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ABSTRACT 

Cloud computing, a recently developed paradigm, mainly focuses on resource allocation on 

demand. Operating Systems running in Virtual Machines can enhance their performances 

by adjusting resources as and when required. Due to this ever changing resource complexity, 

it becomes very difficult to model and analyze performance of some of the important 

components of Operating Systems, especially the File System.  

This paper presents a model, based on Queuing Theory, for performance analysis of Local, 

Network and Distributed File Systems running in Operating Systems of user’s VMs. This 

model takes into consideration parameters like average service time, average waiting time 

and VM migration time in file system’s performance. It also takes into consideration 

different failures in Cloud environment like Virtual Machine Failures, Hypervisor Failures 

and Communication Failures. Each File system operation is considered as a service request 

sent by specific Virtual Machine to the Hypervisor. The performance is evaluated based on 

the average time taken to service the entire request. A numerical depicting the performance 

analysis based on this concept has also been illustrated. 
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1. INTRODUCTION

Virtualization has consistently improved hardware 

utilization, by providing applications, platforms and 

infrastructure on demand [1, 7, 13]. Apart from these 

advantages, virtualized systems are also complex, and thus 

difficult to model, measure and analyze. One of the important 

factor that causes this complexity, is sharing of hypervisor’s 

hardware resources among virtual machines [2-3].  

In any particular virtualized environment, a Hypervisor 

maps virtual disk images of virtual machines as regular files 

residing in the File system of the hypervisor. So, in this case, 

there are two different file systems – a hypervisor’s file system 

and a VM’s file system – both of them are totally unaware 

about each other’s existence. These type of interdependent 

architecture, complicates the process of optimizing the 

parameters that enhance performance of VM’s file systems. 

For example, nearly placed blocks in VM’s File systems for 

faster access, may be kept physically at distant locations by the 

hypervisor’s layer file system. 

In another alternative is to map hypervisor’s logical volume 

directly to virtual disk images of virtual machines (VMs). The 

virtual machine, completely ignorant of it, formats this virtual 

hard disk with the file system that is compatible with the 

operating system installed in that virtual machine. With a 

virtualized disk driver, the VM communicates with the 

emulated Disk I/O Controller provided in the abstraction layer 

of the hypervisor. As hypervisor’s can host more than one 

virtual machine and the fact that there is a layer of abstraction 

complicates the situation. Due to multiple VMs running in the 

hypervisor, the emulated Disk I/O controller can receive more 

than one request at any given time to perform disk read or write 

operation on the actual physical storage. This may lead to a 

queue, where the requests need to wait for the current ongoing 

request to get completed. Hence, the average waiting time may 

have a significant impact on the overall performance of the file 

operations in virtual machines.  

This paper takes into consideration the second mechanism 

discussed above, which maps hypervisor’s logical volumes 

directly to virtual disk images of VMs for our analysis model. 

The distinguished feature of our analysis model are as follows: 

Multiple VMs will be share the underlying physical resource 

to perform their requests. A different read and write queue will 

be maintained at Disk I/O controller as both are diverse 

operations. Failure of Virtual Machines, Communication 

channels, hypervisor and VM migrations are also considered, 

providing much closeness to real virtualized environment. For 

performance analysis, the Operating Systems configured in 

user’s Virtual Machines are considered to be of Linux 

environment. 

Initial sections, provide performance analysis of local file 

systems, residing in VM’s Operating Systems. Further 

sections, focus on performance modeling of Networked (NFS) 

& Distributed (DFS) File System, in this particular 

environment. This paper is organized as follows: Section 2 

provides insight on the related work. Section 3 discusses our 

Analytical model for local, network and distributed file 

systems. In section 4, an illustration is presented. At the end, 

section 5 provides conclusion and future work.  

2. RELATED WORK

Performance model of Cloud Computing resources based 
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on Queue base has been a research focus due to its on demand 

changing resource environment. In [4, 13], the cloud center is 

modeled as an M/G/m/m+r queue with arrival rate and service 

rate generated using probability distribution. A request for 

resource is be further divided into subtasks [12], to provide a 

closer model to real time situations. In [6], performance 

analysis also takes into consideration real time failures like 

hypervisor failure, virtual machine failure and communication 

failure. In this paper, we have used many derivations from [6].  

Storage is also considered as resource in Cloud environment. 

Virtual machines will be scheduling the storage resource 

during file operation. Scheduling of the virtualized I/O for 

storage resource for increasing performance has been 

highlighted in [5, 10], while [9] has provided the insight on the 

role of high performance disk image’s role for performance 

analysis of virtual system’s I/O operations.  

Modeling file systems is a complex task as variety of file 

systems with different functionalities have been developed. 

For our work, based on the functionality, we have categorized 

file systems as local, network and distributed file system. 

Performance analysis of these file systems in non-virtual 

environment provides an insight on the parameter metrics used 

to optimize the performance. Comparing the workload [15] of 

different file systems help in understanding the impact on their 

metrics and their relation with overall performance. In [11, 

14], impact of workload on metrics regarding NFS has been 

highlighted. The impact of scaling on performance of 

distributed file systems has been elaborated in [16]. Some 

more benchmarking features of File system have been 

provided in [17].  

 

 

3. PERFORMANCE ANALYSIS MODEL 

 

The performance model is the instance-based representation 

of how a system uses all kinds of its resources and manages 

different impacts on its performance. In case of File Systems, 

reading and writing files are the two basic operations. 

Therefore, the Performance Model majorly focuses on two 

parameters, READT : time required to read a file and WRITET : 

time required to write a file.  

 

3.1. Local file systems 

 

In case of Local File Systems, whenever a user process 

requests to fetch a file, VFS forwards this request to the 

underlying local file system, which signals device drive to 

fetch a particular block or set of blocks to the main memory. 

 

 
 

Figure 1. Working architecture of local file system, in linux 

environment 

Thus, the File reading and writing time, in case of local file 

system can be summarized as: 

 

BLOCKREADBREQUESTREADREAD TNTT __ +=    (1) 

 

BLOCKWRITEBREQUESTWRITEWRITE TNTT __ +=    (2) 

 

where NB is number of blocks to be read or written. Here and 

is the time taken by a request from user process to reach File 

System, which can be considered as negligible. 

 

3.2 Network file system 

 

In Network File Systems, a file is accessible from any node 

in the network, maintaining location transparency. This type 

of file access along the network generates significant amount 

of network delay involved during file block’s transfer. 

Acknowledgements can be ignored as they are either 

piggybacked or considered as minor criterion, considering its 

size. 

 

 
 

Figure 2. Working architecture of network file system, in 

linux environment 

 

The read and write file operations are characterized by two 

independent variables of storage and network, i.e. time 

required to read/write a block with time required to transfer 

that block to the system requesting it. This can be expressed 

as: 

 

TRANSFERNETWORKNREADBLOCKBREQUESTREADREAD TNTNTT ___ ++=

 (3) 

 

TRANSFERNETWORKNWRITEBLOCKBREQUESTWRITEWRITE TNTNTT ___ ++=

 (4) 

 

where NB is number of blocks to be read or written and NN is 

number of packets to be transferred. 

 

3.3 Distributed file system 

 

 
 

Figure 3. Architecture of distributed file system 
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The architectural model presented in this section is general 

for typical DFSs, which consists of Metadata Server, which 

handles location and access transparency and Storage Server 

which provides or stores the data.  

To read a File, the client first contacts the Metadata Server. 

Metadata server translates the file name into the list of blocks 

IDs along with their location information. The client node 

communicates with the nearest Storage server to access the 

specific block. So, the File read operation consists of three 

parts: Communicate with Storage server for block 

information, receive block information and transfer of blocks 

along the network. 
READT  can be expressed as: 

 

_ _

_ _

(

)

READ READ REQUEST B BLOCK LOCATION

BLOCK READ N NETWORK TRANSFER

T T N T

T N T

= +  +

+ 
       (5) 

 

_ _

_ _

(

)

WRITE WRITE REQUEST B BLOCK LOCATION

BLOCK WRITE N NETWORK TRANSFER

T T N T

T N T

= +  +

+ 
      (6) 

 

LOCATIONBLOCKT _  is the time, when client communicates 

with the name node to obtain block’s metadata information. Its 

value can be neglected compared to other parameters. 

 

 

4. THE PERFORMANCE & ANALYSIS MODEL IN 

CLOUD ENVIRONMENT 

 

In Cloud Computing Environment, the hypervisor provides 

each hardware component as resource which is shared among 

virtual machines. The hypervisor maintains a separate 

Resource allocator (RA) for each hardware component. A 

Resource allocator (RA) can be considered as a queue, which 

handles and manages requests received from virtual machine. 

In a typical Cloud setup each virtual machine is configured 

with their local virtual storage, but actually, they are sharing 

the physical storage of the hypervisor. Whenever, a process in 

any virtual machine requests to access a file from the local, 

network or distributed file system configured in that specific 

virtual machine, the Virtual Device driver forwards this 

request to the Resource Allocator (RA). In case of Local File 

System, only Storage Resource Allocator (SRA) will be 

accessed, where as in NFS and DFS both Network Resource 

Allocator (NRA) and Storage Resource Allocator (SRA) will 

be requested.  

 

 
 

Figure 4. Queue based performance model of file systems 

running in vms, in a hypervisor 

 

With a closer look at this Storage Resource Allocator (SRA) 

and Network Resource Allocator (NRA), they can be equated 

with single server queue, where virtual machine’s file and 

network operation requests are received and stored for further 

service. 

For our performance model, we have assumed a queue with 

the notation FCFSmnMM k //// ][  where M : mean 

arrival rate, ][kM : mean service rate for k tasks, n: number of 

hypervisors, m: buffer size, and FCFS: first come first serve 

policy.  

Applying Queuing theory, and considering equations (1) 

and (2), the equations for file read and write, for local file 

system can be expressed as: 

 

READBLOCKBW AITINGREADREAD TNTT __ +=    (7) 

 

WRITEBLOCKBWAITINGWRITEWRITE TNTT __ +=    (8) 

 

The equations for file read and write, after referring to 

equation (3), (4), (5) and (6), for Network and Distributed File 

System can be obtained as: 

 

( )

( )

_ _

/ _ /

READ READ WAITING B BLOCK READ

N W WAITING N N W

T T N T

T N T

= +  +

+ 
  (9) 

 

( )

( )

_ _

/ _ /

WRITE WRITE WAITING B BLOCK WRITE

N W WAITING N N W

T T N T

T N T

= +  +

+ 
     (10) 

 

Here, we are assuming that there are separate queues 

maintained for Read, Write and Network requests. 

 

3.2 Assumptions 

 

Based on the model presented above, we make following 

assumptions: 

(a). A Virtual Machine’s read or write request will be 

considered as a single task, and cannot be divided into further 

subtask. 

(b). Each file operation request will be treated as an 

independent event and their arrival rate λ will be considered as 

independent and identically distributed (i.i.d) random variable 

arriving according to a Poisson Process. 

(c). The average service rate of the physical server j follows 

an exponential distribution with the parameter j . The service 

rates of one physical server is independent of the other 

physical server. 

(d). A Virtual Machine can at a time send one file operation 

request. The maximum number of requests that can arrive at 

any given instance is equal to maximum number of virtual 

machines nMAX, on any hypervisor. 

(e). The failure rate of Virtual Machines is in accordance 

with a Poisson process with parameter v (The parameters 

mentioned in assumption e, f, g, h, i and j will be taken into 

consideration, for Network and Distributed file system only 

and not for Local file systems) 

(f). The migration and recovery rate of VMs is an i.i.d 

following an exponential distribution with the parameter v  
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(g). The failure rate of Hypervisors is generated using a 

Poisson process with parameter p . 

(h). The recovery rate of a Hypervisor is an i.i.d with 

exponential distribution with parameter p  

(i). The failure rate of Communication link is also generated 

using Poisson process with parameter c  

(j). The recovery rate of Communication channel is i.i.d 

with exponential distribution with parameter c  

(k). The maximum number of Virtual Machines in a 

Hypervisor is nMAX. 

(l). The Request queue or the buffer size is m which is very 

much greater than n 

(m). If the number of requests (queued + arrived) is greater 

than the buffer size, then the latest arrived requests will be 

dropped in LIFO manner. 

 

3.3 Markov Model 
 

A file read or write request comes directly from the Virtual 

Machine to the hypervisor’s Storage resource request queue. 

The moment of the request queue buffer can be marked as 

Markov points. Such process can be modeled as Markov 

process with the state ( )mn 3,2,1 , where n represent the 

number of file operation request in the buffer. Figure.5, 

Represents the initial stage, where the buffer is empty. For i 

number of requests arriving simultaneously, there will be a 

transition to state i with a transition probability of ( )iP . 

According to assumption (d) and (k) the maximum transition 

probability that can be obtained is ( )nP . The transition 

probability ( )jiP ,  can be categorized into three following 

sections; 

For ji −1 or ji = , ( ) 0, =jiP  

For ji  , ( ) )(, ijPjiP −=  

For ji =−1 , ( ) njiP =,  where n is the service rate 

at state n. 

A Markov process chain consisting of all possible 

transitions at any intermediate state n has been depicted in 

Figure 6. 

 
 

Figure 5. Markov chain process model depicting the initial phase of the resource allocator queue 

 

 
 

Figure 6. Markov chain process model depicting the general phase of the resource allocator queue 

 

The transition probability for a steady state probability

( )nq , can be defined as: 

 

( ) ( ) ( ) ]1[, inqjnqPjiP ==+=    (11) 

 

Deriving the equation of ( )nq as: 

 

( ) ( ) ( ( ) ( ) ) =
=

m

j
jPqPq

1
,000,11  (12) 

( ) ( ) ( ( ) ( ) )

( ( ) ( ) )

1

0

1

1 1, ,

,

i

j

m

j i

q i P i i q j P j i

q i P i j

−

=

= +

+  + +  =






( )mi 3,2,1=  

 (13) 

 

( ) ( ) ( ( ) ( ) )
−

=
=−

1

0
,1,

m

i
jiPiqmmPmq  (14) 
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3.4 Parameter metrics  

 

A Calculation of Arrival Rate: 

For local, Network and Distributed File System, according 

to assumption (b), the file operation request arrival rate is 

considered as i.i.d generated with Poisson Process, stated as: 

 

Arrival rate =     (15) 

 

In real time systems, majority of file operation requests are 

fulfilled by the cache. Hence taking cache into consideration, 

the file operation request arrival rate becomes: 

 

Arrival rate = ( )   +−= wwrrCACHE FPhP 1    (16) 

 

where 
rh  is the hit rate, so, 

rh−1 is the miss rate. 
rP is the 

read probability, and rw PP −=1  is the write probability 

when the cache is either dirty or is full with a probability wF  

B. Calculation of Service Rate:  

For local file systems, according to assumption (c), the 

average service rate of the storage resource allocator of the 

hypervisor is s . The service rate can be considered as 

independent and identically distributed random variable. 

 

Service rate = s    (17) 

 

In case of Network or Distributed File System, the Metadata 

Server or the Storage Server may reside in different 

hypervisors, and the hypervisors may be sharing the physical 

resources as resource pool. Denote jR  as the service rate of 

the Storage resource allocator, for hypervisor j. The average 

service rate to process each MAXnn   requests in h 

hypervisors is given by: 

 

( ) ( )
=

=
h

i

is nRn
1

  Where 0 < n < m                      (18) 

  

Similarly, we can calculate the average service rate of the 

Network Resource Allocator to process n requests given by: 

 

( ) ( )
=

=
h

i

in nNn
1

  Where 0 < n < m                      (19) 

  

where Nj is the service rate of the Network resource allocator, 

for hypervisor j and n is the average service rate of the 

Network. 

C. Average Waiting Time: 

Suppose there are ( )mnnn MAX 0  file operation 

requests pending in the Storage resource allocator queue at any 

given time interval t. Assume that  r  number of requests 

arrive at a time. If ( )nmr −  then all the requests will be 

added into the storage resource allocator queue, else 

( )nmr −−  requests will be dropped according to 

assumption (m). So, the probability that a File operation 

request will be dropped is given by: 

( )


−−

=

=
nmr

i

idrop qP
0

   (20) 

 

Moreover, if ss   , that is request arrival rate is less than 

or equal to the service rate, then the services will be served 

immediately. Denote wT  as the waiting time of the r new 

request to be served, where n requests are already waiting in 

the queue. Its cumulative distribution function can be 

expressed which follows gamma distribution with parameter 

s can be expressed as: 

 









−+

−+



==
ss

s

ss

wT

mnr

tmnrtPtTW





)!(

),(

0

)()(   (21) 

 

So, accordingly, the mean of this gamma distribution 

function is: 

 

s

w

mnr
TE



−+
=][    (22) 

 

Thus, the average waiting time for r requests in storage 

resource allocator can be obtained as follows: 

 

ss

rn

i s

i

ss

W AITINGBLOCK
mnr

q
T















 −+




=

+

=0

_

0

       (23) 

 

Similarly, we can also calculate the average waiting time for 

Network in Network resource allocator queue as: 

 

nn

rn

i n

i

nn

W AITINGWN
mnr

q
T















 −+




=

+

=0

_/

0

  (24) 

 

where WAITINGTN  is the average waiting time in Network 

resource allocator to grab the Network resource. 

D. Average Completion Time: 

The completion time is considered to be the time required 

for processing the request. This processing time is affected by 

catastrophic situations like hypervisor failure, communication 

failure and Virtual machine failure (in DFS or NFS where data 

nodes are residing in different hypervisors sharing the resource 

pool). The recovery time and migration time, of all these 

failures need to be taken into consideration while calculating 

the request completion time. 

D.1 Ideal average Service Time (Assuming No failures) 

Servicing time is calculated as the time required to perform 

the specific task. In this case, servicing time is the time 

required to read or write a block. So, the Service time to read 

a block i.e. IDEALREADBLOCKT __ , can be expressed as: 

 

RateIODisk

SizeBlock
T IDEALREADBLOCK

__

_
__ =    (25) 
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Similarly, the service time to write a block can be calculated 

as: 

 

RateIODisk

SizeBlock
T IDEALWRITEBLOCK

__

_
__ =    (26) 

 

Data communication time depends on transmission time, 

bandwidth of the hypervisors and the virtual machines sharing 

the communication link. Assume the bandwidth of jth 

hypervisor is jB , and according to assumption (d), nMAX 

virtual machines are evenly sharing this bandwidth. The 

bandwidth of each virtual machine is expressed as 

MAX

j

n

B
. 

Let sizeD is the data packet size that needs to be transmitted. 

The data transmission time IDEALWNT _/  of the virtual 

machine residing in jth hypervisor is expressed by: 

 

Bn

D
T

MAX

size
IDEALWN


=_/    (27) 

 

D.2 Virtual Machine Failure 

Virtual Machine Failure will affect the File System 

performance in case of Network or Distributed File Systems, 

where data needs to be accessed through different Storage 

Servers. In a typical case, when client requests to access a File 

over DFS or NFS, the request is sent to the Metadata Server 

and it forwards it to corresponding Storage Server. Storage 

Server whether residing in same or different hypervisor, when 

fails, will be migrated to another hypervisor and then will be 

started again. Denote )(lVF  the probability that l failures 

occur between time interval ],0[ t , then 

 

( )
( )

2,1,0
!

==
−

le
l

t
lV

t

l

V

F
v


   (28) 

 

Denote V  as the migration and recovery time of the 

virtual machine. According to assumption (f), V is i.i.d with 

exponential distribution. So the average failure and recovery 

of the virtual machine can be expressed as: 

 

( ) 


= =









=

0 0

][
l

l

i

i

VFR lVVE     (29) 

 

Solving the above equation, we have: 

 

v

v

R

t
VE




=][    (30) 

 

D.3 Hypervisor Failure & Recovery 

Let )(lHF represent the probability that l  failures occur 

during the time interval ],0[ t , which is an independent event 

and is derived using Poisson process as: 

( )
2,1,0

!
)( ==

−
le

l

t
lH

t

l

p

F
p


   (31) 

 

Denote )(lHR
is the recovery time of l failures of the 

hypervisor. The recovery time which also includes VM 

migration time, as per assumption (h), is i.i.d generated over 

exponential distribution with parameter p . The mean 

recovery time can be expressed as: 

 

p

p

l

l

i

i

pFR

t
lHHE




 =








= 



= =0 0

)(][    (32) 

 

D.4 Communication Link Failure & Recovery 

According to assumption (i), failures of communication link 

occur are in accordance to a Poisson process with parameter

c . Let )(lNF denote the probability that the 

communication link fails for l times between time interval [0, 

t], which can be expressed as: 

 

( )
2,1,0

!
)( ==

−
le

l

t
lN

t

l

c

F
c


   (33) 

 

Denote, c , as per assumption (j), as the recovery time of 

the communication channel and assuming that at any given 

time, )( MAXncoc  virtual machines are accessing the 

communication channel at a given time. The mean recovery 

time can be calculated as: 

 

/ _

1

0 0

[ ] [ (1 )]

( )

MAXn
MAX

R t t N W IDEAL

c

l
j

F c

l j

n
E N p p T

c

N l 

=



= =

  
=   −   

  

 
+  

 



 

   (34) 

 

where tp : the probability that virtual machine will use the 

network to transmit the packet. 

Which can be further solved as: 

 

/ _

1

[ ] [ (1 )]
MAXn

MAX

R t t N W IDEAL

c

c

c

n
E N p p T

c

t



=

  
=   −   

  

+


 (35) 

 

Using all the equations from (22) to (33), the parameters of 

W RITEBLOCKREADBLOCK TT __ |  and WNT /  can be obtained as: 

 

][][___ RRIDEALREADBLOCKREADBLOCK HEVETT ++= (36) 

 

][][___ RRIDEALWRITEBLOCKWRITEBLOCK HEVETT ++=   (37) 

 

][// RWNWN NETT +=   (38) 
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In case of local file systems, Hypervisor Failure, Virtual 

Machine Failure and Communication Link Failure will not 

affect the servicing time.   

 

 

5. NUMERICAL RESULTS 

 

5.1 Analytical example 

 

Suppose the capacity of the Storage Resource Allocator 

queue is 20, and there are 5 hypervisors running. The files are 

divided into blocks each of size 64KB and the Disk IO transfer 

rate is 128 Mb/s. The bandwidth of the communication link is 

100 Mbps, with a network packet size of 64K. The file read or 

write request arrive in accordance with the Poisson process 

with the rate 
1  = 0.75 sec, 

2 =1.00 sec, and 3 =1.25 sec. 

 

5.2 Average completion time in local file system 

 

In case of Local file system, VM, Communication link and 

other hypervisor failures does not affect the average reading 

and writing time of the files. Hence, the time required to 

perform File read or write operation depends on queue length 

and the rate at which the requests arrive. 

 

 
 

Figure 7. Average completion time for local file systems, 

with varying arrival rate 

 

5.3 Average completion time in network or distributed file 

system 

 

In case of Network & Distributed File Systems, the failure 

of Hypervisor, Virtual Machines and Communication links 

matter, when Storage Servers are located in different 

hypervisors. The failure rates of Virtual Machines ( V ) and 

Network Link ( C ) are both 0.005 s-1. Hypervisor failures are 

rare and hence the failure rate of Hypervisor ( P ) is 0.00001 

s-1 .The migration and recovery rate of the Virtual Machines (

V ) and communication link ( C ) are V =0.03 s-1 and 

C =0.04 s-1 and the recovery rate of hypervisor p  = 0.003 

s-1. 

 
 

Figure 7. Average completion time for network & distributed 

file systems, with varying arrival rate 

 

 

6. CONCLUSION AND FUTURE WORK 

 

In this paper, we analyzed the performance of local, 

network and distributed file system running in user’s virtual 

instance using queue model. We tried to provide more realistic 

analysis by including different type of failures that occur in 

real time environment. We also presented a numerical 

calculation to show the overall effectiveness of our queue 

model in analyzing the performance of File Systems running 

in Virtual instances, in any Cloud environment.  

In this analysis, we focused on requests coming from 

different virtual instances to the resource allocator queues of 

the hypervisors. In some situations, hypervisors also use the 

physical resources for their own execution. In the next, we will 

try to analyze bottlenecks created by these type of situations 

on file system’s performance.  
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