
  

The impact of malaria transmission from mother to the newborn on the spread of malaria 

Ghoul Rafia1*, Jing He1, Sana Djaidja3, Ebrahim As-Shareef3 

1 Department of Computer Science and Technology, College of Computer Science and Engineering, Hunan University, 

Changsha 410000, China 
2 Department of Medicine, Faculty of Medicine of Algiers - Mohamed Maherzi (Ex Laperrine), Algiers 16000, Algeria 
3 Department of Mathematics, School of Mathematics and Statistics, Central China Normal University, Wuhan 430000, China  

 

Corresponding Author Email: Tigre.eco@live.fr 

 

https://doi.org/10.18280/ama_a.550208 

 

Received: 12 March 2018 

Accepted: 17 May 2018 

  

ABSTRACT 

  
 The main objective of this paper is to develop a mathematical model to study the dynamic 

of malaria transmission for the human and mosquito populations. In this study we have 

clarified the significant impact of congenital malaria (vertical transmission of malaria from 

mother to baby before or during birth). We see the direct effects of congenital malaria on 

the spread of malaria and impact it on the basic reproduction number. In our model the 

human population is divided into three classes and the mosquito population is divided into 

two classes, our appropriate model of 5-dimensional nonlinear system which incorporates 

and includes the infection newborn shows that the disease-free equilibrium is globally 

asymptotically stable if 〖R〗_0<1 and if 〖R〗_0>1 the endemic equilibrium is locally 

asymptotically stable proved by Routh- Hurwitz criterion. Our numerical simulations and 

graphical results conform the analysis predictions. 
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1. INTRODUCTION 

 

Malaria remains one of the most prevalent and lethal human 

infection worldwide. According to the World Malaria report 

(WMR) of 2016 published by (WHO), there were 212 million 

new cases of malaria worldwide, with 90% of global cases 

occurred in African Region followed by 7% for the South-East 

Asia Region and 2% for the Eastern Mediterranean Region [1] 

and accounted for an estimated 429 000 deaths most of them 

are young children. In Africa for example each 30 seconds a 

child dies from malaria disease [2]. In the period 2010 to 2015, 

malaria rates reduced by 21% globally and in the African 

Region and malaria mortality rates reduced by an estimation 

of 29% globally and by 31% in the African Region [1]. 

Malaria spreads in three ways; in case of infected mother it 

can be transmitted to the children through the parasitized red 

cells either transplacentally or during labor, these two cases 

can lead to newborn birth with malaria disease this called 

congenital malaria, however most of the time it is caused 

because of the bite of an infected female Anopheles mosquito 

[3]. Malaria congenital doesn’t have an exact definition, some 

of them defined it as the illness caused by malaria parasites’ 

placental transmission or transmitting during birth through the 

birth canal, others as the presence of asexual malaria parasites 

(P. falciparum, P. vivax, and mixed infections) in the 

erythrocytes of the infant aged less than seven days [4]. In the 

endemic areas the congenital malaria has been frequent in the 

non-immune population .It had been first described in 1876, 

till recently, it was known to be a rare condition[5].Moreover, 

cord parasitaemia, early neonatal malaria and neonatal malaria 

can be caused by perinatal malaria infection .In case that the 

placenta is infected with malaria parasites, transplacental 

transmission of the parasites can occur, although the newborn 

may remain asymptomatic and healthy[6]. Transplacental 

transmission of P. falciparum has been well described, and the 

reported frequency of this event in babies born in malaria-

exposed pregnancies has ranged from 0 percent to more than 

25 percent [7]. Mathematical modeling of malaria began 

in1911with Ross model [8]. In 1957 Macdonalds described 

many extensions in his book [9]. The first models were two-

dimensional with one variable representing humans and the 

other representing mosquitoes. In [10] Dietz, Molineaux and 

Thomas propose a new model that include an acquired 

immunity. Anderson and May [11], Aron and May [12] and 

Koella [13], have written some good reviews on the 

mathematical modeling of malaria. Further, Some papers have 

also included environmental effets [14-16] the spread of 

resistance to drugs [17] and the evolution of immunity 

[18].Recently, Ngwa and Shu [19] and Ngwa [20] proposed an 

ordinary differential equation(ODE) compartmental model for 

the Spread of malaria that involve variable human and 

mosquito populations, with a susceptible-exposed-infectious-

recovered-susceptible(SEIRS) pattern for human population 

and a susceptible-exposed-infectious (SEI) pattern for 

mosquitoes population, Vector control has been an important 

part of the global malaria control strategy Several vector 

control intervention programs have been implemented and 

have proved to be effective in providing protection to humans. 

Studies show that larviciding suppresses the number of 

malaria transmitting mosquitoes in malaria places [21-23]. 

However, larval control can only be effective if larval habitats 

are Limited and well defined. In [24] Ross-Macdonald 

suggests in his malaria transmission model that control 

methods that reduce adult mosquitoes’ longevity can achieve 

greater malaria reduction than strategies that target larval 

stages. Researchers have included some intervention measures 

in the past in order to reduce malaria transmission such as: 

Insecticide-treated nets (ITNs), long-lasting insecticide treated 
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nets (LLINs) and Insecticide residual spray (IRS). However, 

increased insecticide resistance in vectors, together with 

outdoor transmission, has limited the efficacy of the ITN 

scaling-up efforts. Observations on longitudinal changes in 

ITN coverage and its impact on malaria transmission allow 

policy makers to make informed adjustments to control 

strategies. Authors in [25] has found that ITN ownership 

increased from an average of 18% to 85% in the period of 

2003-2015, proved by an analyze and survey on ITN 

ownership, malaria parasite prevalence and malaria vector 

population dynamics done in seven sentinel sites in western 

Kenya for that period. 

Since 1937, many researches use Biological control and 

especially larvivorous fish in order to control mosquitoes [26]. 

They have implemented many mathematical models to study 

different situations and stages of malaria transmission and the 

relationship between humans and mosquitoes populations. 

Methods and stages of control have impacted the factor of 

travel and movement in human and mosquitoes populations in 

the spread of the malaria disease. Researchers have been 

widely focusing and working on the methods and models of 

mosquito control since they discovered that it’s the main factor 

of malaria transmission through the female Anopheles 

mosquitoes. Further, studies have been done on the methods 

of biological control for mosquitoes of the adult stages and 

water also hybridization methods as well. However, there is no 

research implementing the fact of malaria transmission from 

mother to children with the knowledge. 

Malaria infections cases are mostly children at various ages, 

particularly less than 5 years. In this thesis, we have tried to 

highlight and discuss the impact of congenital malaria (vertical 

transmission of malaria from mother to baby before or during 

birth). We have built a mathematical model and we have insert 

a vertical transmission of malaria from human to human in this 

model, and to analyze the spread of malaria in the community. 

In this paper, we propose a model to examine vertical 

transmission of malaria infection from mother to the newborn 

(congenital malaria) and study the direct effects of congenital 

malaria on the spread of malaria and impact the vertical 

transmission malaria on the basic reproduction number. We 

present the numerical analysis of the model to illustrate the 

transmission of malaria disease and the impact of vertical 

transmission on the spread of malaria. We show that 

congenital malaria can help the disease to become endemic. 

 

 

2. MATHEMATICAL MODEL DESCRIPTION AND 

ANALYSIS 

 

2.1 Mathematical model description 

 

Table 1. Description of malaria model state variables 

 
   𝑆𝐻 Number of susceptible humans (The host) to malaria 

infection. 

 𝐼𝐻 Number of infected humans with malaria disease. 

 𝑅𝐻 Number of recovered humans to malaria infection. 

 𝑆𝑉 Number of susceptible mosquitoes. 

 𝐼𝑉 Number of infectious mosquitoes. 

HN  Total human population. 

VN  Total mosquito population. 

 

 

Table 2. Description of malaria model parameters 

 

H  The natural death rate for humans. 

V  The natural death rate for mosquitoes. 

 1B  Per capital susceptible newborns birth rate, Humans
1Time− . 

VB  Per capital susceptible Mosquitoes birth rate, Mosquitoes 
1Time− . 

  Per capital recovery rate for humans from the infectious state to the recovered state 

  Per capital disease-induced death rate for humans, Humans
1Time− . 

  
Per capital rate of loss of immunity in human population, such that 

1

ρ
 is the average duration of the immune period, 

1Time− . 

2B  Rate of the newborn’s birth with Infection humans. 

  Per capital recovery rate for humans from the infectious state to 

the recovered state. 
1


 is the average duration of the infectious period,

1Time− . 

Va  The man-biting rate of the mosquitoes, defined as the average number 

of bites given to humans by each mosquito per unit time. 

VHC  Infectivity of the mosquito, defined as the probability that a bite by an infected 

mosquito on a susceptible human will transfer the infection to the human. 

 

HVC  

Infectivity of an infectious non-immune person, defined as the probability that 

a bite by a susceptible mosquito on an infected human will transfer the infection 

to the mosquito. 

m
 

Female vector host ratio, defined as the number of female mosquitoes per human host 

 

In order to study the spread of malaria in humans(The host) 

population and mosquito (the vector) population with the 

impact of malaria transmission from mother to children,we 

formulate a mathematical model that divide the total Human 

population at time 𝑡 denoted by ( )HN t into three 

epidemiological classes: Susceptible class 𝑆ℎ, Infectious class 

𝐼ℎ  and Recovered class 𝑅ℎ  and divide the total mosquito 

population at time 𝑡 denoted by ( )VN t into two 

epidemiological classes: Susceptible class 𝑆𝑣  and Infectious 

class 𝐼𝑣 .Mosquito population does not include recovered class 

as mosquitoes never recover from infection,that is,their 

infective period ends with their death due to their relatively 
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short life-cycle.The state variables and parameters used for 

malaria transmission model are shown in (Table (1)) and 

(Table (2)) respectively. In the model the parameters are 

strictly positive except   nonnegative. In order to maintain a 

stable positive mosquito population, we suppose that the 

mosquito birth rate is greater than the density-independent, 

VB >
V . 

 

 
 

Figure 1. Schematic of the model 

 

In our model we assume the following assumptions in order 

to formulate the equations of the model:  

1) The two population ( )HN t
 
and ( )VN t are variable. 

2) The malaria disease starts the development when the 

infected female mosquito bites the human host or when the 

newborn’s birth with Infection. 

3) Mosquitoes bite human randomly.  

4) >   and 
1 2>| |B B + − . 

The following system of nonlinear ordinary differential 

equations describe the dynamics of malaria in the human and 

mosquito populations  

 

1

2

= ,

= ( ) ,

= ,

= ,

= ,

VH V VH

H H H H H H

H

VH V VH

H H H H

H

H

H H H H

V HV V H

V V V V V

H

V HV V H

V V V

H

C a IdS
B N R I S S

dt N

C a IdI
S I B I

dt N

dR
I R R

dt

dS C a I
B N S S

dt N

dI C a I
S I

dt N

  

   

  






+ + − −




− + + + +



− −



− −



−


 (1) 

 

We determine the total population sizes HN  and VN  by 

H H H HN S I R= + + , V V VN S I= + ,  

 

1 2= ( ) ,

= ( ) ,

H

H H H H

V

V V V

dN
B N B I I

dt

dN
B N

dt

 




− + −


 −


      

(2) 

 

In the model we assume that all parameters are positive. 

 

2.2 Mathematical model analysis 

 

To examine the behavior of this model we transform the 

system of populations into a system of proportions to 

investigate stability of the steady states. We obtain the 

equations by differentiating each proportion at time t . 

  

= , = , = , = =V VH H H

h h h v v

H H H V V

S IS I R
s i r s and i

N N N N N
. 

 

These fractions give the following system : 

 

1 2

2

1 2 2

1 2

= (1 ) ( ) ,

= [ ( )] ( ) ,

= ( ) ( ) ,

= ( )(1 ) ,

= ( ) .

h

h h h VH v v h h h

h

VH v v h h h

h

h h h h

v

V v HV V h v

v

HV V h v V V v

ds
B s r i C a i ms i s

dt

di
C a i ms B B i B i

dt

dr
i B r B i r

dt

ds
B s C a i s

dt

di
C a i s B i

dt

   

   

  




− + + − + −




− + + + − + −




− + + −



− −



− +


  (3) 

 

The all parameters are assumed non-negative in order to 

analyze and investigate the existence and stability of the 

associated equilibrium points. We set the right-hand sides of 

the equation in system (3) to zero. 

 

1 2

2

1 2 2

1 2

1

(1 ) ( ) 0,

[ ( )] ( ) 0,

( ) ( ) 0,

(1 ) 0,

0

h h h VH v v h h h

VH v v h h h

h h h h

v HV V h v

HV V h v V v

B s r i C a i ms B i s

C a i ms B B i B i

i B r B b i r

B s C a i s

C a i s B i

  

   

  

− + + − + − =


− + + + − + − =


− + + − =
 − − =


− =

            

 

  (4) 

 

For easy analysis of the steady states we express the 

solutions in terms of 𝑖ℎ and we obtain:  

 

{
 
 
 
 

 
 
 
 𝑠ℎ =

[𝐵1+𝜌+( −𝜌)𝑖ℎ](𝐵𝑉+𝐶𝐻𝑉𝑎𝑣𝑖𝑣)

[𝐵1+𝜌−(𝜑−𝐵2)𝑖ℎ] (𝐵𝑉+𝐶𝐻𝑉𝑎𝑣𝑖𝑣)+(𝐶𝐻𝑉CVH𝑎𝑣
2𝑚𝑖ℎ)

                             

  𝑟ℎ =
hi

𝐵1+𝜌−(𝜑−𝐵2)𝑖ℎ
                                         

 sv =
𝐵V

𝐵𝑉+𝐶𝐻𝑉𝑎𝑣𝑖h
                                

𝑖𝑣 =
𝐶𝐻𝑉𝑎𝑣𝑖h

𝐵𝑉+𝐶𝐻𝑉𝑎𝑣𝑖h
                   (5) 

                       
                                        

        

 

 

3. DISEASE-FREE EQUILIBRIUM POINT AND 

REPRODUCTION NUMBER 

 

3.1 Steady stability of disease-free equilibrium 𝐸0  

 

We define a disease-free equilibrium point in our study as a 

steady-state solution of the system (3) where there is no 

disease, by assuming 0 0 0,h vs and s   and all other variables, 

0 0 0, , = 0,h v hi i r now we have the disease-free equilibrium point 

 

0 0 0 0 0 0= ( , , , , ) = (1,0,0,1,0)h h h v vE s i r s i . 

 

Theorem 1 If 
0 1R 

 
then the disease-free equilibrium 

0E  

is locally asymptotically stable, if 0 > 1R
 
then this point is 
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unstable . 

Proof: From the Jacobian matrix of the system (5) at 
0E

given as above the local stability of this point is established . 

 

 

1 2
= ,E

J J
J

 
 
 

where  

1 =J

1 2 2

1 2 2

2

[ ( ) ] ( )

[ ( ) 2( ) ]

0 ( )

0

0

VH V v h h

VH V v h

h

HV V v

HV V v

B C a i m B i B s

C a i m B B B i

B r

C a s

C a s

   

   

 

− + + − − + − 
 

− + + + − − − 
 + −
 

− 
 
 
 
 
 

 

2 =J  

1 2

0

0 0

[ ( ) ] 0 0

0 ( ) 0

0

VH V h

VH V h

h

V HV V h

HV V h V

C a ms

C a ms

B B i

B C a i

C a i B



 

− 
 
 
 − + − −
 

− + − 
 −
 
 
 
 

 

 

Let’s evaluate the Jacobian matrix  𝐽𝐸 at  

 

0 0 0 0 0 0= ( , , , , ) = (1,0,0,1,0)h h h v vE s i r s i  

 

0
=EJ  

1 2

1 2

( ) 0

0 ( ) 0 0

0 ( ) 0 0

0 0 0

0 0 0

VH V

VH V

V

HV V V

HV V V

B B C a m

B B C a m

B

C a B

C a B

  

  

 

− + − − 
 
 
 − + + + −
 
 
 − +
 
 
 −
 
 
 

− − 
 
 

 

 

We can see that first column contains only the diagonal 

term, then this diagonal term forms one eigenvalue of the 

Jacobian 1 = HB −  Similarly, the other eigenvalues are 

2 1= ( )B − +  and 3 = VB − . Note that the eigenvalues 

1 2 3, and    are all negative. Remaining two eigenvalues 

can be obtained from the eigenvalues of the 2 2  block matrix 

given by 

 

1 2[ ( )]

= ,

VH V

HV V V

B B C a m

C a B

  − + + + − 
 

 − 
 
 

 

 

whose trace and determinant are given by  

 

1 2= [ ( )] < 0,V VTr B B B    − + + + + + −  

2

1 2= [ ( )] V VH HV VDet B B B C C a m   + + + − −  

1 1= [( ( )) ]*VB B B  + + + −  

2

1 2

[1 ]
[( ( )) ]

VH HV V

V

C C a m

B B B  
−

+ + + −
 

1 2 0= [( ( )) ][1 ],VB B B R  + + + − −  

 

where  

 
2

0

1 2

= .
[ ( )]

VH HV V

V

C C a m
R

B B B  + + + −
 

 

Thus, 
0E  is locally asymptotically stable if and only if 

0 < 1R , and we have thus established the following theorem: 

 

3.2 The reproduction number 
0R  

 

The quantity 
0R  is the basic reproduction number of the 

disease. It represents the average number of new infections 

produced by one infected individual. It is a useful quantity in 

the study of a disease as it sets the threshold for its 

establishment. If 
0 < 1R , then the disease-free equilibrium is 

locally stable. The reproduction number depends on the 

product of the transmission coefficients, 

V VH V HVa C m and a C , the average residence time 

1 2

1

( ( ))B B  + + + −
 in the infective class and the average 

life span 
1

VB
 of the mosquito. It is also dependent on the rate 

of acquisition of immunity  , rate of recovery from infection 

 , disease induced mortality rate  , and the rate of the 

newborn’s birth with infection
2B  

So hence by the Routh-Hurwitz, the disease-free 

equilibrium 
0E  is locally asymptotically stable. 

The disease free equilibrium point explains the final 

behavior of the disease when the community is free of the 

disease, it shows the final reachable situations for this disease, 

even though there could be infinitely many different initial 

distributions of malaria in a community these equilibrium 

points are the final reachable situations.  

 

3.3 Existence and stability of endemic equilibrium *E  

 

Let 𝑟ℎ
∗ = 1 − 𝑠ℎ

∗ − 𝑖ℎ
∗  , 𝑎𝑛𝑑 𝑠𝑣

∗ = 1 − 𝑖𝑣
∗, That we will get 3-

dimensional system instead of 5. We will discuss the 

equilibrium point at the endemic level *E . The endemic 

equilibrium point is the final reachable situation, even though 

there could be infinitely many different initial distributions of 

malaria in a community. 

Lets now solve the system (3) for the equilibrium *E  ,we 

set the right-hand of the system to zero 

 
* * * * * *

1 2

* * * *2

1 2

* * *

( )(1 ) ( ) ( ) = 0,

[ ( )] ( ) = 0,

(1 ) = 0,

h h VH v v h h h

VH v v h h h

HV v h v V v

B s i C a i ms B i s

C a i ms B i B i

C a i i B i

   

    

 + − + − − + −


− + + + − + −
 − −

 (7) 

 

From (7) we have 
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* *

* 1 2 2

2

*

*

*

[ ( ) ]( )
,

,

h HV v h V

h

VH VH v

HV v h

v

HV v h V

B B B i C a i B
s

C C a m

C a i
i

C a i B

    − + + + + + − +
=



 =
 +

 

  (8) 

 

Substituting it into (7) we have *3 *2 *

1 2 3 = 0h h hi A i A i A+ + +  

where 

 

2

1 2

2

2 1

1
= [( )

( )

( 2 )]

V V HV VH

V HV

V HV

A B B ma C C
B a C

a C B B




   

− +
−

+ + + + − +

 

1

2 0

1
= [ (1 ) ],

( )

V V HV

V HV

V HV V

B a C
ma C B

a C B R B



+ + + +

−
 

 

2 2 2 12

2

1
= [( ) ( 2( )

( )
V

V HV

A B B B B
B a C
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

− + + − + +
−

 

2 1 1( )( )V HV Va C B B B B   + + + − + +  

2

2 1( )]V HV VHma C C B B    + + + − + + −  

2

22

02

2

1

1
= [ (( )

( )

( ) )

V HV VH

V

VV HV

V HV V HV VH

ma C C
B B

R BB a C

a C B ma C C






−
−

+ + +

 

2

2 1( ) ( ) ( )],V V HV VHB B B ma C C   + − + + −  

 

2

3 12

2

2 1

1
= [( )( )

( )

( ) ]

V HV VH

V HV

V

A B ma C C
B a C

B B B




  

+ −
−

+ − + + + +

12

02

1
= ( 1)( ).

( )

V VHa mC
B

RB



− +

−
 

 

For the existence of endemic equilibrium * * * *= ( , , )h h vE s i i  its 

coordinates should satisfy the conditions * * *1 > , , > 0.h h vs i i  

Denote * *3 *2 *

1 2 3( ) =h h h hF i i A i A i A+ + + , then  

 

3(0) = < 0,F A  

 

1 2 3(1) = 1F A A A+ + +  

2

12

2

1
= [ ( )

( )
V HV VH V V HV

V HV

ma C C B a C B
B a C

+ +
−

 
1 2)( )] > 0.B B   + + + + −  

 

So *( ) = 0hF i  has at least one root * (0,1)hi   when 
0 > 1R . 

Denote  

 
2 2

1 2 1 2 3 2 1 3

2

1

= 3 , = 9 , = 3 ,

= 4 ,

A A A B A A A C A A A

and B AC

− − −

 −
  

 

then from the Cardan formulas, *( ) = 0hF i  has an unique real 

root if and only if 1 > 0 . From (8) and the assumption 

1 2>| |B B + −  we can see *1 > > 0hs , and *1 > > 0vi . The 

assumption that 
1 2>| |B B + −  is of significant importance 

and plays a great role when malaria persists. It shows that 

mortality rate due to malaria should be less than that at which 

the susceptible human population is refilled due to birth and 

loss of immunity to malaria . 

Now we come to discuss the stability of the endemic 

equilibrium point *E . Assume ( ) = 0hF i  has an unique real 

root (0,1)hi  . For the system (7), the Jacobian matrix is 

=EJ   

  
* * * *

1 2 2

* * *

1 2 2

* *

[ ( ) ] ( )

[ ( ) 2( ) ]
.

0 (1 ) ( )

h VH V v h VH V h

VH V v h VH V h

HV V v V HV V h

B B i C a mi B s C a ms

C a mi B B B i C a ms

C a i B C a i

    

   

 − + − − + + − − −
 
 
 − + + + − − −
 
 
 − − +
 
 
 

 

For  

 

2 1 1= , = , = , = , = ,h V v VH V HV VB l B l B l C a m b C a c −  

* * *

1 1= =h h h hw l l i and w l l i + − + − .  

 

by the assumptions >   and 
1 2>| |B B + − , we can see 

* *, > 0 > .w w and w w  Then we have  

 
* * * *

1 1

* * *

1 1

* * *

( )

( 2 )
= .

0 (1 ) ( )

h h v h h

v h h h

E

v v h

l l i bi l s bs

bi l l l i bs
J

c i l ci

  

 

 − + − + + − −
 

− + + + − 
 − − +
  
 

 

 

To prove the stability of the equilibrium point we have to 

calculate the roots.  

 
3 2

1 2 3( ) = = 0,Edet J I K K K   − + + +  

 

where 
1 2 3,K K and K  are given by the expressions, 

 
* *

1 1= (1 ) ,v h v hK bi w w l i l ci+ + + + − + +  

 
* * * *

2 1

* * *

1

= ( )[ (1 ) ]

[ (1 )]( )

v h v h

h v h

K bi w w l i l ci

w l i l ci





+ + + − + +

+ + + − +
 

* * * *

1(1 ) ( ),h v v hbcs i bi l s − − − − +  

 
* * * * * *

3 1= ( )[( (1 ))( ) (1 )]v h v h h vK bi w w l i l ci bcs i+ + + − + − −  

* * * * *

1[ (1 ) ( )( )].v h v h v hbi bcs i l s l ci + − − − + +  

 

By assuming >   and 1 2>| |B B + − , we have 

 
* * * *

1 1= (1 )v h v hK bi w w l i l ci+ + + + − + +  
* * * * *

1 1 1= ( ) ( ) [ (1 )] .h h v h h h v hl l i bi l i l l i l ci  + − + − + + + − + + +  

 

From *

1> ,0 < < 1 >| |h hi and l l  +  we get 

*

1>| | (1 )h hl l i+ − , it is clear that * *

1>v hbi l i  so 1 > 0K .  

 
* * * *

2 1

* * *

1

= ( )[ (1 ) ]

[ (1 )]( )

v h v h

h v h

K bi w w l i l ci

w l i l ci





+ + + − + +

+ + + − +
 

* * * *

1(1 ) ( )h v v hbcs i bi l s − − − − +  
* * * * * * *

1 1= [( (1 ) )] [ (1 ) ]h v h v h hw w l i l ci bi w l i s + + − + + + + − − +  
* * * * * *

1[ (1 ) ][ ] (1 ),h v v h h vw l i bi l ci bcs i+ + + − + + − −  
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Its clear that * *

1>| | (1 )h h hl l i s+ − −  by similarly 

*1 > > 0hs and from (7)and (8) its easy to see that 

 
* * * * * *

1[ (1 ) ]( ) (1 )h v v h h vw l i bi l ci bcs i+ + − + + − −  

* * * * * *

1 1= [ (1 ) ]( ) (1 )h h h v v h h vl l i l i bi l ci bcs i + − + + − + + − −  

* *

* * *1

*
= ( )v h

h h v

v

bi l i
ci bcs i

i

−
+  

 
2 > 0K .  

 

and  

 
* * * * * *

3 1= ( )[( (1 ))( ) (1 )]v h v h h vK bi w w l i l ci bcs i+ + + − + − −  

* * * * *

1[ (1 ) ( )( )].v h v h v hbi bcs i l s l ci + − − − + +  

 

1) In case that
1 < 0l   

* * * * * *

1= ( ){[ (1 )]( ) (1 )}v h v h h vbi w w l i l ci bcs i+ + + − + − −  

* * * * *

1[ (1 ) ( )( )]v h v h v hbi bcs i l s l ci + − − − + +  

* * * * *

1= [( (1 ))( ) (1 )]h v h h vw w l i l ci bcs i+ + − + − −  

* * * * * * * *

1{[ (1 )]( ) (1 ) (1 )v h v h h v h vbi w l i l ci bcs i bcs i+ + + − + − − + −  

* *

1( )( )}h v hl s l ci − − + +  

* * * * *

1 1= [( (1 ))( ) (1 )]h h h v h h vw l l i l i l ci bcs i + − + + − + − −  

* * * * * *

1 1 1{[ (1 )]( ) ( )( )}v h h h v h h v hbi l l i l i l ci l s l ci + + − + − + + − +  

* * * *

1= {[ (1 2 )]( )}v h h h v hbi l l i s l ci + + + − − +  

* * * * *

1 1[( (1 ))( ) (1 )]h h h v h h vw l l i l i l ci bcs i + + − + + − + − −  

 

we can see 

  
* * * * *

1 1= [ (1 )]( ) > (1 2 )h h h v h h h hbcs l l i l ci and l l i s  + + + − + + − −  

so we have  

 
* *> ( )v v hbi l ci +  

* * * * *

1 1[( (1 ))( ) (1 )]h h h v h h vw l l i l i l ci bcs i + + − + + − + − −  

* * *

1 1

* * *

1

> [( (1 ))( )

[ (1 )]( )(1 )]

h h h v h

h h v h v

w l l i l i l ci

l l i l ci i

 

 

+ − + + − +

− + + + − + −
 

* * * *

1 1 3= ( ){ [ (1 )] } > 0 > 0v h h h h vw l ci l i l l i i K + − + + + + −   

 

then  

 

2) In case that 
1 > 0l   

* * * * * *

1

* * * *

1

= [ (1 )

(1 ) (1 )

v v v h v h h

h h h v

bi w l l l i l w ci ci

l i ci bcs i

 + + − + +

+ − − −
 

* * * * * * *

1 1(1 ) ]h v v v h v h h h hbcs i l l l s l ci ci l s ci   + − − + − − + −  

* * * * *

1

* * * *

1

[ (1 )

(1 ) (1 )]

v v h v h h

h h h v

w w l l l i l w ci ci

l i ci bcs i

 + + + − + +

+ − − −
 

* * * * * *

1 1

* * * *

= [ (1 ) (1 )

] ( )

v h h v h h h v

h v v h

bi l i s l l i s ci l

ci bi w l ci





− − + − − +

+ + +
 

* * * * *

1

* * * *

1

[ (1 )

(1 ) (1 )]

v v h v h h

h h h v

w w l l l i l w ci ci

l i ci bcs i

 + + + − + +

+ − − −
 

* >by w w   

* * * * * *

1 1

* * *

> [ (1 ) (1 )

] ( )

v h h v h h h v

h v v h

bi l i s l l i s ci l

ci bi w l ci





− − + − − +

+ + +
 

* * * * *

1

* * * *

1

[ (1 )

(1 ) (1 )]

v v h v h h

h h h v

w w l l l i l w ci ci

l i ci bcs i

 + + + − + +

+ − − −
 

* * * * * * *

1 1= [ (1 ) (1 ) ]v h h v h h h v hbi l i s l l i s ci l ci − − + − − + +  

* * * * * *

1[( (1 ) )( ) (1 )]h v v h h vw w l i bi l ci bcs i+ + + − + + − −  

 

Similarly with above we can see 
3 > 0K   

 
* * *

1 2 3 1

* * * *

1

= [ (1 )

] [ (1 ) ]

v h v

h h v h

K K K bi w w l i l

ci w w l i l ci





− + + + + − +

+ + + − + +
 

* * * * * *

1

* * *

1

[ (1 ) ] [

(1 ) ]

v h v h v

h h v h

bi w w l i l ci bi w

l i s l ci





+ + + + + − + +

+ − − + + +
 

* * * *

1[ (1 ) ]v h v hbi w w l i l ci+ + + + + − + +  

* * * * *

1

* * * *

1

[ (1 )

(1 ) (1 )]

v v h v h h

h h h v

w l l l i l w ci ci

l i ci bcs i

 + + − + +

+ − − −
 

* * * * * *

1

* * * *

1

[ (1 )

(1 ) ]

v v h h v h

h h h v h

bi w l l i s l w ci

l i s ci l ci 

− + − − +

+ − − + +
 

* * * * *

1

* * * *

1

[ (1 )

(1 ) (1 )]

v v h v h h

h h h v

w w l l l i l w ci ci

l i ci bcs i

 − + + − + +

+ − − −
 

* * *

1

* * * *

1

= [ (1 )

][( (1 ) )]

v h

v h h v h

w bi w w l i

l ci w l i l ci





+ + + + −

+ + + + − + +
 

* *

* * * * * * *

1 1

( )

[ (1 )][ (1 ) ]

v v h

v v h h h

bi w l ci

bi bi w w l i w l i s 

+ +

+ + + + + − + − − +
 

* *

* * * * * *

1 1

[

(1 ) ]{[ (1 ) ]( )

v

h v h h v v h

bi w

l i l ci w l i bi l ci





+ + +

+ − + + + + − + +
 

* *(1 )}h vbcs i− −  

 

As shown above 
1 2 3 > 0K K K− , and we have:

1 2 3 1 2 3> 0, > 0, > 0, > 0K K K and K K K− . Hence by the 

Routh-Hurwitz, the endemic equilibrium is locally 

asymptotically stable.  

Lets discuss now the situation when 
0 < 1R . It is clear that 

3 1 2 3(0) = > 0 (1) =1 > 0F A and F A A A+ + + . Note that 
2

1 2( ) = 3 2h h hF i i A i A + + , if 2

2 1 2= 3 < 0A A − , then 

( ) > 0hF i , hence ( ) = 0hF i  has no real root in (0,1) . Then 

we get the following theorem.  

 

Theorem 2 If 0 > 1R  and 1 > 0 , there exists an unique 

endemic equilibrium *E , which is locally asymptotically 

stable under the assumptions >  , and 1 2>| |B B + − . If 

0 < 1R  and 2 < 0 , there exists no endemic equilibrium. 

Where 1  and 2  are defined as above.  

 

 

4. NUMERICAL SIMULATION 

 

In this section, we present the numerical analysis of the 

model to illustrate the transmission of malaria disease and the 

impact of vertical transmission on spread of malaria and show 

the relations betwen 𝑅0  and 𝐵2  and 𝑎𝑣 . We show baseline 
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values in Table 3 for the parameters described in Table 2. The 

ode 45 and solve functions in Matlab was used in this 

numerical simulation, the parameter values in Table 3 are used 

in the simulations to illustrate the behaviour of the model.   

At initial time 𝑡 = 0 , we have the following initial 

conditions in the proportions 

𝑋∗ = (𝑠ℎ
∗ , 𝑖ℎ

∗ , 𝑟ℎ
∗, 𝑠𝑣

∗, 𝑖𝑣
∗)= (0.99,0.01,0,0.9,0.1), we study the 

dynamical behavior of the model for variation of the 

2 0,0,001,0,002,0,003B = , Figures 2-5 show the general 

behavior of the model ,we observe that when is increased from 

0 to 0. 003 the number of infectious humans and infectious 

mosquitoes increase as well,we conclude that for any very 

small changes in 
2B  we have a big increases infectious 

classes. 

In the Figure 6, we can see The relationship between the 

infection human and variation of the 
2B , Finally, for showing 

the effect of newborn’s birth with Infection rate to the basic 

reproduction number, we gives the relation between 
0R  and 

2B  (Fig 7), from (Fig 7), we know that 
0R  is increasing with 

respect to the 
2B  rate. These numerical results support the 

results earlier obtained analytically that the endemic 

equilibrium is stable. 

 

Table 3. The parameters values for the the baseline scenario 

 

1

2

0.000038 /

0.05 /

0.0015900 /

0.072 /

0.0022 /

0.00332 /

0.000017 /

0 0.001 0.002 0.003

0.00019 /

0.03

0.75

0.75

H

V

V

V

VH

HV

day

day

B day

B day

day

day

day

B

day

a

C

C













 

 

 

 
 

Figure 2. 2 0B =  and
0 = 1.7R , Endemic patterns of the susceptible, infected and recovered human populations, and the 

susceptible and infected mosquito populations. Starting at the initial conditions
 
𝑋∗ = (𝑠ℎ

∗ , 𝑖ℎ
∗ , 𝑟ℎ

∗, 𝑠𝑣
∗, 𝑖𝑣

∗)= (0.99,0.01,0,0.9,0.1), the 

system (3) approaches the endemic point (0.5308, 0.3934, 0.0758, 0.8924, 0.1076), and we see the relationship between 

h vi and i  

 

 
 

Figure 3. 2 0,001,B and= 0 = 1.99R , Endemic patterns of the susceptible, infected and recovered human populations, and the 

susceptible and infected mosquito populations. Starting at the initial conditions 𝑋∗ = (𝑠ℎ
∗ , 𝑖ℎ

∗ , 𝑟ℎ
∗, 𝑠𝑣

∗, 𝑖𝑣
∗)= (0.99,0.01,0,0.9,0.1), the 

system (3) approaches the endemic point (0.48, 0.449 , 0.07 , 0.88 , 0.12), and we see see the relationship between
h vi and i  
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Figure 4. 
2 0,002B =  

0 = 2.33and R , Endemic patterns of the susceptible, infected and recovered human populations, and the 

susceptible and infected mosquito populations. Starting at the initial conditions  𝑋∗ = (𝑠ℎ
∗ , 𝑖ℎ

∗ , 𝑟ℎ
∗, 𝑠𝑣

∗, 𝑖𝑣
∗)= (0.99,0.01,0,0.9,0.1), the 

system (3) approaches the endemic point (0.4300 , 0.501 , 0.0651 , 0.8901 , 0.1331), and we see see the relationship between

h vi and i  

 

 
 

Figure 5. 
2 0,003B =  

0 = 2.83and R , Endemic patterns of the susceptible, infected and recovered human populations, and the 

susceptible and infected mosquito populations. Starting at the initial conditions
 
 𝑋∗ = (𝑠ℎ

∗ , 𝑖ℎ
∗ , 𝑟ℎ

∗, 𝑠𝑣
∗, 𝑖𝑣

∗)= (0.99,0.01,0,0.9,0.1), the 

system (3) approaches the endemic point (0.3959 , 0.5492 , 0.0549 , 0.8560 , 0.1439 ), and we see see the relationship between

h vi and i  

 

 
 

Figure 6. The variation of infected human population with time for different values of 𝐵2 
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Figure 7. When rate of the newborn’s birth with infection number gets larger the value of the reproduction number gets larger 

 

 

5. DISCUSSION 

 

In our study we have developed our model that includes the 

impact vertical transmission (congenital malaria) in the spread 

of malaria, we have derived and analyzed a mathematical 

model of 5-dimensional system of a nonlinear mathematical 

model which incorporates and include the infection newborn 

to better understand the transmission and spread of malaria. 

We change the parameter 𝐵2 and keep all other parameters as 

in Figures 2-5 in order to see the effect of vertical transmission 

(congenital malaria) . In the Figures 2-5, from observation of 

the Figures we conclude that as when 𝐵2 is increased from 0 

to 0.003 there is a corresponding increase in the number of 

infectious humans and infectious mosquitoes, for any very 

small changes in 𝐵2 we have a big increases infectious classes, 

The variation of infected human population 
hi  with time for 

different 𝐵2 is shown in Figure 6, It is observed that for each 

big value of 𝐵2 the equilibrium level of hi  is high, shown in 

Figure 7 when rate of the newborn’s birth with infection 

number gets larger the value of the reproduction number gets 

larger becomes very difficult to control the spread of the 

disease, it becomes more difficult to control the infection of 

the population. Equilibria of the model are found and stability 

of these equilibria are discussed the disease free equilibrium is 

locally asymptotically stable whenever 
0 < 1R  and is unstable 

for 
0 > 1R . 
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