set2
input null req null null null

ready ready set2
output null req null null

ready answering set2
input null null null req null

ready answering set2
output null req null resp

ready answering put2
input null null resp req null

ready answering put2
output resp null null resp

ready ready free
input null null resp null null

In Figure 5, interfaces of ‘Service1’, ‘Service2’ and ‘Proxy’

are specified as:

­ 𝑆1
𝑖𝑛 ≔ {({𝑖′}, 𝜏𝑖𝑛)|𝜏𝑖𝑛(𝑖′) = {′𝑐𝑚𝑑′, ′𝑛𝑢𝑙𝑙′}};

­ 𝑆1
𝑜𝑢𝑡 ≔ {(∅, !)|!: ∅ → 𝑠𝑒𝑡, 𝑠𝑒𝑡 ∈ 𝑆𝑒𝑡};

­ 𝑆2
𝑖𝑛 ≔ {({𝑖}, 𝜏𝑆

𝑖𝑛)|𝜏𝑆
𝑖𝑛(𝑖) = {′𝑟𝑒𝑞′, ′𝑛𝑢𝑙𝑙′}};

­ 𝑆2
𝑜𝑢𝑡 ≔ {({𝑜}, 𝜏𝑆

𝑜𝑢𝑡)|𝜏𝑆
𝑜𝑢𝑡(𝑜) = {′𝑟𝑒𝑠𝑝′, ′𝑛𝑢𝑙𝑙′}};

­ 𝑃𝑖𝑛 ≔ {({𝑎, 𝑏, 𝑒}, 𝜏𝑃
𝑖𝑛)};

­ 𝑃𝑜𝑢𝑡 ≔ {({𝑐, 𝑑, 𝑓}, 𝜏𝑃
𝑜𝑢𝑡)}.

Table 4 lists a working process which contains the

following steps: (1) a request is received from port a; (2)

‘Proxy’ redirects the request to port i'; (3) ‘Service1’ executes,

and a new request is received from port b; (4) the ‘Proxy’

redirects the request to port i; (5) ‘Service2’ executes and

returns a response; (6) the ‘Proxy’ redirects the response to

port o1.

According to Table 4, a dynamical system on the object

service1 is 𝑃(𝑀1, 𝐼1) ∶= (𝑆1, 𝑞1, 𝑓1), where 𝑓1 ∶= (𝑓1
𝑖𝑛, 𝑓1

𝑜𝑢𝑡),

𝑞1: 𝑆1 → 𝑀1 and 𝑆1 = {′𝑟𝑒𝑎𝑑𝑦′, ′𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔′}. The state set

𝑆1 shows that the ‘Service1’ has two states: ‘ready’ and

‘executing’. Function 𝑞1: 𝑆1 → 𝑀1 can be defined easily,

since M1 has only one element. For a state 𝑠 ∈ 𝑆1 and an

8

input 𝑐 ∈ 𝑆1
𝑖𝑛 , the state update function is 𝑓1

𝑖𝑛(𝑠): 𝑆1
𝑖𝑛 → 𝑆1,

where 𝑆1
𝑖𝑛 = 𝜏𝑖𝑛(𝑖′); specifically,

𝑓1
𝑖𝑛(𝑠)(𝑐) ≔ {

‘𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔’, 𝑖𝑓 𝑠 = ‘𝑟𝑒𝑎𝑑𝑦’, 𝑐 = ‘𝑐𝑚𝑑’
‘𝑟𝑒𝑎𝑑𝑦’, 𝑖𝑓 𝑠 = ‘𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔’, 𝑐 = ‘𝑛𝑢𝑙𝑙’

𝑠, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The readout function is 𝑓1
𝑜𝑢𝑡: 𝑆1 → 𝑆1

𝑜𝑢𝑡 , so 𝑆1
𝑜𝑢𝑡 = 𝑠𝑒𝑡

with 𝑠𝑒𝑡 ∈ 𝑆𝑒𝑡.
Let 𝑃(𝑀2, 𝐼2) ∶= (𝑆2, 𝑞2, 𝑓2) be a dynamical system of the

object service2, where 𝑓2 ∶= (𝑓2
𝑖𝑛, 𝑓2

𝑜𝑢𝑡) , 𝑞2: 𝑆2 → 𝑀2 , and

𝑆2 = {‘𝑟𝑒𝑎𝑑𝑦’, ‘𝑎𝑛𝑠𝑤𝑒𝑟𝑖𝑛𝑔’}. Function 𝑞2: 𝑆2 → 𝑀2 can be

defined easily. For a state 𝑠 ∈ 𝑆2 and an input 𝑐 ∈ 𝑆2
𝑖𝑛 , the

state update function is 𝑓2
𝑖𝑛(𝑠): 𝑆2

𝑖𝑛 → 𝑆2, where 𝑆2
𝑖𝑛 = 𝜏𝑆

𝑖𝑛(i);
specifically,

𝑓2
𝑖𝑛(𝑠)(𝑐) ∶= {

‘𝑎𝑛𝑠𝑤𝑒𝑟𝑖𝑛𝑔’, 𝑖𝑓 𝑠 = ‘𝑟𝑒𝑎𝑑𝑦’, 𝑐 = ‘𝑟𝑒𝑞’
‘𝑟𝑒𝑎𝑑𝑦’, 𝑖𝑓 𝑠 = ‘𝑎𝑛𝑠𝑤𝑒𝑟𝑖𝑛𝑔’, 𝑐 = ‘𝑛𝑢𝑙𝑙’

𝑠, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The readout function is 𝑓2
𝑜𝑢𝑡: 𝑆2 → 𝑆2

𝑜𝑢𝑡 , where 𝑆2
𝑜𝑢𝑡 =

𝜏𝑆
𝑜𝑢𝑡(𝑜); in particular,

𝑓2
𝑜𝑢𝑡(𝑠) ≔ {

‘𝑟𝑒𝑠𝑝’, 𝑖𝑓 𝑠 = ‘𝑎𝑛𝑠𝑤𝑒𝑟𝑖𝑛𝑔’
‘𝑛𝑢𝑙𝑙’, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Dynamical system of the ‘Proxy’ is defined as 𝑃(𝑀𝑝, 𝐼𝑝)

∶= (𝑆𝑝, 𝑞𝑝, 𝑓𝑝) , where the state set is 𝑆𝑝 =

{′𝑓𝑟𝑒𝑒′, ′𝑠𝑒𝑡1′, ′𝑠𝑒𝑡2′, ′𝑝𝑢𝑡2′}; the underlying mode function

is 𝑞𝑝: 𝑆𝑝 → 𝑀𝑝, and 𝑓𝑝 ∶= (𝑓𝑝
𝑖𝑛, 𝑓𝑝

𝑜𝑢𝑡). The component ‘Proxy’

has four states. The state ‘free’ indicates that the component

is ready for work. State ‘set1’ shows that the component is

redirecting a request to ‘Service1’, and ‘set2’ shows that the

component is redirecting a request to ‘Service2’. ‘put2’ means

that the ‘Proxy’ is delivering a ‘Service2’ response. For a

state 𝑠 ∈ 𝑆𝑝 , the state update function is 𝑓𝑝
𝑖𝑛(𝑠): 𝑆𝑝

𝑖𝑛 → 𝑆𝑝 ,

where 𝑆𝑝
𝑖𝑛 = 𝜏𝑃

𝑖𝑛(𝑎) × 𝜏𝑃
𝑖𝑛(𝑏) × 𝜏𝑃

𝑖𝑛(𝑒); in particular,

𝑓𝑝
𝑖𝑛(𝑠)(𝑐)

∶=

{

 ‘𝑠𝑒𝑡1’,

𝑖𝑓 𝑠 = ‘𝑓𝑟𝑒𝑒’, 𝑐 = (‘𝑐𝑚𝑑’, ‘𝑛𝑢𝑙𝑙’, ’𝑛𝑢𝑙𝑙’)

‘𝑓𝑟𝑒𝑒’,

𝑖𝑓 𝑠 = ‘𝑠𝑒𝑡1’, 𝑐 = (‘𝑛𝑢𝑙𝑙’, ‘𝑛𝑢𝑙𝑙’, ’𝑛𝑢𝑙𝑙’)

‘𝑠𝑒𝑡2’,

𝑖𝑓 𝑠 = ‘𝑓𝑟𝑒𝑒’, 𝑐 = (‘𝑛𝑢𝑙𝑙’, ‘𝑟𝑒𝑞’, ‘𝑛𝑢𝑙𝑙’)
‘𝑝𝑢𝑡2’, 𝑖𝑓 𝑠 = ‘𝑠𝑒𝑡2’, 𝑐 = (‘𝑛𝑢𝑙𝑙’, ‘𝑛𝑢𝑙𝑙’, ’𝑟𝑒𝑠𝑝’)
‘𝑓𝑟𝑒𝑒’, 𝑖𝑓 𝑠 = ‘𝑝𝑢𝑡2’, 𝑐 = (‘𝑛𝑢𝑙𝑙’, ‘𝑛𝑢𝑙𝑙’, ’𝑟𝑒𝑠𝑝’)

𝑠, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The readout function is 𝑓𝑝
𝑜𝑢𝑡: 𝑆𝑝 → 𝑆𝑝

𝑜𝑢𝑡 , where 𝑆𝑝
𝑜𝑢𝑡 =

𝜏𝑃
𝑜𝑢𝑡(𝑐) × 𝜏𝑃

𝑜𝑢𝑡(𝑑) × 𝜏𝑃
𝑜𝑢𝑡(𝑓); in particular,

𝑓𝑝
𝑜𝑢𝑡(𝑠) ≔ {

(‘𝑛𝑢𝑙𝑙’, ‘𝑛𝑢𝑙𝑙’, ‘𝑐𝑚𝑑’), 𝑖𝑓 𝑠 = ‘𝑠𝑒𝑡1’
(‘𝑛𝑢𝑙𝑙’, ‘𝑟𝑒𝑞’, ‘𝑛𝑢𝑙𝑙’), 𝑖𝑓 𝑠 = ‘𝑠𝑒𝑡2’
(‘𝑟𝑒𝑠𝑝’, ‘𝑛𝑢𝑙𝑙’, ‘𝑛𝑢𝑙𝑙’), 𝑖𝑓 𝑠 = ‘𝑝𝑢𝑡2’
(‘𝑛𝑢𝑙𝑙’, ‘𝑛𝑢𝑙𝑙’, ‘𝑛𝑢𝑙𝑙’), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Interfaces of ‘VM1’ and ‘VM2’ are detailed as follows:

­ 𝑉1
𝑖𝑛 ≔ {({𝑝}, 𝜏𝑉1

𝑖𝑛)} , and 𝑉1
𝑜𝑢𝑡 ≔ {(∅, !)|!: ∅ →

𝑠𝑒𝑡, 𝑠𝑒𝑡 ∈ 𝑆𝑒𝑡};

­ 𝑉2
𝑖𝑛 ≔ {({𝑝1, 𝑝2}, 𝜏𝑉2

𝑖𝑛)} , and 𝑉2
𝑜𝑢𝑡 ≔

{({𝑝3, 𝑝4}, 𝜏𝑉2
𝑜𝑢𝑡)}.

Let 𝑃(𝜖0, 𝜎0)(𝑆, 𝑞, 𝑓) ∶= (𝑆, 𝑟, 𝑔) be a dynamical system

on the morphism (𝜖0, 𝜎0) , where 𝑆 = 𝑆1 × 𝑆2 × 𝑆𝑝 is the

state set; 𝑞 = 𝑞1 × 𝑞2 × 𝑞𝑝 is the underlying mode function,

and 𝜎0:𝑀1 ×𝑀2 ×𝑀𝑝 → 𝑀′ ×𝑀′′ . The update function is

𝑓𝑖𝑛 ≔ 𝑓1
𝑖𝑛 × 𝑓2

𝑖𝑛 × 𝑓𝑝
𝑖𝑛 , and readout function is 𝑓𝑜𝑢𝑡 ≔

𝑓1
𝑜𝑢𝑡 × 𝑓2

𝑜𝑢𝑡 × 𝑓𝑝
𝑜𝑢𝑡. The function r is defined by 𝜎0 ∘ 𝑞, i.e.,

𝑆1 × 𝑆2 × 𝑆𝑝
𝑞1×𝑞2×𝑞𝑝
→ 𝑀1 ×𝑀2 ×𝑀𝑝

𝜎0
→𝑀′ ×𝑀′′ . Function

𝜖0 can be detailed as follows:

­ 𝑚 = (‘𝑤𝑜𝑟𝑘𝑖𝑛𝑔1’, ‘𝑤𝑜𝑟𝑘𝑖𝑛𝑔2’, ‘𝑟𝑢𝑛𝑛𝑖𝑛𝑔’);

­ 𝜖0
𝑜𝑢𝑡(𝑚): 𝜏𝑆

𝑜𝑢𝑡(𝑜) × 𝜏𝑃
𝑜𝑢𝑡(𝑐) × 𝜏𝑃

𝑜𝑢𝑡(𝑑) × 𝜏𝑃
𝑜𝑢𝑡(𝑓) →

𝜏𝑉2
𝑜𝑢𝑡(𝑝3) × 𝜏𝑉2

𝑜𝑢𝑡(𝑝4);

­ 𝜖0
𝑖𝑛(𝑚): 𝜏𝑉1

𝑖𝑛 (𝑝) × 𝜏𝑃
𝑜𝑢𝑡(𝑐) × 𝜏𝑃

𝑜𝑢𝑡(𝑑) × 𝜏𝑃
𝑜𝑢𝑡(𝑓) ×

𝜏𝑉2
𝑖𝑛 (𝑝1) × 𝜏𝑉2

𝑖𝑛 (𝑝2) × 𝜏𝑆
𝑜𝑢𝑡(𝑜) → 𝜏𝑖𝑛(𝑖′) × 𝜏𝑆

𝑖𝑛(𝑖) × 𝜏𝑃
𝑖𝑛(𝑎) ×

𝜏𝑃
𝑖𝑛(𝑏) × 𝜏𝑃

𝑖𝑛(𝑒).

Function 𝜖0
𝑜𝑢𝑡(𝑚) shows that outputs of port p3 are same

as outputs of port c, and outputs of port p4 are same as

outputs of port f. So 𝜏𝑉2
𝑜𝑢𝑡(𝑝3) ≅ 𝜏𝑃

𝑜𝑢𝑡(𝑐) and 𝜏𝑉2
𝑜𝑢𝑡(𝑝4) ≅

𝜏𝑃
𝑜𝑢𝑡(𝑓) can be get. Function 𝜖0

𝑖𝑛(𝑚) shows that inputs of

port i' are same as inputs of port p; inputs of port a, b are

same as inputs of port p1, p2 respectively; and inputs of port e,

i are same as outputs of port o, d respectively. So 𝜏𝑃
𝑖𝑛(𝑎) ≅

𝜏𝑉2
𝑖𝑛 (𝑝1) , 𝜏𝑃

𝑖𝑛(𝑏) ≅ 𝜏𝑉2
𝑖𝑛 (𝑝2) , 𝜏𝑉1

𝑖𝑛 (𝑝) ≅ 𝜏𝑖𝑛(𝑖′) , 𝜏𝑃
𝑖𝑛(𝑒) ≅

𝜏𝑆
𝑜𝑢𝑡(𝑜), and 𝜏𝑆

𝑖𝑛(𝑖) ≅ 𝜏𝑃
𝑜𝑢𝑡(𝑑) can be get. 𝑃(𝜖0, 𝜎0)(𝑆, 𝑞, 𝑓)

∶= (𝑆, 𝑟, 𝑔) can be defined according to Definition 2.

Interfaces of ‘Env’ are defined as: 𝐸𝑖𝑛 ≔ {({𝑖1, 𝑖2}, 𝜏𝐸
𝑖𝑛)}

and 𝐸𝑜𝑢𝑡 ≔ {({𝑜1}, 𝜏𝐸
𝑜𝑢𝑡)} . A dynamical system on the

morphism (𝜖1, 𝜎1) is defined as 𝑃(𝜖1, 𝜎1)(𝑆, 𝑟, 𝑔) ∶= (𝑆, 𝑡, ℎ),
where 𝑆 = 𝑆1 × 𝑆2 × 𝑆𝑝 is the state set; 𝑟 is the underlying

mode function; 𝜎1:𝑀′ × 𝑀′′ → 𝑀 and 𝑔 ≔ (𝑔𝑖𝑛, 𝑔𝑜𝑢𝑡). The

function t is defined by 𝜎1 ∘ 𝑟 , i.e., 𝑆1 × 𝑆2 × 𝑆𝑝
𝑟
→𝑀′ ×𝑀′′

𝜎1
→𝑀. Function 𝜖1 can be detailed as follows:

­ 𝑚′ = (‘𝑢𝑝1’, ‘𝑢𝑝2’);

­ 𝜖1
𝑜𝑢𝑡(𝑚′): 𝜏𝑉2

𝑜𝑢𝑡(𝑝3) × 𝜏𝑉2
𝑜𝑢𝑡(𝑝4) → 𝜏𝐸

𝑜𝑢𝑡(𝑜1);

­ 𝜖1
𝑖𝑛(𝑚′): 𝜏𝐸

𝑖𝑛(𝑖1) × 𝜏𝐸
𝑖𝑛(𝑖2) × 𝜏𝑉2

𝑜𝑢𝑡(𝑝3) × 𝜏𝑉2
𝑜𝑢𝑡(𝑝4) →

𝜏𝑉2
𝑖𝑛 (𝑝1) × 𝜏𝑉2

𝑖𝑛 (𝑝2) × 𝜏𝑉1
𝑖𝑛 (𝑝).

Function 𝜖1
𝑜𝑢𝑡(𝑚′) shows that outputs of ‘Env’ are same as

outputs of port p3, so 𝜏𝐸
𝑜𝑢𝑡(𝑜1) ≅ 𝜏𝑉2

𝑜𝑢𝑡(𝑝3) can be get.

Function 𝜖1
𝑖𝑛(𝑚′) shows that inputs of port p are same as

outputs of port p4, i.e. 𝜏𝑉1
𝑖𝑛 (𝑝) ≅ 𝜏𝑉2

𝑜𝑢𝑡(𝑝4); inputs of port p1,

p2 are same as inputs of port i1, i2 respectively, so 𝜏𝑉2
𝑖𝑛 (𝑝1) ≅

𝜏𝐸
𝑖𝑛(𝑖1) and 𝜏𝑉2

𝑖𝑛 (𝑝2) ≅ 𝜏𝐸
𝑖𝑛(𝑖2) can be get.

Until now, 𝑃(𝜖1, 𝜎1)(𝑆, 𝑟, 𝑔) ∶= (𝑆, 𝑡, ℎ) can be defined

according to Definition 2, and dynamics can be checked.

5. A BRIEF DISCUSSION ABOUT APPLICATION

IMPLEMENTATIONS

Conceptions or components, which are discussed in

section 3 and 4, can be implemented by using software tools.

For constructing a basic application environment, Vagrant

(https://www.vagrantup.com) can be used for defining a

configurable working environment. VirtualBox

(https://www.virtualbox.org) or other products can be

installed and configured as virtual machines in a working

environment, and instances of software containers can be

deployed and managed in virtual machines. For applications,

many open source projects can be adopted and applied. For

example, Registrator (https://gliderlabs.com/registrator/latest/)

is able to provide registration functions for containerized

microservices, and it supports different pluggable registries;

Consul (https://www.consul.io) is a persistence system, and it

can be set up as a registry for storing states of services; nginx

(https://nginx.org) or other servers can be used as a reverse

proxy.

9

6 CONCLUSIONS

This paper uses the category of mode-dependent networks

and dynamical systems to model structures and functions of

containerized microservices. Formal models are established

around some issues of microservice-oriented applications.

The results and relevant discussions show that structural and

functional models of containerized microservices can be

formed by using the category-based tools. Therefore, the

modelling tools are applicable to modelling microservice-

oriented applications, and they are able to contribute to

clearly revealing important technical features of applications.

ACKNOWLEDGEMENT

This work is supported by the Open Foundation of Key

Laboratory in Software Engineering of Yunnan Province

under Grant No. 2015SE101.

REFERENCES

[1] Nadareishvili I, Mitra R, McLarty M, Amundsen M.

(2016). Microservice Architecture: Aligning Principles,

Practices, and Culture, O'Reilly Media.

[2] Bui T. (2016). Analysis of docker security, eprint arxiv:

1501.02967, https://arxiv.org/abs/1501.02967, accessed

on 8 Nov 2017.

[3] Balalaie A, Heydarnoori A, Jamshidi P. (2016).

Microservices architecture enables devops: an

experience report on migration to a cloud-native

architecture. IEEE Software 33(3): 42-52.

[4] Toffetti G, Brunner S, Blöchlinger M. et al. (2015). An

architecture for self-managing microservices, In

Proceedings of the 1st International Workshop on

Automated Incident Management in Cloud (AIMC '15),

Bordeaux, France, pp. 19-24.

[5] Vresk T, Cavrak I. (2016). Architecture of an

interoperable IoT platform based on microservices, In

Proceedings of the 39th International Convention on

Information and Communication Technology

Electronics and Microelectronics (MIPRO 2016), pp.

1196-1201.

[6] Namiot D, Sneps-Sneppe M. (2014). On micro-services

architecture, International Journal of Open Information

Technologies 2(9): 24-27.

[7] Dragoni N, Giallorenzo S, Lafuente AL, et al. (2016).

Microservices: yesterday, today, and tomorrow, eprint

arxiv: 1606.04036, https://arxiv.org/abs/1606.04036,

accessed on Nov. 8, 2017.

[8] Spivak DI, Tan JZ. (2015). Nesting of dynamical

systems and mode-dependent networks, eprint arxiv:

1502.07380, https://arxiv.org/abs/1502.07380, Nov. 8,

2017.

[9] Spivak DI. (2014). Category Theories for Sciences, 1st

edition, The MIT Press.

[10] Newman S. (2015). Building Microservices, O’Reilly

Media.

[11] Lewis J, Fowler M. (2014). Microservices, http://

martinfowler.com/articles/microservices.html, accesed

on Nov. 8, 2017.

[12] Montesi F, Weber J. (2016). Circuit Breakers,

Discovery, and API gateways in microservices, eprint

arxiv: 1609.05830, https://arxiv.org/abs/1609.05830,

Nov. 8, 2017.

[13] Spivak DI. (2013). The operad of wiring diagrams:

Formalizing a graphical language for databases,

recursion, and plug-and-play circuits, eprint arxiv:

1305.0297, https://arxiv.org/abs/1305.0297, accessed on

Nov. 8, 2017.

[14] Rupel D, Spivak DI. (2013). The operad of temporal

wiring diagrams: formalizing a graphical language for

discrete-time processes, eprint arxiv: 1307.6894,

https://arxiv.org/abs/1307.6894, accessed on Nov. 8,

2017.

[15] Vagner D, Spivak DI, Lerman E. (2015). Algebras of

open dynamical systems on the operad of wiring

diagrams, eprint arxiv: 1408.1598,

https://arxiv.org/abs/1408.1598, accessed on Nov. 8,

2017.

[16] Soltesz S, Pötzl H, Fiuczynski ME, et al. (2007).

Container-based operating system virtualization: A

scalable, high-performance alternative to hypervisors,

In Proceedings of the 2nd ACM SIGOPS/EuroSys

European Conference on Computer Systems 2007

(EuroSys '07), Lisbon, Portugal, pp. 275-287.

[17] Lawvere FW, Schanuel SH. (2009). Conceptual

Mathematics: A First Introduction to Categories, 2nd

edition, Cambridge University Press.

[18] Ouyang C, Verbeek E, Van Der Aalst WMP, et al.

(2007). Formal semantics and analysis of control flow

in WS-BPEL, Science of Computer Programming 67:

162-198.

[19] Roman D, Keller U, Lausen H, et al. (2005). Web

service modeling ontology, Applied Ontology 1(1): 77–

106.

[20] Skogan D, Grønmo R, Solheim I. (2004). Web service

composition in UML, In Proceedings of Enterprise

Distributed Object Computing Conference, pp. 47-57.

[21] OASIS standard, Web Services Business Process

Execution Language (WS-BPEL), https://docs.oasis-

open.org/wsbpel/2.0/plnktype

10

