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ABSTRACT 

In this paper, we investigate the solution of the behaviour of bubble growth in Newtonian 

fluid by using extended Rayleigh-Plesset equation. The transformation of Cole-Hopf has 

been applied on the nonlinear ordinary differential equation of the non-dimensional 

extended Rayleigh-Plesset equation in order to obtain the exact solution of bubble radius. 

We have also introduced the study of phase portrait of growth problem. The results studied 

analytically and indicated in graphics. 

Keywords: 

Cole–Hopf transformation, Rayleigh-

Plesset equation, phase portrait, bubble 

dynamics 

1. INTRODUCTION

It is well known that the study of nonlinear differential 

equations of Rayleigh-Plesset equation plays an important role 

in various areas of applied mathematics and theoretical 

physics like biomedical treatments [1], sonoluminescing 

bubbles [2], bubbles in turbulent flow [3-4], vortical flow field 

[5], cavitating water jets [6], The exact determination of the 

thermal term in the Rayleigh–Plesset equation [7-8] needs to 

solve the diffusion equation that leads to significant 

difficulties due to its nonlinearities. For reduction in the 

complexity of the bubble growth problem, Plesset and Zwick 

[9] considered two limiting regions of bubble growth. Plesset

and Zwick [10-11] independently determined that the bubble

growth is thermally controlled by the rate of energy which is

transferred through the liquid to the vapour liquid interface.

Many authors are interested in studying nonlinear processes 

in a liquid with dynamics of vapour or gas bubbles by the 

Plesset-Rayleigh numerically (see, e.g. [6, 11-12]) and other 

analytically (see, e.g. [3, 13-15]). For an example, author in 

[13] studied dynamics of the Rayleigh-Plesset equation

modeling a gas-filled bubble immersed in an incompressible

fluid. However, analytical solutions can be useful for the

investigation of bubbles dynamics and developing its

applications.

The aim of this paper is to study the exact solution of 

Rayleigh-Plesset equation in some domain with initial values 

by the method of Cole–Hopf transformation which transforms 

from a non-linear ordinary differential equation into linearly 

differential equation. We then formally derive the exact 

solutions of Rayleigh-Plesset equation. This goal use to 

develop a theoretical model with an analytical solution that 

describes the physics and behaviour of growth bubble.  

The structure of the paper is the following. Section 2 

introduces the mathematical formulation of non-dimensional 

extended Rayleigh-Plesset equation. Section 3 presents the 

Cole Hopf transformation and the analytical solution of non-

dimensional extended Rayleigh-Plesset equation. The phase 

portrait of non-dimensional extended Rayleigh-Plesset 

equation is presented in section 4. Section.5 is devoted to the 

discussion of results. Finally, the conclusions are introduced 

in section 6. 

2. MATHEMATICAL MODEL

A single vapour bubble is considered to grow inside a 

mixture of vapour and superheated liquid between two finite 

radius boundaries 𝑅0  and 𝑅𝑚 . The problem is affected by

some parameters such as the pressure 𝛥𝑃̅̅ ̅̅  between the bubble

pressure Pv and P∞, and temperature difference between the

phases and other physical parameters. The problem is shown 

in Fig. 1.  

Moreover, we consider that the bubble is assumed to have a 

spherical geometry. The mixture of vapour and superheated 

liquid are assumed as an incompressible. Pressure inside the 

bubble is assumed to be uniform. Vapour density distribution 

inside the bubble is assumed to be uniform except for a thin 

boundary layer near the bubble wall. The viscosity of the fluid 

is considered. The equation of motion of bubble is without 

gravitational effects. 

Figure 1. Sketch of bubble dynamic. 

On a basis of Navier-Stoke's equation, the extended 

Rayleigh-Plesset equation describes the bubble dynamics 

problem. Then, the equation of motion for a spherically 

symmetric bubble takes the form: 
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Here, b =
3

2
, 𝜌 is a density of a liquid, σ is a surface tension, 

𝜂 is a viscosity, R̅ is the bubble radius as a function of time 

and dot denotes time differentiating and 
dR

R
dt

=  is 

instantaneous radial velocity of bubble boundary.  

We can be introduced the extended Rayleigh-Plesset 

equation (1) in non-dimensional form, so we suppose that 
* * *, ,R t P are characteristic scales of radius R , time t , and 

pressure 𝑃, respectively, and defined as 
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Substituting from relations (2) into equation (1), then 
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The above equation (3) takes the non-dimensional form 
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with the following set of non-dimensional numbers: 

▪ Thoma cavitation number, 
* *2

*2

P t
Th

R
= .  

▪ Weber number, 
*2

*3

2 t
We

R




= ,  

▪ Reynolds number, 
*2

*
Re

4

R

t
= , 

where, the kinematical viscosity has the form: 𝜈 =
𝜂

𝜌
. 

The scaling is well suited to the problem if the values of 𝑟 

and 𝑡 are of the order of unity. For non-irregular behaviour of 

the physical phenomenon, the quantity �̇�  an  �̈� are 

consequently also of the order of unity. Then, the above non-

dimensional numbers allow us to compare the importance of 

different terms in equation (4): pressure, surface tension and 

viscosity. 

The choice of the reference length and time scales deserves 

caution as the radius and the velocities can change by several 

orders of magnitude during the bubble evolution. Thus, in 

general, the scaling is well adapted to a limited phase of the 

phenomenon only. 

We can rewrite the equation (4) in the form 

 

𝑟2 𝑑2𝑟

𝑑𝑡2 + 𝑏 𝑟 (
𝑑𝑟

𝑑𝑡
)

2

+ 𝑎
𝑑𝑟

𝑑𝑡
− 𝑐 𝑟 + 𝑑 = 0,                            (5) 

 

where, 

 

𝑎 =
1

𝑅𝑒
 , 𝑏 =

3

2
, 𝑐 =

∆𝑃 𝑇ℎ

𝑃∗    and 𝑑 = 𝑊𝑒. 

3. THE COLE-HOPF TRANSFORMATION AND THE 

ANALYTICAL SOLUTION OF RAYLEIGH-PLESSET 

EQUATION 
 

On the basis of Cole-Hopf transformation that was used in 

studies of nonlinear ordinary differential equation and in 

mechanics (see, refs. [16-18], in this section, we will 

demonstrate the Cole–Hopf transformation method that used 

to solve non-dimensional extended Rayleigh-Plesset equation 

(5).  

To simplify equation (5), we suppose that the displacement 

r, is defined in r = R +
d

c
, then we get 

 

(
𝑑

𝑐
+ 𝑅)2 𝑑2𝑅

𝑑𝑡2 + 𝑏 (
𝑑

𝑐
+ 𝑅) (

𝑑𝑅

𝑑𝑡
)

2

+ 𝑎
𝑑𝑅

𝑑𝑡
− 𝑐 𝑅 = 0.            (6) 

 

Introducing the Cole–Hopf transformation in the form: 𝑅 =

𝛼
𝑑2

𝑑𝑡2 Log(𝜙(𝑡)) + 𝛽
𝑑

𝑑𝑡
Log (𝜙(𝑡)) , that gives us in another 

form  

 

𝑅 = 𝛼 (−
𝜙′(𝑡)2

𝜙(𝑡)2 +
𝜙′′(𝑡)

𝜙(𝑡)
) + 𝛽

𝜙′(𝑡)

𝜙(𝑡)
                                       (7) 

 

where, 𝛼 and 𝛽 are determined later. 

The first and the second derivatives would have the form: 

 
𝑑𝑅

𝑑𝑡
=

1

𝜙(𝑡)3 (2𝛼𝜙′(𝑡)3 − 𝜙(𝑡)𝜙′(𝑡)(𝛽𝜙′(𝑡) + 3𝛼𝜙′′(𝑡)) +

𝜙(𝑡)2(𝛽𝜙′′(𝑡) + 𝛼𝜙(3)(𝑡))),                                              (8)  

 

and 

 
𝑑2𝑅

𝑑𝑡2 =
1

𝜙(𝑡)4 (−6𝛼𝜙′(𝑡)4 + 2𝜙(𝑡)𝜙′(𝑡)2(𝛽𝜙′(𝑡) +

6𝛼𝜙′′(𝑡)) − 𝜙(𝑡)2(3𝛼𝜙′′(𝑡)2 + 𝜙′(𝑡)(3𝛽𝜙′′(𝑡) +
4𝛼𝜙(3)(𝑡))) + 𝜙(𝑡)3(𝛽𝜙(3)(𝑡) + 𝛼𝜙(4)(𝑡))).                    (9)         

 

Hence, using the transformation (7), and its derivatives (8) 

and (9) in (6). The equation (6) is reduced to the following: 

 

−𝑐 (
𝛽𝜙′(𝑡)

𝜙(𝑡)
+ 𝛼 (−

𝜙′(𝑡)2

𝜙(𝑡)2 +
𝜙′′(𝑡)

𝜙(𝑡)
)) + 𝑎 (−

𝛽𝜙′(𝑡)2

𝜙(𝑡)2 +

𝛽𝜙′′(𝑡)

𝜙(𝑡)
+ 𝛼 (

2𝜙′(𝑡)3

𝜙(𝑡)3 −
3𝜙′(𝑡)𝜙′′(𝑡)

𝜙(𝑡)2 +
𝜙(3)(𝑡)

𝜙(𝑡)
)) + 𝑏 (

𝑑

𝑐
+

𝛽𝜙′(𝑡)

𝜙(𝑡)
+ 𝛼 (−

𝜙′(𝑡)2

𝜙(𝑡)2 +
𝜙′′(𝑡)

𝜙(𝑡)
)) (−

𝛽𝜙′(𝑡)2

𝜙(𝑡)2 +
𝛽𝜙′′(𝑡)

𝜙(𝑡)
+

𝛼 (
2𝜙′(𝑡)3

𝜙(𝑡)3 −
3𝜙′(𝑡)𝜙′′(𝑡)

𝜙(𝑡)2 +
𝜙(3)(𝑡)

𝜙(𝑡)
))

2

+ (
𝑑

𝑐
+

𝛽𝜙′(𝑡)

𝜙(𝑡)
+

𝛼 (−
𝜙′(𝑡)2

𝜙(𝑡)2 +
𝜙′′(𝑡)

𝜙(𝑡)
))

2

(
2𝛽𝜙′(𝑡)3

𝜙(𝑡)3 −
3𝛽𝜙′(𝑡)𝜙′′(𝑡)

𝜙(𝑡)2 +
𝛽𝜙(3)(𝑡)

𝜙(𝑡)
+

𝛼 (−
6𝜙′(𝑡)4

𝜙(𝑡)4 +
12𝜙′(𝑡)2𝜙′′(𝑡)

𝜙(𝑡)3 −
3𝜙′′(𝑡)2

𝜙(𝑡)2 −
4𝜙′(𝑡)𝜙(3)(𝑡)
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𝜙(4)(𝑡)
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)) = 0.                                          

(10) 

 

From software program (like as Mathematica software 

(version 11.0)), we can calculate the power classification for 

ϕi, −1 ≤ i ≤ −8  that is to be 
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𝜙(𝑡)−1: 

 −𝑐𝛽𝜙′(𝑡) − 𝑐𝛼𝜙′′(𝑡) + 𝑎𝛽𝜙′′(𝑡) + 𝑎𝛼𝜙(3)(𝑡) +
𝑑2𝛽𝜙(3)(𝑡)

𝑐2 +
𝑑2𝛼𝜙(4)(𝑡)

𝑐2 = 0,                                               (11a) 

 

𝜙(𝑡)−2   : 
1

𝑐2 (𝑐2(𝑐𝛼 − 𝑎𝛽)𝜙′(𝑡)2 + 𝑑((−3𝑑𝛼 + 𝑏𝑐𝛽2)𝜙′′(𝑡)2 +

𝑏𝑐𝛼2𝜙(3)(𝑡)2 + 2𝑐𝛼𝜙′′(𝑡)((1 + 𝑏)𝛽𝜙(3)(𝑡) +

𝛼𝜙(4)(𝑡))) + 𝜙′(𝑡)(−3(𝑎𝑐2𝛼 + 𝑑2𝛽)𝜙′′(𝑡) +

2𝑑((−2𝑑𝛼 + 𝑐𝛽2)𝜙(3)(𝑡) + 𝑐𝛼𝛽𝜙(4)(𝑡)))) = 0,          (11b) 

 

𝜙(𝑡)−3 : 

 
1

𝑐2 (2(𝑎𝑐2𝛼 + 𝑑2𝛽)𝜙′(𝑡)3 + 𝑐𝛼𝜙′′(𝑡)((−6𝑑𝛼 +

𝑏𝑐𝛽2)𝜙′′(𝑡)2 + 𝑏𝑐𝛼2𝜙(3)(𝑡)2 + 𝑐𝛼𝜙′′(𝑡)((𝛽 +
2𝑏𝛽)𝜙(3)(𝑡) + 𝛼𝜙(4)(𝑡))) + 𝑐𝜙′(𝑡)((−6(2 + 𝑏)𝑑𝛼𝛽 +
𝑏𝑐𝛽3)𝜙′′(𝑡)2 + 𝑏𝑐𝛼2𝛽𝜙(3)(𝑡)2 + 2𝛼𝜙′′(𝑡)((−(4 +
3𝑏)𝑑𝛼 + (1 + 𝑏)𝑐𝛽2)𝜙(3)(𝑡) + 𝑐𝛼𝛽𝜙(4)(𝑡))) +
𝜙′(𝑡)2(2𝑑(6𝑑𝛼 − (3 + 𝑏)𝑐𝛽2)𝜙′′(𝑡) + 𝑐((−2(5 +
𝑏)𝑑𝛼𝛽 + 𝑐𝛽3)𝜙(3)(𝑡) + 𝛼(−2𝑑𝛼 + 𝑐𝛽2)𝜙(4)(𝑡)))) = 0,  

(11c) 

 

𝜙(𝑡)−4:  
1

𝑐2 (𝑑(−6𝑑𝛼 + (4 + 𝑏)𝑐𝛽2)𝜙′(𝑡)4 − 3𝑐2𝛼3𝜙′′(𝑡)4 −

𝑐2𝛼2𝜙′(𝑡)𝜙′′(𝑡)2(3(3 + 2𝑏)𝛽𝜙′′(𝑡) + 2(2 +
3𝑏)𝛼𝜙(3)(𝑡)) − 𝑐𝛼𝜙′(𝑡)2((−3(10 + 3𝑏)𝑑𝛼 + 9(1 +
𝑏)𝑐𝛽2)𝜙′′(𝑡)2 + 𝑏𝑐𝛼2𝜙(3)(𝑡)2 + 2𝑐𝛼𝜙′′(𝑡)(5(1 +
𝑏)𝛽𝜙(3)(𝑡) + 𝛼𝜙(4)(𝑡))) + 𝑐𝜙′(𝑡)3(𝛽(2(17 + 5𝑏)𝑑𝛼 −
(3 + 2𝑏)𝑐𝛽2)𝜙′′(𝑡) + 2𝛼((2(2 + 𝑏)𝑑𝛼 − (3 +
𝑏)𝑐𝛽2)𝜙(3)(𝑡) − 𝑐𝛼𝛽𝜙(4)(𝑡)))) = 0,                             (11d) 

 

𝜙(𝑡)−5: 

 
1

𝑐
𝜙′(𝑡)2((−4(4 + 𝑏)𝑑𝛼𝛽 + (2 + 𝑏)𝑐𝛽3)𝜙′(𝑡)3 + 9(2 +

𝑏)𝑐𝛼3𝜙′′(𝑡)3 + 𝑐𝛼2𝜙′(𝑡)𝜙′′(𝑡)((38 + 25𝑏)𝛽𝜙′′(𝑡) +
2(4 + 5𝑏)𝛼𝜙(3)(𝑡)) + 𝛼𝜙′(𝑡)2((−12(3 + 𝑏)𝑑𝛼 + (22 +
13𝑏)𝑐𝛽2)𝜙′′(𝑡) + 𝑐𝛼(3(3 + 2𝑏)𝛽𝜙(3)(𝑡) + 𝛼𝜙(4)(𝑡)))) =
0,                                                                                      (11e) 

 

𝜙(𝑡)−6:  

−
1

𝑐
𝛼𝜙′(𝑡)4((−4(3 + 𝑏)𝑑𝛼 + 5(2 + 𝑏)𝑐𝛽2)𝜙′(𝑡)2 +

3(11 + 7𝑏)𝑐𝛼2𝜙′′(𝑡)2 + 𝑐𝛼𝜙′(𝑡)((43 + 26𝑏)𝛽𝜙′′(𝑡) +
4(1 + 𝑏)𝛼𝜙(3)(𝑡))) = 0,                                                 (11f) 

 

𝜙(𝑡)−7:  

2𝛼2𝜙′(𝑡)6((7 + 4𝑏)𝛽𝜙′(𝑡) + 4(3 + 2𝑏)𝛼𝜙′′(𝑡)) = 0,  

(11g) 

 

𝜙(𝑡)−8: 

 −2(3 + 2𝑏)𝛼3𝜙′(𝑡)8 = 0.                                             (11h) 

 

By solving equation (11g), the solution of differential 

equation is 

 

ϕ(t) = −
4(3+2b)ⅇ

−
(7+4b)tβ
4(3+2b)ααC1

(7+4b)β
+ C2.                                   (12) 

 

Substituting from (112) into (7), we get 

 

𝑅(𝑡) = −
(7+4𝑏)𝐾𝛽2(16(3+2𝑏)2𝐾𝛼−(5+4𝑏)(7+4𝑏)𝑒

7𝑡𝛽+4𝑏𝑡𝛽
12𝛼+8𝑏𝛼 𝛽)

4(3+2𝑏)(−4(3+2𝑏)𝐾𝛼+(7+4𝑏)𝑒
7𝑡𝛽+4𝑏𝑡𝛽
12𝛼+8𝑏𝛼 𝛽)2

.       

                                                    (13) 

Here, K =
C1

C2
; is a constant, we can determine K under these 

initial conditions: t = 0 and R(0) = R0 , We obtain K in the 

form 

 

K =
−aK1c4d+(569c+1077bc+680b2c+144b3c)√K3−4√K4

K5((a2c+d2)K2c2d−a√K3)
,           (14) 

 

where K1, K2, K3 and K4 are defined as 

 

K1 = 12869073 + 70355331b + 170650961b2 +
240926173b3 + 218063862b4 + 131134456b5 +
52352192b6 + 13366272b7 + 1977856b8 + 129024b9, 

 

K2 = 22617 + 80838b + 119875b2 + 94190b3 +
41240b4 + 9504b5 + 896b6,  

 

K3 = (K2)2c5d2(a2c + 4d2), 

 

K4 = (−(3 + b)2(7 + 4b)3(152934 + 717349b +
1452609b2 + 1645874b31126752b4 + 465904b5 +

107776b6 + 10752b7)c5d((a2c + d2)K2c2d − a√K3),  

 

K5 = 1367 + 2303b + 1288b2 + 240b3. 

 

To find  α and β , we use power classification ϕ(t)−6  in 

(11f), α takes 

 

α = −
(359+719b+488b2+112b3)cβ2

64(3+b)(3+2b)2d
,                                      (15)  

                                                                

and 

 

256(7 + 4b)2d4 +
16a(7+4b)(359+b(719+8b(61+14b)))c3dβ

(3+b)(3+2b)
−

(359+b(719+8b(61+14b)))
2

c5β2

(9+9b+2b2)2 = 0.                                       (16) 

 

We get the solution of the equation (16) in the form 

 

β =
ββ1+√(ββ1)2+4(ββ2)(ββ3)

2 (ββ2 )
,                                             (17a) 

 

Or 

 

β =
ββ1−√(ββ1)2+4(ββ2)(ββ3)

2 (ββ2 )
,                                             (17b) 

 

where, 

 

ββ1 = 361872ac3d + 1293408abc3d +
1918000ab2c3d + 1507040ab3c3d + 659840ab4c3d +
152064ab5c3d + 14336ab6c3d,  

 

ββ2 = 128881c5 + 516242bc5 + 867345b2c5 +
782160b3c5 + 109312b5c5 + 12544b6c5, 

 

and 

 

ββ3 = 1016064d4 + 3193344bd4 + 4121856b2d4 +
2792448b3d4 + 1045504b4d4 + 204800b5d4 +
16384b6d4. 
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The solution of displacement of bubble growth, r takes the 

form 

 

r(t) =
8(7+4b)aψ1−ψ2(ψ3ⅇ

−2ψ1ct
aψ1−ψ2+

2a(3+b)

d
ψ1K−

2

(3+b)d
ψ2)

ψ4(2ψ5ⅇ

−2ψ1ct
aψ1−ψ2+

a

c
ψ5K−

1
(3+b)(3+2b)d

ψ2K)

2

          

+
d

c
,  

                                                             (18) 

 

where, 

 

ψ1 = (3 + b)(7 + 4b)(359 + b(719 + 8b(61 +
14b)))c3d,           

 

ψ2 = √
a2c+4d2

c
K, 

 

ψ3 = (5 + 4b)(7 + 4b)(359 + b(719 + 8b(61 + 14))),   

                 

ψ4 =
c(3+2b)

(5+4b)(7+4b)
ψ3, 

 

ψ2 =
c4

(5+4b)
ψ5. 

 

 

4. THE PHASE PORTRAIT OF EXTENDED 

RAYLEIGH-PLESSET EQUATION 

 

In the follows section 2, the non-dimensional extended 

Rayligh-Plesset equation (5) was introduced in non-

dimensional. And equation (5) can be solved by using phase 

plane, so we suppose that 

 

x r=  and y r= .                                                               (19) 

 

The derivatives of above relations take the form 

 

1

2

( , ).

( , ).

x y r f x y

x y r f x y

= = =

= = =
                                                           (20) 

 

From equations (19, 20) into equation (5), then equation (5) 

leads to 

 
2 2x y b x y a y c x d= − − + − .                                             (21) 

 

The ẏ becomes in the form 

 
2

22 2
( , )

b y a y c d
y f x y

x xx x
= − − + − = .                                (22) 

 

To obtain the critical points, we put 0
dy

dt
= and 0

dx

dt
= , 

then 

 

2
0

d c d
x

x cx
− =  = .                                                         (23) 

 

The equilibrium point is (
𝑑

𝑐
, 0). 

To estimate the eigenvalues, we proceed as follows; the 

Jacobian matrix 

1 1

2

2 2 3 2

0 1

2 2 2

f f

x y
J b x y cx a y d b x y a

f f
x x

x y

 

 
= = − + + +
  −

 

.          (24) 

 

The eigenvalues have the form 

 
2 2 2 3 2

1 3

2 ( 2 ) 4 ( 2 2

2

a x b x y a x b x y x d c x ay b x y

x


− − − + − − + − −
= , (25) 

 

and 

 
2 2 2 3 2

2 3

2 ( 2 ) 4 ( 2 2

2

a x b x y a x b x y x d c x ay b x y

x


− − + + − − + − −
= .   (26) 

 

By using values of physical parameters in the situation, the 

eigenvalues can be found at critical point (1070, 0) in the 

form: 

 

λ1 = −0.000954715  and λ2 = 0.000954679. 

 

Which give us an unstable saddle at (1070, 0) and λ1λ2 <
0 , With the help of the Mathematica software, the phase 

portrait classifications of the solutions of the autonomous 

system (20) and (22) are illustrated parametrically as a curve 

in the xy-plane, see Fig. 5.  
 

 

5. RESULTS AND DISCUSSION 

 

The extended of Rayleigh-Plesset equation (1) is 

transformed to non-dimensional equation in (5) that equation 

(5) is solved analytically using Cole-Hopf transformation in 

(7). The analytical solution of non-dimensional extended of 

Rayleigh-Plesset equation is given in equation (18). The 

presented solution in (18) represents the displacement of 

bubble growth and the effect of the physical parameters on the 

growth process. The solution of equation (5) is depended on 

convenient value of β, so we choose a convenient value of β 

in equation (17a) that give us a physical sense of the behaviour 

of bubble dynamics.  

The numerical values of physical parameters, which are 

used in the simulating and calculations for the bubble growth 

as: 

 

𝜂 = 10−5𝑘𝑔𝑚−1,  𝑃∗ = 247𝑘𝑔𝑚−1𝑠−2, ∆𝑃̿̿ ̿̿ =
10𝑘𝑔𝑚−1𝑠−2,  𝑅∗ = 10−5𝑚, 𝑡∗ = 10−4𝑠, 𝑊𝑒 = 1116.5 ,
𝑇ℎ = 128.87,   𝑅𝑒 = 23.95.  

 

Moreover, Fig.2 shows the comparison between the 

solution of equation (18) and  r =
d

c
. We note that the 

maximum of the growth process at the surface of bubble, that 

means r =
d

c
. 

The effect of physical parameters on the bubble growth is 

calculated by Mathematica program (Version (11.0)). In Fig. 

2, the displacement of bubble growth as a function of time is 

given by solving the non-dimensional of extended of 

Rayleigh–Plesset equation (5) with a Cole Hopf 

transformation in (7). We note that the result gives us the 

growth of bubble.  
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Figure 2. The growth of the bubble radius as a function of 

time. Blue curve represents of the solution of equation (18) 

and orange-dashed line represents r =
d

c
 

 

 
 

Figure 3. The displacement of bubble growth as a function 

of time under effect Weber Number, We. Blue curve - We, 

dashed red curve - 1.5 We 

 

 
 

Figure 4. The displacement of bubble growth as a function 

of time under effect Thoma number, 𝑇ℎ. Blue curve –  𝑇ℎ, 

dashed red curve: 1.5 𝑇ℎ 

 

Fig. 3 explains the effect of increasing the value of the 

Weber number We  on the bubble radius throughout the 

growth period, while it, the growth bubble is inversely 

proportional with Thoma cavitation number Th as shown in 

Fig. 4. The phase portrait of the solutions of dimensionless of 

Rayleigh-Plesset equation is illustrated in Fig. 5, gives us an 

unstable saddle. 

 
 

Figure 5. The phase plane of non-dimensional extended 

Rayleigh-Plesset equation (5) 

 

 

6. CONCLUSIONS 

 

We employed the Cole-Hopf transformation for finding the 

analytical solution of extended of Rayleigh-Plesset equation. 

The method has been shown to computationally efficient in 

solving the equation of growth bubble. The growth of bubble 

radius is proportional to Weber number and Thoma number. 

The problem is studied in phase plane in non-dimensional 

equation and the system of the bubble growth is unstable 

saddle point. These results must be taken into account while 

developing some applications of the bubble dynamics such as 

biomedical applications. 
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