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ABSTRACT 

  
 In this paper, a robust active fault tolerant control (AFTC) scheme is proposed for induction 

motor drives (IMD) via input-output linearization control (IOLC) and nonlinear observer. 

In order to estimate the states and to reconstruct the faults, two different observers are used; 

a Luenberger observer (LO) and an extended kalman filter (EKF). Further we introduce 

feedback linearization strategy by choosing the output function as the rotor speed and flux 

square. To provide a direct comparison between these FTCs schemes, the performance is 

evaluated using the control of IMD under failures, variable speed, and variable parameters, 

finally the obtained results show that the proposed controller with the proposed observers 

provides a good trajectory tracking, and these schemes are robust with respect to faults, 

parameter variations, and external load disturbances for induction motor drive system.  

 

Keywords: 

active fault tolerant control (AFTC), input-

output linearization controls (IOLC), 

induction motor drives (IMD), luenberger 

observer (LO), extended kalman filter 

(EKF), electric vehicle (EV) 

 

 

 

1. INTRODUCTION 

 

Induction motor (IM), in particular, squirrel cage IM is 

crucial in industries for many reasons, such as simple 

construction, low maintenance requirement, rigid and high 

reliability like compressors [1-3]. Recent developments in 

many modern technologies have offered an excellent 

opportunity to use AC motors in high performance drives 

systems. Induction motor is attracting attention in recent years 

and it is widely recognized to be a very suitable candidate for 

hybrid and electric vehicles (EVs) applications. Robustness, 

high starting torque, cruising speed and high controllability are 

some of the IM characteristics responsible for its wide 

utilization in traction applications such as electric vehicles 

(EVs) [4-6].  
Many industrial applications require high dynamic 

performances and robustness to different perturbations. Thus, 

the robust control algorithm is desirable in stabilization and 

tracking trajectories.  
Fault-Tolerant Control Systems (FTCS) can be classified 

into two types: passive (PFTCS) and active (AFTCS). In this 

paper, we are concerned with the design and analysis of active 

FTCs. Contrasting with the former, the latter react with system 

component failures actively and implement reconfiguring 

actions to maintain the system stable and with acceptable 

performance [2]. The robust nonlinear FTCs considered here 

use the input-output feedback linearization control, based on 

differential geometry techniques. These techniques allow us to 

decompose the model of the motor in two independent mono-

variable linear sub-systems. The dynamics of each sub-system 

is obtained by an optimal pole placement [6]. In addition, 

input-output linearization control can offer a good 

insensitivity to parameters variations, external disturbances 

and rejection faults [7-9]. Fault-tolerant control schemes are 

characterized in this work by their capabilities, after fault 

occurrence, to recover performance close to the nominal 

desired performance. In addition, their ability to react 

successfully (stably) during a transient period between the 

fault occurrence and the performance recovery is an important 

feature.  
In this paper, we propose exploring the AFTC concept in 

EV propulsion by developing two architectures applied to an 

induction-motor drive affected by a sensor fault and used 

nonlinear controls via input-output feedback linearization. The 

first architecture is an AFTC include a Luennberger observer 

(FTC-LO). The second architecture is the combined between 

FTC and an Extended kalman filter (FTC-EKF). Our objective 

is to design an active fault-tolerant controller to maintain the 

stability, robustness and tracking performance of the faulty 

system. The main contributions of the paper are as follows: 

Firstly, two sensorless controls are considered in the paper, 

which is more practical in the control engineering. Secondly, 

an application of the FTCs techniques, especially with a 

holistic view on the electric vehicles (EVs). This later becomes 

very attractive in replacing conventional internal combustion 

engine vehicles because of environmental and energy issues. 

In addition EVs are by many seen as the cars of the future as 

they are high efficient, produces no local pollution, are silent, 

and can be used for power regulation by the grid operator [11-

14]. The comparison between AFTC of induction motor based 

on LO and EKF schemes ensures the validity of the proposed 

technique.  
This paper is organized as follows. In section 2, a model of 

IM under faults and EV dynamics are introduced. Section 3 

reviews an attitude control technique using input-output 

linearization controls (IOLC). A sensorless control based on 

nonlinear observers is discussed in Section 4. The proposed 

fault tolerant control is explained in section 5. In Section 6 

numerical simulation and a qualitative comparative study 

between these two FTCs structures are carried out to evaluate 

the performance of the robust FTCs. Finally, in section 7 

concluding remarks are stated. 
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2. MODELING OF IM UNDER FAULTS AND EV 

DYNAMICS 
 

2.1 Induction motor with faulty model  

 

The standard mathematical faulty model of the IM in 

stationary frame is given by [15]:   

 

�̇� = 𝐹 + 𝐺𝑢 + 𝛾𝑓𝑠                                                                (1) 

 

where 𝑓𝑠 is the actuator fault, 𝛾 and 𝐺 are constants matrix, 𝐹  

is a nonlinear matrix given by: 

 

𝐹 =

[
 
 
 
 
𝑎1𝑖𝑠𝛼 + 𝑎2𝜑𝑟𝛼 + 𝑎3𝜔𝜑𝑟𝛽
𝑎1𝑖𝑠𝛽  − 𝑎3𝜔𝜑𝑟𝛼 + 𝑎2𝜑𝑟𝛽
 𝑎4𝑖𝑠𝛼 + 𝑎5𝜑𝑟𝛼 − 𝜔𝜑𝑟𝛽
𝑎4𝑖𝑠𝛽  +𝜔𝜑𝑟𝛼 + 𝑎5𝜑𝑟𝛽 ]

 
 
 
 

                                        (2) 

 

{
 
 

 
 𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4]

𝑇 = [𝑖𝑠𝛼 𝑖𝑠𝛽  𝛷𝑟𝛼  𝛷𝑟𝛽]
𝑇
    

𝐺 = [
𝑔1   0   0   0 
0   𝑔2   0   0 

]
𝑇

                                          

𝑢 = [𝑢1   𝑢2]
𝑇 = [𝑣𝑠𝛼 𝑣𝑠𝛽]𝑇                        

                      (3) 

 

{
𝛾 = [

1   0   0   0
0   1   0   0

] 𝑇        

𝑓𝑠 = [𝑓𝑠1   𝑓𝑠2]
𝑇             

                                                       (4)  

 

For simplicity, we define the following variables: 

 

{
 
 

 
  𝑎1 =

−𝑅𝑡

𝜎𝐿𝑠
 , 𝑎2 =

1−𝜎

𝐿𝑚𝜎𝑇𝑟
 , 𝑎3 =

𝐿𝑚

𝐿𝑠𝜎𝐿𝑟
 , 𝑎4 =

𝐿𝑚

𝑇𝑟
         

𝑎5 = −
1

𝑇𝑟
 , 𝑎6 = 𝑎4, 𝑎7 =

𝐿𝑚

𝐽𝐿𝑟
, 𝑎8 = −

𝑇𝐿

𝐽
             

 𝑔1 = 𝑔2 =
1

𝜎𝐿𝑠
                                                         

         (5) 

 

where 𝜎 = 1 −
𝐿𝑚

2

𝐿𝑠𝐿𝑟
  is the coefficient of dispersion, sL , rL , 

𝐿𝑚 are respectively stator, rotor and mutual inductance. sR , 

rR  are respectively stator and rotor resistance. rT is the rotor 

time constant ( 𝑇𝑟 =
𝐿𝑟

𝑅𝑟
).  𝐽 , 𝑇𝐿  are inertia moment of the 

moving element and load torque. 

The presence of electrical and/or mechanical faults 

generates asymmetry of the IM yielding some slot harmonics 

in the stator winding: 

 

{
𝑖𝑠𝛼 → 𝑖𝑠𝛼 + 𝐹ℎ𝑠1
𝑖𝑠𝛽 → 𝑖𝑠𝛽 + 𝐹ℎ𝑠2

                                                                 (6)  

     

where: 

 

{
𝐹ℎ𝑠1 = ∑ 𝐴𝑖𝑠𝑖𝑛(𝜔𝑖𝑡 + 𝜑𝑖)

𝑓𝑠1
𝑖

𝐹ℎ𝑠2 = ∑ 𝐴𝑖𝑐𝑜𝑠(𝜔𝑖𝑡 + 𝜑𝑖)
𝑓𝑠2
𝑖

                                             (7) 

 

In the IM, the presence of faults shows harmonic 

components on the stator currents with known frequency and 

unknown amplitude and phase. The frequency dependent on 

the kind of fault which belongs to the two possible classes 

(rotor or stator faults), and the amplitude and phase dependent 

on the fault severity.  

Let us the following exosystem [15-16]: 

 

�̇�𝑓(𝑡) = 𝜆𝑓(𝜛)𝜓𝑓(𝑡), 𝜓𝑓 ∈ ℜ
4𝑛𝑓+2                                    (8) 

 

where 𝜛 = [𝜔1  𝜔2,1  𝜔2,−1  . .  𝜔2,𝑛𝑓  𝜔2,−𝑛𝑓] is the vector of 

the pulsations, and we have:  

 

{
 
 
 

 
 
 
𝜆𝑓 = 𝑑𝑖𝑎𝑔 (𝜆𝑓𝑖)                                                                    

𝜆𝑓𝑖 =

[
 
 
 
 
0 𝜔1
−𝜔1 0

0 0

⋮ ⋱ ⋮

0 ⋯
0 𝜔𝑖
−𝜔𝑖 0 ]

 
 
 
 

                                   

𝜓𝑓 =  [
𝜓2𝑖−1
𝜓2𝑖

] ∈ ℜ4𝑛𝑓+2, 𝑖 = 1, … , 𝑛𝑓                             

    (9) 

 

where 𝑛𝑓   is faults number, and 𝜔𝑖 = 2𝜋(𝑓𝑖 + 𝑓𝑎)  is the 

pulsation under faults. 

Then (6) can be expressed as: 

 

{
𝑖𝑠𝛼 → 𝑖𝑠𝛼 + Θ1𝜓𝑓
𝑖𝑠𝛽 → 𝑖𝑠𝛽 + Θ2𝜓𝑓

                                                             (10) 

 

with: 

 

{
Θ1 = [1   0 1 0   … 1 0]

Θ2 = [0   1 0 1   … 0 1]
                                        (11) 

 

2.2 Vehicle model 

 

Vehicle dynamics model only concerns the longitudinal 

dynamics of the vehicle [17]. In this case electric vehicle use 

independently equipped motors to drive each wheel. The 

independently equipped motors provide higher power/weight 

density, higher reliability for safety, and better dynamic 

performance, the dynamic differential equations for the 

longitudinal motion of the vehicle can be described as: 

 

𝐽𝑤
𝑑𝜔𝑤

𝑑𝑡
= (𝑇𝑚 − 𝑇𝐿)                                                          (12) 

 

𝑀𝑣
𝑑𝑉𝑣

𝑑𝑡
= (𝐹𝐿 − 𝐹𝑟)                                                             (13) 

 

𝑉𝑤 = 𝑅𝑤𝜔𝑤                                                                        (14) 

 

𝐹𝐿(𝜆𝐿) = 𝜇𝑁                                                                      (15) 

 

𝜆𝐿 =
𝑉𝑤−𝑉𝑣

𝑉𝑤
                                                                          (16) 

 

The vehicle model is based on mechanics and aerodynamics 

principles [18-19]. The total tractive effort is then given by: 

 

𝐹𝑟 = 𝐹𝑎𝑑 + 𝐹𝑟𝑜 + 𝐹𝑝𝑟 + 𝐹𝑠𝑓                                                (17) 

 

The power required to drive a vehicle, at a speed 𝑉𝑣 , has to 

compensate counteracting forces [11, 20]. 

 

𝑃𝑣 = 𝑉𝑣𝐹𝑟 = 𝑉𝑣(𝐹𝑎𝑑 + 𝐹𝑟𝑜 + 𝐹𝑝𝑟 + 𝐹𝑠𝑓)                             (18) 

 

where the definition of all parameters is listed in Table1. 

Generally, the nonlinear interrelation ships between the slip 
ratio 𝜆𝐿  and friction coefficient 𝜇𝐿  formed by tire dynamics 

can be modeled by the widely adopted Magic Formula [21]. 
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Table 1. EV parameters 

 
Parameters Describe 

𝐽𝑤 Wheel inertia 

𝜔𝑤 Wheel rotation 

𝑇𝑚 Driving torque 

𝑅𝑤 Wheel radius 

𝑇𝐿 Load torque 

𝑀𝑣 Vehicle mass 

𝑉𝑣 Vehicle velocity 

𝐹𝐿 Friction force (driving force) 

𝐹𝑟 Road load force 

𝜆𝐿 Slip ratio 

𝜇𝐿 Friction coefficient 

N Vehicle weight 

𝐹𝑎𝑑 Aerodynamic drag force 

𝐹𝑟𝑜 Rolling resistance force 

𝐹𝑝𝑟 Profile force of the road 

𝐹𝑠𝑓 Stokes friction force 

 

A programmable DC machine is utilized to emulate the 

longitudinal dynamics characteristics of the vehicle and a DC-

DC converter, as can be seen in Fig.1. As a mechanical load 

emulator. 

 

 

3. INPUT-OUTPUT LINEARIZATION CONTROLLER 
 

The input-output linearization technique uses a nonlinear 

change of coordinates and feedback to transform the nonlinear 

system (1) into a decoupled linear one. The design technique 

is based on generating a direct relationship between the output 

y and the control input u and then cancelling the present 

nonlinearities through the appropriate choice of control inputs. 

In this section, a similar approach has been applied to rotor 

speed and rotor flux control of IM drive using the model 

presented in stationary frame (Eq.1). 

In order to create a direct relation between system outputs 

(y) and inputs (u), the output variable is chosen by 𝑦1 = 𝜑𝑟 

and 𝑦2 = 𝜔.  

 

𝑦 = [
𝑦1
𝑦2
] = [

ℎ1
ℎ2
]=[𝜑𝑟𝛼

2 + 𝜑𝑟𝛽
2 = 𝜑𝑟

 

𝜔
]                             (19) 

 

Therefore, the output dynamics could be easily written as 

follows: 

 

𝑦1 : {
  ℎ1̇ (𝑥) = 𝐿𝑓ℎ1(𝑥) = 2𝑎5𝐿𝑚𝑓1 − 2𝑎5𝜑𝑟                      (20) 

  ℎ1̈ (𝑥) = 𝐿𝑓
2  ℎ1(𝑥) + 𝐿G𝛼𝐿𝑓ℎ1(𝑥)𝑢𝑠𝛼 + 𝐿 G𝛽𝐿𝑓ℎ1(𝑥)𝑢𝑠𝛽

   

                                                     

with:   

 

{
 
 

 
 
𝐿𝑓
2  ℎ1(𝑥) = 2𝑎4𝑎5𝐿𝑚𝑓3 − (2𝑎1𝑎4 + 6𝑎4𝑎5)𝑓1

                  +2𝑎4𝜔𝑓2 + (
4

𝑇𝑟
𝑎5 + 2𝑎2𝑎4)𝜑𝑟

𝐿G𝛼𝐿𝑓ℎ1(𝑥) = 2𝑎2 𝐿𝑟𝜑𝑟𝛼                                       

𝐿 G𝛽𝐿𝑓ℎ1(𝑥) = 2𝑎2 𝐿𝑟𝜑𝑟𝛽                                     

              (21) 

 

𝑦2 : {
  ℎ2̇ (𝑥) = 𝐿𝑓ℎ2(𝑥) =

𝑝𝐿𝑚

𝐽𝐿𝑟
𝑓2 −

𝐶𝑟

𝐽
                                  (22)

  ℎ2̈ (𝑥) = 𝐿𝑓
2  ℎ2(𝑥) + 𝐿 G𝛼𝐿𝑓ℎ2(𝑥)𝑢𝑠𝛼 + 𝐿 G𝛽𝐿𝑓ℎ2(𝑥)𝑢𝑠𝛽

   

                                          

with: 

{
 
 

 
 𝐿𝑓

2  ℎ2(𝑥) =
𝑝𝐿𝑚

𝐽𝐿𝑟
𝜔𝑓1 −

𝑝𝐿𝑚

𝐽𝐿𝑟
(𝑎1 + 𝑎5)𝑓2 −

𝑝𝐿𝑚
2

𝐽𝐿𝑟
2

𝜔

𝜎𝐿𝑠
𝜑𝑟    

𝐿G𝛼𝐿𝑓ℎ2(𝑥) = −
𝑝𝐿𝑚

𝐽𝐿𝑟

1

𝜎𝐿𝑠
𝜑𝑟𝛽                                                 

𝐿 G𝛽𝐿𝑓ℎ2(𝑥) =
𝑝𝐿𝑚

𝐽𝐿𝑟

1

𝜎𝐿𝑠
𝜑𝑟𝛼                                                    

(23) 

 

where:  𝑓1 = 𝑖𝑠𝛼𝜑𝑟𝛼 + 𝑖𝑠𝛽𝜑𝑟𝛽 ,  𝑓2 = 𝑖𝑠𝛽𝜑𝑟𝛼 − 𝑖𝑠𝛼𝜑𝑟𝛽  
 
𝑓
3
=

𝑖𝑠𝛼
2 + 𝑖𝑠𝛽

2  

 

Although the system dynamics order is five, the output 

dynamics have the order of four which implies the presence of 

an internal dynamics and the corresponding stability could be 

easily proven. 

Using input-output feedback linearization, only the 

derivatives of the outputs are considered, we obtain:   

                                                                                                                                  

[ 
ℎ1
ℎ2̈

̈
]=[
𝐿𝑓
2ℎ1(𝑥)

𝐿𝑓
2ℎ2(𝑥)

]+E(x) [
𝑢𝑠𝛼
𝑢𝑠𝛽 

]                                             (24) 

 

with: 

 

𝐸(𝑥) = [
𝐿 G𝛼𝐿𝑓ℎ1(𝑥) 𝐿 G𝛽𝐿𝑓ℎ1(𝑥)

𝐿 G𝛼𝐿𝑓ℎ2(𝑥) 𝐿 G𝛽𝐿𝑓ℎ2(𝑥)
] =

[
2𝑎2𝐿𝑟𝜑𝑟𝛼 2𝑎2𝐿𝑟𝜑𝑟𝛽

−
𝑝𝐿𝑚

𝐽𝐿𝑟

1

𝜎𝐿𝑠
𝜑𝑟𝛽

𝑝𝐿𝑚

𝐽𝐿𝑟

1

𝜎𝐿𝑠
𝜑𝑟𝛼

]                                             (25) 

                                                                                     

Det [𝐸(𝑥)] = 2
𝑎2𝐿𝑟

𝜎𝐿𝑠
𝜑𝑟                                                         (26) 

 

If 𝜑𝑟 ≠ 0, the matrix 𝐸(𝑥) is non-singular. By defining 𝑣 

as the new control input for linear system of: 

 

𝑣 = [
𝑣1
𝑣2
] = [

𝐿𝑓
2ℎ1(𝑥)

𝐿𝑓
2ℎ2(𝑥)

] + E(x) [
𝑢𝑠𝛼
𝑢𝑠𝛽  

]                                 (27) 

 

Main control equation can be defined as: 

 

[
𝑢𝑠𝛼
𝑢𝑠𝛽  

] = E(x)−1 ([
−𝐿𝑓

2ℎ1(𝑥)

−𝐿𝑓
2ℎ2(𝑥)

] + [
𝑣1
𝑣2
])                             (28) 

 

As a result, the system control effort would be simplified to: 

 

𝑣1 = ℎ1̈ =
𝑑2𝜑𝑟

𝑑𝑡2
= 𝑘𝜑1(𝜑𝑟𝑒𝑓 − 𝜑𝑟) + 𝑘𝜑2 (

𝑑𝜑𝑟𝑒𝑓

𝑑𝑡
−

𝑑𝜑𝑟 

𝑑𝑡
) +

          
𝑑2𝜑𝑟𝑒𝑓

𝑑𝑡2
                                                                         (29) 

                         

𝑣2 = ℎ2̈ =
𝑑2𝜔

𝑑𝑡2
= 𝑘𝜔1(𝜔𝑟𝑒𝑓 − 𝜔) + 𝑘𝜔2 (

𝑑𝜔𝑟𝑒𝑓

𝑑𝑡
−

𝑑𝜔

𝑑𝑡
) +

          
𝑑2𝜔𝑟𝑒𝑓

𝑑𝑡2
                                                                         (30) 

 

The gains 𝑘𝜑1 , 𝑘𝜑2 , 𝑘𝜔1  and 𝑘𝜔2  are chosen by 

identification with a second order system by using the pole 

placement method. 

 

 

4. SENSORLESS NONLINEAR CONTROL OF 

INDUCTION MOTOR  

 

4.1 The luenberger observer 
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The Luenberger observer, estimates states of the system 

(stator current and rotor flux). The observer equation can be 

given as: 

 
𝑑𝑥

𝑑𝑡
= 𝐴�̂� + 𝐵𝑢 + 𝐾𝐿(𝑖𝑠 − 𝑖̂𝑠)                                              (31) 

 

where 𝐾𝐿  is the observer gain matrix which governs the 

dynamics and the observer’s robustness; it is calculated by: 

 

𝐾𝐿 = [
𝐾1     𝐾2     𝐾3     𝐾4
𝐾2   −𝐾1   𝐾4   −𝐾3

]
𝑇

                                               (32) 

 

The coefficients 𝐾1, 𝐾2, 𝐾3, and 𝐾4 are defined as follows 

[22]:  

 

{
 
 
 

 
 
 𝐾1 = (𝑘 − 1) [

1

𝜎𝐿𝑠
+

(1−𝜎)

𝜎𝑇𝑟
+

1

𝑇𝑟
]                                        

𝐾2 = (𝐾 − 1)�̂�                                                                    

𝐾3 =
(1−𝑘2)

𝑎3
[
1

𝜎𝐿𝑠
+

(1−𝜎)

𝜎𝑇𝑟
+

1

𝑇𝑟
] +

(𝑘−1)

𝑎3
[
1

𝜎𝐿𝑠
                      

+
(1−𝜎)

𝜎𝑇𝑟
+

1

𝑇𝑟
]                                              

𝐾4 =
(𝑘−1)

𝑎3
�̂�,   𝑘 > 0                                                             

 (33) 

 

The estimated speed is obtained from the speed tuning 

signal by using a PI controller thus:  

 

�̂� = 𝐾𝑝(𝑧1�̂�𝑟𝛽 − 𝑧2�̂�𝑟𝛼) + 𝐾𝑖 ∫(𝑧1�̂�𝑟𝛽 − 𝑧2�̂�𝑟𝛼)𝑑𝑡        (34) 

            

where  𝑧1 = 𝜑𝑟𝛼 − �̂�𝑟𝛼  and 𝑧2 = 𝜑𝑟𝛽 − �̂�𝑟𝛽  are errors 

between the estimated and measured rotor flux. 𝐾𝑝 , 𝐾𝑖  are 

proportional and integral positive gains. 

 

4.2 The extended Kalman filter 

 

The extended Kalman filter is an optimal state estimator for 

nonlinear dynamical systems. An EKF will be used for the 

reconstruction of the faults of the induction motor model using 

current measurements. Since EKF is a stochastic filter, the 

discrete nonlinear stochastic model of the induction motor 

must be used and can describe by [23]: 

 

{
𝑋(𝑘 + 1) = 𝑔[𝑋(𝑘), 𝑢(𝑘), 𝑘] + 𝑏𝑟𝑠(𝑘)           

𝑌(𝑘 + 1) = 𝑐𝑑𝑋(𝑘) + 𝑏𝑟𝑚(𝑘)                          
                 (35) 

 

where 𝑌(𝑘) is a vector containing the 𝛼 - 𝛽 components of the 

stator current space vector, 𝑢(𝑘)  is a vector of excitation 

signals, which are the 𝛼 - 𝛽 components of the stator voltage 

space vector, 𝑋(𝑘) is a vector containing the states, 𝑏𝑟𝑠(𝑘) 
and 𝑏𝑟𝑚(𝑘) are respectively the process and the measurement 

noise vectors at time 𝑘. the covariance matrix of noise vector, 

which is shown below: 

 

𝑄 = 𝑐𝑜𝑣(𝑤) = 𝐸{𝑤𝑤𝑇}; 𝑅 = 𝑐𝑜𝑣(𝑣) = 𝐸{𝑣𝑣𝑇} 
 

where 𝑄  and 𝑅  are respectively the process and the 

measurement covariance matrices. 𝐸{𝑤𝑤𝑇}  represents the 

mathematical expectation [24]. 

The Extended Kalman Filter equations are [23, 25]: 

 

{

𝑃(𝑘 + 1 |𝑘) = 𝐹(𝑘)𝑃(𝑘)𝐹(𝑘)𝑇 + 𝑄                              

𝐾(𝑘 + 1) = 𝑃(𝑘 + 1 |𝑘)𝐶𝑇[𝐶𝑃(𝑘 + 1 |𝑘)𝐶𝑇 + 𝑅]−1

�̂�(𝑘 + 1) = 𝑔[�̂�(𝑘), 𝑢(𝑘)] + 𝐾(𝑘)[𝑌(𝑘) − 𝐶�̂�(𝑘)]  

    (36) 

 

where �̂�  is the state estimate, 𝑃(𝑘)  is the estimation error 

covariance matrix, 𝐾(𝑘) is the Kalman gain matrix, 𝐹(𝑘) and 

C are given by: 

 

{
𝐹(𝑘) =

𝜕

𝜕𝑋
{𝑔[𝑋(𝑘), 𝑢(𝑘), 𝑘]}

𝐶 =
𝜕

𝜕𝑋
{𝑐𝑑(𝑋(𝑘), 𝑘)}               

                                          (37) 

 

It can be seen that the structure of EKF is similar to that of 

LO, except that its gain K is designed to minimize the error 

between the real and estimated state vectors. 

The speed adaptive mechanism is given by: 

 

�̂� = 𝐾𝑝(𝑧1φ̂𝑟𝛽 − 𝑧2𝑖𝑠𝛽φ̂𝑟𝛼) + 𝐾𝑖 ∫(𝑧1φ̂𝑟𝛽 − 𝑧2φ̂𝑟𝛼)𝑑𝑡  (38) 

 

 

5. ROBUST FAULT TOLERANT CONTROL 

  

This section proposes an active FTC approach using 

nonlinear observer and based on nonlinear control in the 

presence of faults, and only actuator faults are considered in 

the design procedure as well. the fault tolerant architecture 

proposed in this paper is illustrated in figure (1). Therefore, in 

this paper, two active FTC strategies which will be discussed 

later, are all based on the input-output linearization control for 

a purpose also to compare the advantages and disadvantages 

of a FTC strategies based on two nonlinear observers (LO and 

EKF) with the same fundamental control technique. 

 

5.1 Fault reconstruction 

 

The healthy state of current sensor for phase in the frame 
(𝛼, 𝛽) could be judged from an error variable 𝑒𝑠𝛼𝛽.     

 

𝑒𝑠𝛼𝛽 = |𝑖𝑠𝛼 − 𝑖̂𝑠𝛼| + |𝑖𝑠𝛽 − 𝑖̂𝑠𝛽|                                         (39) 

 

The dynamics of the estimation error under actuator faults 

is given by this system: 

 

�̇̃�𝑥 = [
�̇�1
�̇�2
] − [

�̇̂�1
�̇̂�2
] = [

𝑖�̇�𝛼
𝑖̇𝑠𝛽
] − [

𝑖̂̇𝑠𝛼
𝑖̂̇𝑠𝛽
]                                       (40) 

 

�̇̃�𝑥 = 0 ⇔ {
(1 − 𝑎1)�̃�𝑥1 − 𝜆1𝑡𝑎𝑛ℎ𝑧𝑦1 − 𝑓𝑠1 = 0

(1 − 𝑎1)�̃�𝑥2 − 𝜆2𝑡𝑎𝑛ℎ𝑧𝑦2 − 𝑓𝑠2 = 0
             (41) 

 

Equation (41) shows that 𝑧𝑥 converges to zero, as 𝑡 → ∞, 

𝑖̂𝑠𝛼 and 𝑖�̂�𝛽 could be calculated based on the full order observer 

(LO or EKF) above. Thus, the fault is estimated by the 

following expression:  

 

{
𝑓𝑠1 = −𝛤1𝑡𝑎𝑛ℎ𝑧𝑦1

𝑓𝑠2 = −𝛤2𝑡𝑎𝑛ℎ𝑧𝑦2
                                                            (42) 

 

The function tanh represents a hyperbolic function. 𝛤1 and 

𝛤2 are selected constant vector and (𝑧𝑦1 = 𝑦1 − �̂�1 , 𝑧𝑦2 =

𝑦2 − �̂�2)  are the output estimation errors. 
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5.2 Control reconfiguration 

 

In the case of global control reconfiguration,  𝑓𝑠1 → 𝑓𝑠1 and 

 𝑓𝑠2 → 𝑓𝑠2, then the faults are compensated and the resulting 

additional control laws (𝑢1𝑎𝑑  and 𝑢2𝑎𝑑) can be expressed by: 
 

{
𝑢1𝑎𝑑 = −

1

𝑔1
𝑓𝑠1

𝑢2𝑎𝑑 = −
1

𝑔2
𝑓𝑠2

                                                                (43) 

6. SIMULATION RESULTS    

           

In this section, some numerical simulations have been 

performed to validate the proposed FTC schemes. The 

induction motor parameters are given in the appendix.  

The closed-loop simulation results are reported in Figures 

below under both healthy and faulty conditions, and this 

demonstrates that the disturbance and fault rejection are 

guaranteed truly.  

 
 

Figure 1. Block diagram of the proposed active fault tolerant control for IMD 

 

In the all simulations cases, for fair comparison the same 

measurements are assumed available to both deterministic and 

stochastic observers and the same controller parameters are 

used. 
On the other hand variations of 50% of the stator resistance 

(𝑅𝑠) and rotor resistance (𝑅𝑟) between the time t = 14 s and t 

= 16 s with variable speed reference are introduced. After the 

faults occurred at t = 12 s. Two levels of simulation results will 

be presented here: firstly, Figs (2) and (3) show that the 

simulation results of FTC based on Luenberger observer (LO-

FTC).  
Simulation results prove that LO-FTC exhibit strong 

robustness to motor parameter variations, such as stator 

resistance and rotor resistance. Secondly, Figs (4) and (5) 

show the results of FTC scheme based on Extended kalman 

filter (EKF-FTC). The results are obtained with parametric and 

speed variations. 

 

 

 
 

Figure 2. IMD reference, real and estimated speed and rotor flux (upper plot) with using LO-FTC strategy, and zoom around 

fault appearance at t = 12 s (lower plot) 
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Figure 3. Current and EV velocity (upper plot) with using LO-FTC strategy, and zoom around fault appearance at t = 12 s (lower 

plot) 

 

 
 

Figure 4. IMD reference, real and estimated speed and rotor flux (upper plot) with using EKF-FTC strategy, and zoom around 

fault appearance at t = 12 s (lower plot) 

 

 
 

Figure 5. Current and EV velocity (upper plot) with using EKF-FTC strategy, and zoom around fault appearance 

at t = 12 s (lower plot) 
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In other words, simulation results demonstrate that the EKF 

is theoretically immune to external noise. In addition, EKF can 

provide even better performance under faulty condition, which 

confirms that EKF-FTC scheme shows strong robustness to 

faults; consequently EKF may have superior performance for 

fault tolerant control over LO. The results of the first strategy 

of FTC based on luenberger observer (LO-FTC) are presented 

in Figs (2) and (3). 

The results of the second strategy of FTC based on extended 

kalman filter (EKF-FTC) are presented in Figs (4) and (5), 

when we used the same nominal controller (IOLC) and the 

same conditions applied in the previous strategy. 

These results present a good performance of the input-

output linearization control when we use EKF. Initially the 

system works on fault-free case, then at time t = 12 s, sensor 

faults are introduced. 

From these results, we can see that the proposed control is 

robust to parameter variations, the preceding figures show that 

the use of the active FTC allows a good compensation of faults 

in a very short time. This is due to the use of an observer for 

faults reconstruction.  

According these obtained results, it is noted that the 

nonlinear controllers with an EKF (EKF-FTC) is robust with 

respect to the variation of the load and the faults injection. The 

estimation error of speed and flux is zero for low speeds and 

not important for high speeds. We note from the previous 

figures that the method applied by the nonlinear observer 

allows a good reconstruction of the faults. The results obtained 

are more efficient than those of the active FTC used the 

Luenberger observer (LO-FTC). 

 

 

7. CONCLUSIONS 

 

This paper has presented a sensorless fault tolerant control 

with robust performance in electric vehicle based on two 

different observers (LO-FTC and EKF-FTC) and a nonlinear 

control of an induction motor drive. Novelty of the proposed 

fault tolerant schemes consisted of the use of the fault signal 

reconstructed by these observers and exploited in the closed 

loop scheme for improving the performances of the overall 

system. Further investigations will regard the proof of the 

stability of the complete fault tolerant scheme. Moreover, the 

obtained results tests proved both FTCs structures have a good 

response to a sudden change in the speed and parameter 

variations, whereas the best overall performance was recorded 

with the extended kalman filter. 
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APPENDIX 

Table 2. Induction motor parameters 

1 kW, 5 Nm, Rs =1 2.75 Ω, Rr = 5.1498 Ω, Ls = 0.4991 H, Lr = 

0.4331 H, Lm = 0.4331 H, J = 0.0035 kg.m 
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