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ABSTRACT 

In this study, the double finite Fourier sine transform method was used to solve the 

governing partial differential equation of equilibrium of isotropic sandwich plates with all 

edges simply supported for the case of uniformly distributed transverse load over the entire 

plate domain.  The governing equation solved for the sandwich plate domain was obtained 

by Liaw Boen Dar by ignoring the linear terms in the Reissner’s plate equation to have a 

fourth order partial differential equation. Application of the double finite Fourier sine 

transformation, and use of the simply supported Dirichlet boundary conditions simplified 

the problem to an algebraic problem in terms of the double finite Fourier sine of the 

unknown deflection in the transform space. Inversion of the double finite Fourier sine 

transform yielded the unknown deflection in the physical domain space. Specific problem 

of uniformly distributed transverse load over the entire plate yielded rapidly convergent 

solutions for the deflection. The deflections are found to be expressible in terms of the sum 

of flexural and shear deflections for the case of general distributed load, and for the specific 

case of uniformly distributed load. Maximum deflections, found to occur at the plate center 

were found to be decomposed into flexural and shear components.  
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1. INTRODUCTION

Sandwich plates have become increasingly attractive in 

structural applications due to their ability to provide high 

bending stiffness and their low weight. Sandwich plates are 

composite plates structures composed of (i) two thin stiff 

strong skins, called covers, faces or facings, (ii) a thick core 

made of light weight material to separate the skins and carry 

the load and (iii) an adhesive attachment capable of 

transmitting shear and axial loads to and from the core [1-5]. 

Typical three dimensional (isometric) and two dimensional 

cross-sectional) views of a typical sandwich plate are 

presented in Figures 1 and 2. Sandwich plates are thus 

composite plates made of three layers. The top and bottom 

layers, called the faces are usually thin and are made from high 

strength materials. The third, middle layer, called the core is 

made from a comparatively low weight and low strength 

material [3-4, 6]. 

In general, the skins are laminated with thickness h1 for the 

lower skin and thickness h2 for the upper skin, while the core 

has a thickness denoted by h. The coordinate system is defined 

as shown in Figure 3 such that the xy coordinate plane is the 

middle plane [4]. 

Figure 1. Typical cross-section of a sandwich plate 

Figure 2. 3 Dimensional view of isotropic sandwich plate 

Figure 3. Notations for a sandwich plate 

Typically, the core is made up of materials with reduced 

stiffness, resulting in the introduction of shear deformation 

effects which need to be accounted for in the governing 

equations [8]. Chirac and Vrabie [8] have used the first order 

shear deformation theory (FSDT) also called the Mindlin – 

Reissner theory to formulate the governing equations of 

sandwich plates. The obvious disadvantage of the use of the 
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FSDT is that the kinematics assume a global transverse shear 

strain considered constant over the plate thickness which 

violate the known parabolic distribution of transverse stresses 

in the theory of elasticity. 

In order to make transverse shear stress resultants agree with 

the parabolic distribution resultants of the theory of elasticity, 

a shear correction factor is introduced into the expression for 

the transverse shear stress resultant, and the accuracy of the 

shear stress correction factor becomes vital for the validation 

of the results using the FSDT. 

Magnueka – Blandzi [9] and Magnueka – Blandzi and 

Wittenberg [6] formulated from first principles, the 

mathematical equations governing the equilibrium of a 

sandwich circular plate made of two faces (skins, covers) and 

a core with variable mechanical properties. They derived the 

governing equations using the principle of extremization of the 

total potential energy functional. Wang [10] also formulated 

from fundamental principles, the governing equations of 

equilibrium of sandwich plates using the Reissner – Mindlin 

shear deformation plate theory, and presented exact 

relationships between the deflections of isotropic sandwich 

plates and their corresponding classical thin plates. 

Kormenikova and Manuzic [11] used the shear deformation 

plate laminate theory for sandwich plates by ignoring the 

membrane and flexural deformations in the core material and 

the shear deformation in the facings. Liaw Boen Dar [12] 

derived the governing partial differential equation of 

equilibrium of rectangular sandwich plates with orthotropic 

cores and also derived the governing differential equation of 

equilibrium of rectangular sandwich plates with isotropic 

cores by neglecting the non-linear terms in the stress based 

Reissner’s plate shear deformation theory, to obtain a fourth 

order linear governing partial differential equation. 

In this work, Liaw Boen Dar’s governing equation for 

isotropic sandwich plates is adopted as the mathematical 

model for the sandwich plate; and the equation is solved using 

the double finite Fourier sine transform method for the case of 

simply supported edges and uniformly distributed transverse 

load over the entire plate domain. 

 

 

2. THEORETICAL FRAMEWORK 

 

The governing partial differential equation of equilibrium 

for rectangular sandwich plates, obtained by ignoring the non-

linear terms in the Reissner’s plate equation is given by Liaw 

Boen Dar, [12] as follows: 
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w(x, y) is the transverse deflection of arbitrary points (x, y) 

on the plate domain, q(x, y) is the distribution of transversely 

applied load over the plate region; x and y are the in-plane 

Cartesian coordinates describing points on the plate domain,  

is the Poisson’s ratio, E is the Young’s modulus of elasticity; 

h is the plate thickness, Gc is the modulus of shear rigidity of 

the core material. 
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Figure 4. Simply supported isotropic sandwich plate under 

uniformly distributed load 

 

Ds is the shear modulus of the core, D is the flexural 

modulus, 2 is the Laplacian, and 4 is the biharmonic 

differential operator. 

Equation (1) can be expressed as: 
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or, in expanded form as: 
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For simply supported edges x = 0, x = 2a, y = 0, y = 2b, as 

shown in Figure 3, the boundary conditions are: 
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3. METHODOLOGY 

 

A finite sine transformation kernel k(r, s) suitable for the 

simply supported Dirichlet boundary conditions-Equations (9 

– 16) at the edges x = 0, 2a, y = 0, 2b is: 
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where r = 1, 3, 5, 7, …; s= 1, 3, 5, 7, … 

Hence, the Fourier sine transformation of the governing 

domain equation is given by 
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By the linearity property of the Fourier sine transformation, 

and using the Dirichlet conditions at the edges, the 

transformation simplifies to: 
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Let 
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where w(r, s) is the double Fourier sine transform of w(x, y) 

and q(r, s) is the double finite sine transform of q(x, y). 

The transformation then becomes: 
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Solving, for w(r, s) 

 
2 2

2 2
2 2 2 2

( , )( , )
2 2

( , )

2 2 2 2

s

q r s r sq r s
D a bDw r s

r s r s

a b a b

 

   

    
+    

    
= +
          

+ +          
          

   (23) 

 

2 2 22 2

( , ) ( , )
( , )

2 22 2
s

q r s q r s
w r s

r sr s DD
a ba b

  

= +
          +    +             

   (24) 

 

By inversion, 
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where q(r, s) is found from Equation (21).  

 

 

4. RESULTS 

 

For uniformly distributed loads, 
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w(x, y)f is the flexural component of the transverse 

deflection, and w(x, y)s is the shear component of the 

transverse deflection. 

 

Maximum deflection 

 

Maximum deflection occurs at the center of the plate where 

x = a, y = b and 
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The values of the maximum flexural and shear components 

of the deflection at convergence of the double series are 

calculated for various plate aspect ratios , and for various 

values of D/Ds and presented in Table 1. The convergence 

properties of the double sine series functions for the flexural 

and shear components of the deflection, and hence the 
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resultant deflection function is demonstrated with the 

convergence  study  done  for  square  isotropic  plates  and  

presented in Table 2. 

 

Table 1. Maximum deflection coefficients for the centre of uniformly loaded sandwich plates (2a  2b) with simply supported 

edges (x = 0, x = 2a, y = 0, y = 2b) 
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1.0 6.496  10−2 28.480  10−2 28.48  10−2 2.848  10−2 1.424  10−2 0.5696  10−2 

1.2 9.024  10−2 34.720  10−2 34.720  10−2 3.4720  10−2 1.7360  10−2 0.69440  10−2 

1.4 11.280  10−2 38.680  10−2 38.68  10−2 3.868  10−2 1.934  10−2 0.7736  10−2 

1.6 13.280  10−2 41.680  10−2 41.68  10−2 4.168  10−2 2.084  10−2 0.8336  10−2 

1.8 14.896  10−2 43.920  10−2 43.92  10−2 4.392  10−2 2.196  10−2 0.8784  10−2 

2 16.208  10−2 45.560  10−2 45.56  10−2 4.556  10−2 2.278  10−2 0.9112  10−2 

3 19.568  10−2 49.080  10−2 49.08  10−2 4.9080  10−2 2.454  10−2 0.9816  10−2 

4 20.512  10−2 49.800  10−2 49.80  10−2 4.980  10−2 2.49  10−2 0.996  10−2 

5 20.752  10−2 49.960  10−2 49.96  10−2 4.996  10−2 2.498  10−2 0.9992  10−2 

 20.832  10−2 50  10−2 50  10−2 5  10−2 2.5  10−2 1  10−2 

 

Table 2. Convergence characteristics of wf and ws for b/a = 1 

 

r s 

4

2 0

max 10f q a
w

D

− 
 
 

 

4

2 0

max 10s

s

q a
w

D

−
 
 
 

 

1 1 6.65703 32.851143 

3 1 6.56824 30.661067 

1 3 6.47948 28.470305 

3 3 6.488612 28.87587467 

3 5 6.487076352 28.747666 

5 3 6.485540705 28.618838 

5 5 6.485966755 28.6714 

5 7 6.48582778 28.64603 

7 5 6.485688866 28.62066 

7 7 6.48574545 28.63434 

 

 

5. DISCUSSION 

 

The governing partial differential equation of equilibrium of 

isotropic sandwich plates given by Equation (1) has been 

solved using the double finite Fourier sine transform method. 

Simply supported isotropic sandwich plates (2a  2b) with 

origin at a corner of the plate and edges at x = 0, x = 2a, y = 0, 

y = 2b was studied. The general arbitrary load distribution q(x, 

y) was considered, as well as the specific case of uniformly 

distributed load over the entire plate domain 

(0 2 , 0 2 ).x a y b     Application of the double finite 

Fourier sine transformation, and use of the simply supported 

(Dirichlet) boundary conditions simplified the boundary value 

problem to the algebraic problem given in terms of the 

unknown deflection in the Fourier transform space as Equation 

(22). Solution of the algebraic problem yielded the unknown 

deflection in the Fourier sine transform space as Equation (24). 

Inversion of Equation (24) yielded the general solution for the 

unknown deflection in the physical domain space coordinate 

variables as Equation (26) for general arbitrary load 

distribution. 

The solution for the particular problem of uniformly 

distributed load was obtained as Equation (24) or alternatively 

as Equation (38). Equation (38) is seen to be expressible as the 

sum of transverse deflection and shear deflection components 

as shown in Equations (39), (40) and (41). The maximum 

deflection was found to occur at the plate center for the case 

of uniformly distributed load and was found as Equation (42). 

The equation for maximum deflection was similarly found to 

be expressible as the sum of transverse and shear components 

as given by Equation (43), (44) and (45). The series obtained 

for maximum deflection, maximum flexural deflection 

components and maximum shear deflection components were 

found to be rapidly converging double series with sufficient 

convergence obtained with five terms of the series. 

 Table 1 which presents maximum deflection coefficients 

for the center of simply supported isotropic sandwich plates 

for various values of b/a and Ds/D shows that the contribution 

of shear deflection to the overall deflection reduces as the ratio 

Ds/D increases. 

Table 2 which presents the convergence studies of the 

deflection expression illustrates that the flexural component of 

deflection converges faster than the shear component. 

Convergence of the flexural component of the deflection is 

achieved for r = s = 5, while that for shear component is 

achieved for r = s = 9. The solutions obtained in this study 

were in exact agreement with solutions obtained for simply 

supported isotropic sandwich plates by Plantema (1966) who 

used a Navier method. 

 

 

6. CONCLUSION 

 

The following conclusions are made from the study: 

(i) The double finite Fourier sine transform method has 

been successfully used to solve the governing partial 

differential equation of isotropic sandwich plate with simply 

supported edges ( 0, 2 , 0, 2 )x x a y y b= = = =  and subject to 

arbitrary load distribution. 

(ii) The double finite Fourier sine transform method has 

been successfully used to solve the governing boundary value 

problem of simply supported isotropic sandwich plate for the 

specific case of uniformly distributed load over the entire plate 

domain. 
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(iii) The double finite Fourier sine transform method

yielded solutions for the unknown deflection as a rapidly 

convergent double trigonometric sine series of infinite terms. 

(iv) The deflection was found to be decomposable or

expressible as flexural and shear deflection components 

(v) The contribution of the shear deflection to the total

deflection reduces as the ratio of Ds/D increases. 

(vi) This paper will hopefully enhance our understanding

of the deflection behaviour of simply supported isotropic 

sandwich plates under uniformly distributed transverse loads. 
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NOMENCLATURE 

w(x, y) transverse deflection of arbitrary points (x, y) on the 

plate domain 

q(x, y) distribution of transversely applied load over the plate 

region 

x, y in-plane Cartesian coordinates describing points on the 

plate domain. 

 Poisson’s ratio of plate material 

E Young’s modulus of elasticity 

h plate thickness 

Gc modulus of shear rigidity of the core material 

Ds shear modulus of the core 

D flexural modulus 

k(r, s) finite sine transformation kernel 

2a, 2b dimensions of the sandwich plate in the x and y 

coordinate axes respect (i.e. breadth and length) 

r, s  integers 

 infinity 

w(r, s) deflection in the finite sine transform space 

q(r, s) distributed transverse load in the finite sine transform 

space 

q0 intensity of uniformly distributed load 

 plate aspect ratio 

FSDT first order shear deformation theory 

Subscripts 

max maximum 

f flexural 

s shear 

Mathematical symbols 

2 Laplacian 

4 = 22 biharmonic operator 

 integration sign or integral 

 double integration sign or double integral 

 summation 

 double summation 

x




partial derivative with respect to x 

y




partial derivative with respect to y 

2

x y



 
mixed partial derivative 
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