
Performance analysis of local, network and distributed file systems running inside user’s virtual

machines in cloud environment

Gopi Bhatt1*, Madhuri Bhavsar2

1 Department of Computer Science & Engineering, Institute of Technology, Nirma University, Ahmedabad 382481, India
2 Department of Information Technology, Institute of Technology, Nirma University, Ahmedabad 382481, India

Corresponding Author Email: ce.gopi@adit.ac.in

https://doi.org/10.18280/ama_b.610108

Received: 29 March 2018

Accepted: 15 April 2018

ABSTRACT

Cloud computing, a recently developed paradigm, mainly focuses on resource allocation on

demand. Operating Systems running in Virtual Machines can enhance their performances

by adjusting resources as and when required. Due to this ever changing resource complexity,

it becomes very difficult to model and analyze performance of some of the important

components of Operating Systems, especially the File System.

This paper presents a model, based on Queuing Theory, for performance analysis of Local,

Network and Distributed File Systems running in Operating Systems of user’s VMs. This

model takes into consideration parameters like average service time, average waiting time

and VM migration time in file system’s performance. It also takes into consideration

different failures in Cloud environment like Virtual Machine Failures, Hypervisor Failures

and Communication Failures. Each File system operation is considered as a service request

sent by specific Virtual Machine to the Hypervisor. The performance is evaluated based on

the average time taken to service the entire request. A numerical depicting the performance

analysis based on this concept has also been illustrated.

Keywords:

cloud computing, file systems, virtual

machines, queuing theory, performance

analysis

1. INTRODUCTION

Virtualization has consistently improved hardware

utilization, by providing applications, platforms and

infrastructure on demand [1, 7, 13]. Apart from these

advantages, virtualized systems are also complex, and thus

difficult to model, measure and analyze. One of the important

factor that causes this complexity, is sharing of hypervisor’s

hardware resources among virtual machines [2-3].

In any particular virtualized environment, a Hypervisor

maps virtual disk images of virtual machines as regular files

residing in the File system of the hypervisor. So, in this case,

there are two different file systems – a hypervisor’s file system

and a VM’s file system – both of them are totally unaware

about each other’s existence. These type of interdependent

architecture, complicates the process of optimizing the

parameters that enhance performance of VM’s file systems.

For example, nearly placed blocks in VM’s File systems for

faster access, may be kept physically at distant locations by the

hypervisor’s layer file system.

In another alternative is to map hypervisor’s logical volume

directly to virtual disk images of virtual machines (VMs). The

virtual machine, completely ignorant of it, formats this virtual

hard disk with the file system that is compatible with the

operating system installed in that virtual machine. With a

virtualized disk driver, the VM communicates with the

emulated Disk I/O Controller provided in the abstraction layer

of the hypervisor. As hypervisor’s can host more than one

virtual machine and the fact that there is a layer of abstraction

complicates the situation. Due to multiple VMs running in the

hypervisor, the emulated Disk I/O controller can receive more

than one request at any given time to perform disk read or write

operation on the actual physical storage. This may lead to a

queue, where the requests need to wait for the current ongoing

request to get completed. Hence, the average waiting time may

have a significant impact on the overall performance of the file

operations in virtual machines.

This paper takes into consideration the second mechanism

discussed above, which maps hypervisor’s logical volumes

directly to virtual disk images of VMs for our analysis model.

The distinguished feature of our analysis model are as follows:

Multiple VMs will be share the underlying physical resource

to perform their requests. A different read and write queue will

be maintained at Disk I/O controller as both are diverse

operations. Failure of Virtual Machines, Communication

channels, hypervisor and VM migrations are also considered,

providing much closeness to real virtualized environment. For

performance analysis, the Operating Systems configured in

user’s Virtual Machines are considered to be of Linux

environment.

Initial sections, provide performance analysis of local file

systems, residing in VM’s Operating Systems. Further

sections, focus on performance modeling of Networked (NFS)

& Distributed (DFS) File System, in this particular

environment. This paper is organized as follows: Section 2

provides insight on the related work. Section 3 discusses our

Analytical model for local, network and distributed file

systems. In section 4, an illustration is presented. At the end,

section 5 provides conclusion and future work.

2. RELATED WORK

Performance model of Cloud Computing resources based

Advances in Modelling and Analysis B
Vol. 61, No. 1, March, 2018, pp. 48-55

Journal homepage: http://iieta.org/Journals/AMA/AMA_B

48

on Queue base has been a research focus due to its on demand

changing resource environment. In [4, 13], the cloud center is

modeled as an M/G/m/m+r queue with arrival rate and service

rate generated using probability distribution. A request for

resource is be further divided into subtasks [12], to provide a

closer model to real time situations. In [6], performance

analysis also takes into consideration real time failures like

hypervisor failure, virtual machine failure and communication

failure. In this paper, we have used many derivations from [6].

Storage is also considered as resource in Cloud environment.

Virtual machines will be scheduling the storage resource

during file operation. Scheduling of the virtualized I/O for

storage resource for increasing performance has been

highlighted in [5, 10], while [9] has provided the insight on the

role of high performance disk image’s role for performance

analysis of virtual system’s I/O operations.

Modeling file systems is a complex task as variety of file

systems with different functionalities have been developed.

For our work, based on the functionality, we have categorized

file systems as local, network and distributed file system.

Performance analysis of these file systems in non-virtual

environment provides an insight on the parameter metrics used

to optimize the performance. Comparing the workload [15] of

different file systems help in understanding the impact on their

metrics and their relation with overall performance. In [11,

14], impact of workload on metrics regarding NFS has been

highlighted. The impact of scaling on performance of

distributed file systems has been elaborated in [16]. Some

more benchmarking features of File system have been

provided in [17].

3. PERFORMANCE ANALYSIS MODEL

The performance model is the instance-based representation

of how a system uses all kinds of its resources and manages

different impacts on its performance. In case of File Systems,

reading and writing files are the two basic operations.

Therefore, the Performance Model majorly focuses on two

parameters, READT : time required to read a file and WRITET :

time required to write a file.

3.1. Local file systems

In case of Local File Systems, whenever a user process

requests to fetch a file, VFS forwards this request to the

underlying local file system, which signals device drive to

fetch a particular block or set of blocks to the main memory.

Figure 1. Working architecture of local file system, in linux

environment

Thus, the File reading and writing time, in case of local file

system can be summarized as:

BLOCKREADBREQUESTREADREAD TNTT __ += (1)

BLOCKWRITEBREQUESTWRITEWRITE TNTT __ += (2)

where NB is number of blocks to be read or written. Here and

is the time taken by a request from user process to reach File

System, which can be considered as negligible.

3.2 Network file system

In Network File Systems, a file is accessible from any node

in the network, maintaining location transparency. This type

of file access along the network generates significant amount

of network delay involved during file block’s transfer.

Acknowledgements can be ignored as they are either

piggybacked or considered as minor criterion, considering its

size.

Figure 2. Working architecture of network file system, in

linux environment

The read and write file operations are characterized by two

independent variables of storage and network, i.e. time

required to read/write a block with time required to transfer

that block to the system requesting it. This can be expressed

as:

TRANSFERNETWORKNREADBLOCKBREQUESTREADREAD TNTNTT ___ ++=

 (3)

TRANSFERNETWORKNWRITEBLOCKBREQUESTWRITEWRITE TNTNTT ___ ++=

 (4)

where NB is number of blocks to be read or written and NN is

number of packets to be transferred.

3.3 Distributed file system

Figure 3. Architecture of distributed file system

49

The architectural model presented in this section is general

for typical DFSs, which consists of Metadata Server, which

handles location and access transparency and Storage Server

which provides or stores the data.

To read a File, the client first contacts the Metadata Server.

Metadata server translates the file name into the list of blocks

IDs along with their location information. The client node

communicates with the nearest Storage server to access the

specific block. So, the File read operation consists of three

parts: Communicate with Storage server for block

information, receive block information and transfer of blocks

along the network.
READT can be expressed as:

_ _

_ _

(

)

READ READ REQUEST B BLOCK LOCATION

BLOCK READ N NETWORK TRANSFER

T T N T

T N T

= +  +

+ 
 (5)

_ _

_ _

(

)

WRITE WRITE REQUEST B BLOCK LOCATION

BLOCK WRITE N NETWORK TRANSFER

T T N T

T N T

= +  +

+ 
 (6)

LOCATIONBLOCKT _ is the time, when client communicates

with the name node to obtain block’s metadata information. Its

value can be neglected compared to other parameters.

4. THE PERFORMANCE & ANALYSIS MODEL IN

CLOUD ENVIRONMENT

In Cloud Computing Environment, the hypervisor provides

each hardware component as resource which is shared among

virtual machines. The hypervisor maintains a separate

Resource allocator (RA) for each hardware component. A

Resource allocator (RA) can be considered as a queue, which

handles and manages requests received from virtual machine.

In a typical Cloud setup each virtual machine is configured

with their local virtual storage, but actually, they are sharing

the physical storage of the hypervisor. Whenever, a process in

any virtual machine requests to access a file from the local,

network or distributed file system configured in that specific

virtual machine, the Virtual Device driver forwards this

request to the Resource Allocator (RA). In case of Local File

System, only Storage Resource Allocator (SRA) will be

accessed, where as in NFS and DFS both Network Resource

Allocator (NRA) and Storage Resource Allocator (SRA) will

be requested.

Figure 4. Queue based performance model of file systems

running in vms, in a hypervisor

With a closer look at this Storage Resource Allocator (SRA)

and Network Resource Allocator (NRA), they can be equated

with single server queue, where virtual machine’s file and

network operation requests are received and stored for further

service.

For our performance model, we have assumed a queue with

the notation FCFSmnMM k ////][where M : mean

arrival rate,][kM : mean service rate for k tasks, n: number of

hypervisors, m: buffer size, and FCFS: first come first serve

policy.

Applying Queuing theory, and considering equations (1)

and (2), the equations for file read and write, for local file

system can be expressed as:

READBLOCKBW AITINGREADREAD TNTT __ += (7)

WRITEBLOCKBWAITINGWRITEWRITE TNTT __ += (8)

The equations for file read and write, after referring to

equation (3), (4), (5) and (6), for Network and Distributed File

System can be obtained as:

()

()

_ _

/ _ /

READ READ WAITING B BLOCK READ

N W WAITING N N W

T T N T

T N T

= +  +

+ 
 (9)

()

()

_ _

/ _ /

WRITE WRITE WAITING B BLOCK WRITE

N W WAITING N N W

T T N T

T N T

= +  +

+ 
 (10)

Here, we are assuming that there are separate queues

maintained for Read, Write and Network requests.

3.2 Assumptions

Based on the model presented above, we make following

assumptions:

(a). A Virtual Machine’s read or write request will be

considered as a single task, and cannot be divided into further

subtask.

(b). Each file operation request will be treated as an

independent event and their arrival rate λ will be considered as

independent and identically distributed (i.i.d) random variable

arriving according to a Poisson Process.

(c). The average service rate of the physical server j follows

an exponential distribution with the parameter j . The service

rates of one physical server is independent of the other

physical server.

(d). A Virtual Machine can at a time send one file operation

request. The maximum number of requests that can arrive at

any given instance is equal to maximum number of virtual

machines nMAX, on any hypervisor.

(e). The failure rate of Virtual Machines is in accordance

with a Poisson process with parameter v (The parameters

mentioned in assumption e, f, g, h, i and j will be taken into

consideration, for Network and Distributed file system only

and not for Local file systems)

(f). The migration and recovery rate of VMs is an i.i.d

following an exponential distribution with the parameter v

50

(g). The failure rate of Hypervisors is generated using a

Poisson process with parameter p .

(h). The recovery rate of a Hypervisor is an i.i.d with

exponential distribution with parameter p

(i). The failure rate of Communication link is also generated

using Poisson process with parameter c

(j). The recovery rate of Communication channel is i.i.d

with exponential distribution with parameter c

(k). The maximum number of Virtual Machines in a

Hypervisor is nMAX.

(l). The Request queue or the buffer size is m which is very

much greater than n

(m). If the number of requests (queued + arrived) is greater

than the buffer size, then the latest arrived requests will be

dropped in LIFO manner.

3.3 Markov Model

A file read or write request comes directly from the Virtual

Machine to the hypervisor’s Storage resource request queue.

The moment of the request queue buffer can be marked as

Markov points. Such process can be modeled as Markov

process with the state ()mn 3,2,1 , where n represent the

number of file operation request in the buffer. Figure.5,

Represents the initial stage, where the buffer is empty. For i

number of requests arriving simultaneously, there will be a

transition to state i with a transition probability of ()iP .

According to assumption (d) and (k) the maximum transition

probability that can be obtained is ()nP . The transition

probability ()jiP , can be categorized into three following

sections;

For ji −1 or ji = , () 0, =jiP

For ji  , () )(, ijPjiP −=

For ji =−1 , () njiP =, where n is the service rate

at state n.

A Markov process chain consisting of all possible

transitions at any intermediate state n has been depicted in

Figure 6.

Figure 5. Markov chain process model depicting the initial phase of the resource allocator queue

Figure 6. Markov chain process model depicting the general phase of the resource allocator queue

The transition probability for a steady state probability

()nq , can be defined as:

() () ()]1[, inqjnqPjiP ==+= (11)

Deriving the equation of ()nq as:

() () (() ()) =
=

m

j
jPqPq

1
,000,11 (12)

() () (() ())

(() ())

1

0

1

1 1, ,

,

i

j

m

j i

q i P i i q j P j i

q i P i j

−

=

= +

+  + +  =






()mi 3,2,1=

 (13)

() () (() ())
−

=
=−

1

0
,1,

m

i
jiPiqmmPmq (14)

51

3.4 Parameter metrics

A Calculation of Arrival Rate:

For local, Network and Distributed File System, according

to assumption (b), the file operation request arrival rate is

considered as i.i.d generated with Poisson Process, stated as:

Arrival rate =  (15)

In real time systems, majority of file operation requests are

fulfilled by the cache. Hence taking cache into consideration,

the file operation request arrival rate becomes:

Arrival rate = ()   +−= wwrrCACHE FPhP 1 (16)

where
rh is the hit rate, so,

rh−1 is the miss rate.
rP is the

read probability, and rw PP −=1 is the write probability

when the cache is either dirty or is full with a probability wF

B. Calculation of Service Rate:

For local file systems, according to assumption (c), the

average service rate of the storage resource allocator of the

hypervisor is s . The service rate can be considered as

independent and identically distributed random variable.

Service rate = s (17)

In case of Network or Distributed File System, the Metadata

Server or the Storage Server may reside in different

hypervisors, and the hypervisors may be sharing the physical

resources as resource pool. Denote jR as the service rate of

the Storage resource allocator, for hypervisor j. The average

service rate to process each MAXnn  requests in h

hypervisors is given by:

() ()
=

=
h

i

is nRn
1

 Where 0 < n < m (18)

Similarly, we can calculate the average service rate of the

Network Resource Allocator to process n requests given by:

() ()
=

=
h

i

in nNn
1

 Where 0 < n < m (19)

where Nj is the service rate of the Network resource allocator,

for hypervisor j and n is the average service rate of the

Network.

C. Average Waiting Time:

Suppose there are ()mnnn MAX 0 file operation

requests pending in the Storage resource allocator queue at any

given time interval t. Assume that r number of requests

arrive at a time. If ()nmr − then all the requests will be

added into the storage resource allocator queue, else

()nmr −− requests will be dropped according to

assumption (m). So, the probability that a File operation

request will be dropped is given by:

()


−−

=

=
nmr

i

idrop qP
0

 (20)

Moreover, if ss   , that is request arrival rate is less than

or equal to the service rate, then the services will be served

immediately. Denote wT as the waiting time of the r new

request to be served, where n requests are already waiting in

the queue. Its cumulative distribution function can be

expressed which follows gamma distribution with parameter

s can be expressed as:









−+

−+



==
ss

s

ss

wT

mnr

tmnrtPtTW





)!(

),(

0

)()((21)

So, accordingly, the mean of this gamma distribution

function is:

s

w

mnr
TE



−+
=][(22)

Thus, the average waiting time for r requests in storage

resource allocator can be obtained as follows:

ss

rn

i s

i

ss

W AITINGBLOCK
mnr

q
T















 −+




=

+

=0

_

0

 (23)

Similarly, we can also calculate the average waiting time for

Network in Network resource allocator queue as:

nn

rn

i n

i

nn

W AITINGWN
mnr

q
T















 −+




=

+

=0

_/

0

 (24)

where WAITINGTN is the average waiting time in Network

resource allocator to grab the Network resource.

D. Average Completion Time:

The completion time is considered to be the time required

for processing the request. This processing time is affected by

catastrophic situations like hypervisor failure, communication

failure and Virtual machine failure (in DFS or NFS where data

nodes are residing in different hypervisors sharing the resource

pool). The recovery time and migration time, of all these

failures need to be taken into consideration while calculating

the request completion time.

D.1 Ideal average Service Time (Assuming No failures)

Servicing time is calculated as the time required to perform

the specific task. In this case, servicing time is the time

required to read or write a block. So, the Service time to read

a block i.e. IDEALREADBLOCKT __ , can be expressed as:

RateIODisk

SizeBlock
T IDEALREADBLOCK

__

_
__ = (25)

52

Similarly, the service time to write a block can be calculated

as:

RateIODisk

SizeBlock
T IDEALWRITEBLOCK

__

_
__ = (26)

Data communication time depends on transmission time,

bandwidth of the hypervisors and the virtual machines sharing

the communication link. Assume the bandwidth of jth

hypervisor is jB , and according to assumption (d), nMAX

virtual machines are evenly sharing this bandwidth. The

bandwidth of each virtual machine is expressed as

MAX

j

n

B
.

Let sizeD is the data packet size that needs to be transmitted.

The data transmission time IDEALWNT _/ of the virtual

machine residing in jth hypervisor is expressed by:

Bn

D
T

MAX

size
IDEALWN


=_/ (27)

D.2 Virtual Machine Failure

Virtual Machine Failure will affect the File System

performance in case of Network or Distributed File Systems,

where data needs to be accessed through different Storage

Servers. In a typical case, when client requests to access a File

over DFS or NFS, the request is sent to the Metadata Server

and it forwards it to corresponding Storage Server. Storage

Server whether residing in same or different hypervisor, when

fails, will be migrated to another hypervisor and then will be

started again. Denote)(lVF the probability that l failures

occur between time interval],0[t , then

()
()

2,1,0
!

==
−

le
l

t
lV

t

l

V

F
v


 (28)

Denote V as the migration and recovery time of the

virtual machine. According to assumption (f), V is i.i.d with

exponential distribution. So the average failure and recovery

of the virtual machine can be expressed as:

() 


= =









=

0 0

][
l

l

i

i

VFR lVVE  (29)

Solving the above equation, we have:

v

v

R

t
VE




=][(30)

D.3 Hypervisor Failure & Recovery

Let)(lHF represent the probability that l failures occur

during the time interval],0[t , which is an independent event

and is derived using Poisson process as:

()
2,1,0

!
)(==

−
le

l

t
lH

t

l

p

F
p


 (31)

Denote)(lHR
is the recovery time of l failures of the

hypervisor. The recovery time which also includes VM

migration time, as per assumption (h), is i.i.d generated over

exponential distribution with parameter p . The mean

recovery time can be expressed as:

p

p

l

l

i

i

pFR

t
lHHE




 =








= 



= =0 0

)(][(32)

D.4 Communication Link Failure & Recovery

According to assumption (i), failures of communication link

occur are in accordance to a Poisson process with parameter

c . Let)(lNF denote the probability that the

communication link fails for l times between time interval [0,

t], which can be expressed as:

()
2,1,0

!
)(==

−
le

l

t
lN

t

l

c

F
c


 (33)

Denote, c , as per assumption (j), as the recovery time of

the communication channel and assuming that at any given

time,)(MAXncoc  virtual machines are accessing the

communication channel at a given time. The mean recovery

time can be calculated as:

/ _

1

0 0

[] [(1)]

()

MAXn
MAX

R t t N W IDEAL

c

l
j

F c

l j

n
E N p p T

c

N l 

=



= =

  
=   −   

  

 
+  

 



 

 (34)

where tp : the probability that virtual machine will use the

network to transmit the packet.

Which can be further solved as:

/ _

1

[] [(1)]
MAXn

MAX

R t t N W IDEAL

c

c

c

n
E N p p T

c

t



=

  
=   −   

  

+


 (35)

Using all the equations from (22) to (33), the parameters of

W RITEBLOCKREADBLOCK TT __ | and WNT / can be obtained as:

][][___ RRIDEALREADBLOCKREADBLOCK HEVETT ++= (36)

][][___ RRIDEALWRITEBLOCKWRITEBLOCK HEVETT ++= (37)

][// RWNWN NETT += (38)

53

In case of local file systems, Hypervisor Failure, Virtual

Machine Failure and Communication Link Failure will not

affect the servicing time.

5. NUMERICAL RESULTS

5.1 Analytical example

Suppose the capacity of the Storage Resource Allocator

queue is 20, and there are 5 hypervisors running. The files are

divided into blocks each of size 64KB and the Disk IO transfer

rate is 128 Mb/s. The bandwidth of the communication link is

100 Mbps, with a network packet size of 64K. The file read or

write request arrive in accordance with the Poisson process

with the rate
1 = 0.75 sec,

2 =1.00 sec, and 3 =1.25 sec.

5.2 Average completion time in local file system

In case of Local file system, VM, Communication link and

other hypervisor failures does not affect the average reading

and writing time of the files. Hence, the time required to

perform File read or write operation depends on queue length

and the rate at which the requests arrive.

Figure 7. Average completion time for local file systems,

with varying arrival rate

5.3 Average completion time in network or distributed file

system

In case of Network & Distributed File Systems, the failure

of Hypervisor, Virtual Machines and Communication links

matter, when Storage Servers are located in different

hypervisors. The failure rates of Virtual Machines (V) and

Network Link (C) are both 0.005 s-1. Hypervisor failures are

rare and hence the failure rate of Hypervisor (P) is 0.00001

s-1 .The migration and recovery rate of the Virtual Machines (

V) and communication link (C) are V =0.03 s-1 and

C =0.04 s-1 and the recovery rate of hypervisor p = 0.003

s-1.

Figure 7. Average completion time for network & distributed

file systems, with varying arrival rate

6. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the performance of local,

network and distributed file system running in user’s virtual

instance using queue model. We tried to provide more realistic

analysis by including different type of failures that occur in

real time environment. We also presented a numerical

calculation to show the overall effectiveness of our queue

model in analyzing the performance of File Systems running

in Virtual instances, in any Cloud environment.

In this analysis, we focused on requests coming from

different virtual instances to the resource allocator queues of

the hypervisors. In some situations, hypervisors also use the

physical resources for their own execution. In the next, we will

try to analyze bottlenecks created by these type of situations

on file system’s performance.

REFERENCES

[1] Madni SHH, Latiff MSA, Coulibaly Y, Abdulhamid SM.

(2016). Resource scheduling for infrastructure as a

service (IaaS) in cloud computing: challenges and

opportunities. Journal of Network and Computer

Applications, Elsevier 68: 173-200.

[2] Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I.

(2009). Cloud computing and emerging IT platforms:

vision, hype, and reality for delivering computing as the

5th utility. Future Gener Comput Syst 25(6): 599–616.

[3] Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee

G, Patterson D, Rabkin A, Stoica I. (2009). Above the

clouds: a Berkeley view of cloud computing, electrical

engineering and computer sciences. University of

California, Berkeley.

[4] Khazaei H. (2012). Performance analysis of cloud

computing centers using M/G/m/m+ r queuing system.

IEEE Trans Parallel Distrib Syst 23: 936–943.

[5] Seelam SR, Teller PJ. (2007). Virtual I/O scheduler: A

scheduler of schedulers for performance virtualization.

In ACM VEE’07.

[6] Liu XD, Tong WQ, Zhi XL, Fu ZR, Liao WZ. (2014).

Performance analysis of cloud computing services

considering resources sharing among virtual machines.

The Journal of Supercomputing 69(1): 357-374.

54

[7] Mustufa S, Nazir B, Hayat A, Khan AR, Madani S.

(2015). Resource management in cloud computing:

Taxonomy, prospects, and challenges. Computer &

Electrical Engineering, Elsevier 47: 186-203.

[8] Le D, Huang H, Wang H. (2012). Understanding

performance implications of nested file systems in a

virtualized environment. In Proceedings of the Tenth

USENIX Conference on File and Storage Technologies

(FAST ’12).

[9] Tang C. (2011). Fvd: A high-performance virtual

machine image format for cloud. In Proceedings of the

2011 USENIX conference on USENIX annual technical

conference, Portland, OR.

[10] Shenoy PJ, and Vin HM. (1997). Cello: A disk

scheduling framework for next generation operating

systems. In Proceedings of ACM SIGMETRICS

Conference.

[11] Ellard D, Ledlie J, Malkani P, Seltzer M. (2002).

Everything you always wanted to know about NFS trace

analysis, but were afraid to ask. Technical Report TR-06-

02, Harvard University, Cambridge, MA.

[12] Losup A, Ostermann S, Yigitbasi MN, Prodan R,

Fahringer T, Epema DHJ. (2011). Performance analysis

of cloud computing services for many-tasks scientific

computing. IEEE Trans Parallel Distrib Syst 22: 931–

945.

[13] Suresh Varma P, Satyanarayana A, Sundari R. (2012).

Performance analysis of cloud computing using queuing

models. In: 2012 international conference on cloud

computing, technologies, applications and management,

pp. 12–15

[14] Leung AW, Pasupathy S, Goodson G, Miller EL. (2008).

Measurement and analysis of large-scale network file

system workloads. In Proceedings of the USENIX

Annual Technical Conference (ATC ’08).

[15] Roselli D, Lorch JR, Anderson TE. (2000). A

comparison of file system workloads. In Proceedings of

the Annual USENIX Technical Conference.

[16] Howard JH, Kazar ML, Menees SG, Nichols DA,

Satyanarayanan M, Sidebotham RN, West MJ. (1988).

Scale and Performance in a Distributed File System

ACM Trans. Computer Systems 6(1): 51-81.

[17] Smith KA, Seltzer MI. (1997). File system aging -

increasing the relevance of file system benchmarks. In

Proceedings of the 1997 International Conference on

Measurement and Modeling of Computer Systems

(SIGMETRICS 1997).

55

