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ABSTRACT 

Device-free passive crowd estimation technologies are capable of measuring the density of 

people in an area, using existing wireless network infrastructure. It has been applied in 

various application domains such as pedestrian control, crowd management in subways, 

guided tours and so forth. In this work, we have designed, implemented and validated a 

device-free indoor human crowd density sensing method based on Channel State 

Information (CSI) captured by a single Wi-Fi receiver. We investigate the behaviour of the 

CSI amplitude variance of each receiving stream over the different subcarriers and propose 

a method to aggregate the CSI amplitude over time without losing critical information. 

Further, we evaluated the method using three different machine learning algorithms. The 

result shows the proposed method achieves an estimated accuracy of 99.8% with the 

Weighted K-Nearest Neighbour. 
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1. INTRODUCTION

The process of estimating the number of people in a given 

area has become a significant research area over the past years. 

Robust crowd counting in either an open or closed 

environment is an important and also a challenging task. A lot 

of research has been done in the development of crowd density 

estimation systems and they have been applied in a wide range 

of applications, such as counting people in a festival [1], 

pedestrian control, crowd management in subways [2], and 

customer count estimation in retail shops and so forth. 

The most common and traditional approaches are vision-

based systems that analyse a video or images to estimate the 

number of people in the scene [2-5]. Mostly, those image 

processing techniques are able to estimate the population 

effectively. However, these methods suffer from some 

inherent drawbacks. For example, environmental factors such 

as light, fog, and dust greatly affect the quality of the 

video/image. Further, installing cameras in public areas raises 

privacy concerns and also requires additional costs. 

Emerging smartphones have been utilised in many sensing 

scenarios such as interacting with proximal Internet of Things 

(IoT) to assist ubiquitous computing applications [6], utilising 

the inbuilt sensing mechanism to provide environmental 

sensor data to remote clients [7-8] or brokering the 

environmental sensor data from proximal sensors to remote 

data centres on the move [9]. Furthermore, establishing an ad-

hoc network among smartphones is not limited to performing 

data routing or distributed processing [10], with the inbuilt 

proximal networking mechanisms (e.g. Bluetooth) or audio 

processing mechanisms, the smartphones can sense the density 

of people in proximity [1, 11-12]. 

Although the smartphone-based sensing approaches are 

promising, they rely on the participants to carry the specific 

devices. Different from the device-specific approaches, 

device-free Radio Signal Strength (RSS)-based human density 

sensing approaches, which use RSS as an indication of the 

signal propagation strength, do not require people to carry 

devices. The related frameworks have been proposed in 

various applications such as localisation [13], motion 

detection [14], human activity recognition [15], and crowd 

estimation [16-17]. Moreover, researchers also estimate the 

crowd density based on analysing RSS values of RFID tags 

[18-19] or ZigBee wireless nodes [20]. However, most 

existing RSS measurement-based models face a critical 

challenge in accuracy because of the fundamental problems of 

RF wave propagation in the indoor environment. There are 

possibly multiple signals arriving at the receiver through 

multiple paths, and also attenuated by reflection when the 

signal hits the surface of an obstacle. Consequently, the time-

varying nature and, one Receiving Signal Strength Indication 

(RSSI) value per packet cannot establish an accurate 

prediction model in complex environments. 

In contrast to having only one RSSI value per packet, 

current widely used Orthogonal Frequency Division 

Multiplexing (OFDM) systems explore the fine-grained 

physical layer information in multipath environments. 

Different from RSS, Channel State Information (CSI) is a 

complex matrix of values from the physical layer where data 

are modulated on multiple subcarriers at different frequencies 

and simultaneously transmitted over the IEEE 802.11n Wi-Fi 

link [21]. 

The CSI consists of amplitude and phase shift information 

that describes how the propagated signal experienced by the 

different effects of scattering, fading, and power decay for 

each spatial stream on every subcarrier. According to this 

characteristic, CSI is more stable and has more information 

than RSSI and also we can get more information that is 

sensitive to the environmental variance. 

Recently, due to the robust nature of the CSI in complex 

environments, there are many passive-sensing (device free 

sensing) frameworks that have been proposed in several 
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application domains such as indoor localisation [22-23], 

activity recognition [24-25], gesture recognition [26], 

scheduling algorithm for base stations [27], counting people 

[28-29], etc. 

In this paper, we present the design and implementation of 

a CSI based crowd density estimation framework for the 

indoor environment using one Wi-Fi router and a receiver with 

off-the-shelf 802.11n Intel 5300 NIC. Our method is based on 

amplitude measurements of the CSI and a normalisation of the 

received data. 

We have observed that in some CSI streams, the effect of 

human presence is more than in other streams. Therefore, 

unlike previous approaches such as [25] and [30], we do not 

calculate the mean value of all streams, which will lose the 

distinctive sensitivity of streams and also causes a false 

prediction. Instead, our approach divides the captured CSI 

datasets into samples that contain 10 packets per sample. 

Thereafter, we average the CSI values within the sample for 

each antenna separately to minimise the information loss and 

also filter noises due to sudden changes in the environment. 

After extraction of the relevant features of the captured CSI 

data, our system uses three different classification methods 

which are available with the MATLAB Classification Learner 

to estimate the density. The experimental classification results 

have shown that the proposed method has the accuracy of 

99.8% with the Weighted K-Nearest Neighbour (K-NN), 

99.6% with Linear Support Vector Machine (SVM), and 

94.3% with the Complex Tree. 

The rest of the paper is organised as follows. Section 2 

provides an overview of related work and Section 3 presents 

theoretical background information on wireless signal 

propagation. Section 4 describes the architecture and the 

methodology of the proposed crowd density estimation 

method followed by the performance evaluation. The paper 

concludes in Section 5 along with future research directions. 

 

 

2. RELATED WORK 

 

Crowd density estimation has attracted significant attention 

from both industrial and academic researchers in last decade. 

In this section, we review a number of existing approaches in 

the density estimation field based on a classification of their 

technologies. 

 

2.1 Computer vision-based crowd estimation 

 
In recent years, researchers drastically used computer vision 

related techniques to estimate and monitor crowds 

automatically. These techniques are mainly focused on 

detecting and counting people’s presence in images and video 

scenes. 

Li et al. [2] proposed a computer vision-based crowd 

estimation scheme. Specifically, the scheme combines both 

the MID (Mosaic Image Difference)-based on foreground 

segmentation algorithm and the Histograms of Oriented 

Gradients (HOG)-based head-shoulder detection algorithm to 

count people in surveillance scenes. Furthermore, this scheme 

is capable of locating the position of each individual in the 

image scene. 

Chan et al. [3] proposed a privacy-preserving system for 

estimating the size in a homogeneous crowd. Preserving 

privacy is an essential task in most of the video- based crowd 

counting systems. In contrast to the approaches that use 

explicit object segmentation or tracking, Chan et al. track the 

direction of movement of each and every single pedestrian 

while preserving privacy. Further, their system extracted a set 

of simple holistic features from a region which segmented into 

components of homogeneous motion. Based on this, they 

could estimate the number of people per segment using 

Gaussian Process regression method. 

Although various researchers have proposed various 

approaches that use video data to estimate the density of the 

human crowd, the challenge still exists. In general, the 

computer vision-based approaches face issues in (1) the 

limitation in the resolution quality of the images; (2) changes 

of illumination and weather conditions in the area; (3) the 

speed of the objects’ movements; (4) privacy protection. For 

instance, Subburaman et al. [5] mentioned that it is difficult to 

detect heads in far views with low-resolution frames. 

 

2.2 Smartphone-based crowd estimation 

 
Today, smartphones are popular and powerful. Without 

using pre-installed infrastructure, one can estimate the crowd 

density from the number of smart devices presented in an area. 

For example, Kannan et al. [12] proposed audio-tones based 

crowd estimation solution that utilises the mobile phone’s 

microphones and speaker. 

Another common approach is using Bluetooth scans to 

estimate the crowd densities. For example, Weppner and 

Lukowicz [1] estimated the crowd density of the famous 

Munich Octoberfest beer festival using Bluetooth scanning. 

Specifically, they designed two Bluetooth scan methodologies 

- stationary and dynamic. Similarly, Versichele et al. [11] also 

utilised a Bluetooth-based proximal tracking methodology. 

Their framework analyses the complex spatiotemporal 

dynamics such as visitor counts, returning visitors, and visitor 

flow maps in a very large crowd (around 1.5 million people). 

Utilising the Bluetooth function in a smartphone provides 

several advantages such as ease of use, no need for pre-

installed infrastructure, and less cost. But they also have 

numerous limitations. For instance, significant variations in 

the average number of people carrying a discoverable 

Bluetooth device can occur depending on the people who use 

the smart device, because some people may not use any extra 

features of the smart devices such as Bluetooth or Wi-Fi [1]. 

 

2.3 RF-based human crowd density estimation 

 

Some recently proposed frameworks have analysed the 

property of radio signal strength changing in the crowded 

areas. For instance, Fadhlullah and Ismail [20] investigated the 

differences in signal attenuation between dynamic and static 

crowds towards identifying the significant crowd properties 

that affect wireless signal propagation with 2.4GHz ZigBee 

wireless nodes. Their proposed system was able to estimate 

with 75.00% and 70.83% accuracy the low and medium 

human crowd densities, respectively. 

Based on the variance of Radio Signal Strength (RSS) 

values of the receiving signal, Ding et al. [18] estimated the 

people density using passive RFID tags. Accordingly, they 

deployed around 20 RFID passive tags in the target area and 

utilised the RFID reader to estimate the people density based 

on analysing the backscattered signal from the passive tags. 

Yuan et al. [19] proposed an RSS device-free crowd 

counting approach, which exploits the space-time relativity of 

crowd distribution in order to minimise the estimation errors. 
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Further, Xu et al. [31] proposed SCPL, which uses RSS data 

to estimate people density in different environments. 

Particularly, they introduced a scheme that uses the profiling 

data collected by a single subject for tracking multiple 

subjects, which also reduced training overhead. Moreover, 

they designed a successive cancellation based algorithm to 

iteratively resolve the people count. 

 

2.4 Wi-Fi signal-based people counting applications 

 
The phenomenon of the large deployment of Wi-Fi access 

points has motivated researchers to investigate the use of RSSI 

to estimate people density. To enumerate, Yoshida and 

Taniguchi [32] estimated crowd density by applying a support 

vector regression-based approach to the RSSI data from the 

existing Wi-Fi access points; Depatla et al. [33] also utilised 

the RSSI from Wi-Fi access points. Specifically, the proposed 

simple motion model probabilistically characterise the 

influence of the total number of people based on analysing the 

scattering effects and multi-path fading. 

Although the RSSI-based approaches are promising, they 

face performance challenges in the diverse indoor 

environment. Particularly, the challenges derive from the 

multi-path propagation of the received signal. Further, external 

factors such as humidity, water amount of the human body, or 

some other particles in the environment can influence the 

received signal and hence, makes the estimation process more 

complex. 

Recently, Channel State Information (CSI) from OFDM-

based systems has become popular in several passive-sensing 

application domains. CSI provides channel properties of a 

communication link from the physical layer that is more stable 

and more capable of providing fine-grained information in 

complex environments. Therefore, due to the robust nature in 

complex environments, researchers have applied CSI-based 

approaches in various application domains such as motion 

detection [24-25, 34-36], localisations [22-23], human 

identification [37] and crowd counting [28, 29]. 

Among the recent CSI-based approaches, WFID [37] is a 

passive device-free indoor human identification approach 

based on learning the feature pattern of subcarrier CSI matrix 

that changes due to the human body curve; WiFall [25], is a 

device-free automatic fall detection system which achieved 

87% of fall detection precision. Moreover, the authors applied 

a weighted moving average to smooth the CSI matrix that is 

slightly influenced by environmental noise. Further, they 

classified the fall from other human activities based on using 

a one-class support vector machine algorithm. Electronic Frog 

Eye [28] is a CSI-based device-free crowd counting approach 

that presents a metric called Percentage of nonzero Elements 

(PEM), which characterises the relationship between the 

crowd density and deviation of CSI features. 

Most of the frameworks discussed above require a training 

phase in order to predict the unknown activity. If the original 

environment has changed, the system needs to train again with 

the new conditions/settings. In contrast, Domenico et al. [29] 

introduced a crowd counting method that only requires one-

time training for different environments. Moreover, the 

authors presented the use of a sum of the Davies-Bouldin 

indexes to select the most effective specific features related to 

CSI variations. 

In contrast to previous work, our approach is based on the 

normalised amplitude measurements of the CSI in the received 

data. Moreover, to preserve the distinctive sensitivity 

information of receiving streams, we divided the captured CSI 

datasets into samples and average the CSI amplitude within 

the sample for each stream and for each subcarrier separately. 

This process also helps to minimise the information loss and 

filter the noise due to sudden environmental changes. 

 

 

3. TECHNICAL OVERVIEW 

 

In this section, we provide a background on wireless signal 

propagation and Channel State Information, which form the 

theoretical basis of the proposed method. 

 

3.1 Radio signal propagation in indoor environments 

 
In conventional wireless communication systems, various 

factors such as scattering, reflection, or diffraction by the 

physical environment can influence the transmitted radio 

signal that reaches the receiver. Moreover, the transmitted 

signal reaches the receiving antenna by many paths (also 

known as multi-path propagation) due to some obstacles that 

block the Line-Of-Sight (LOS) path and also the reflections 

from the physical environment (see Figure 1). These multi-

path components contain different time delay, amplitude 

attenuation, and phase shift information, which makes it 

possible to identify the various situations in the environment 

such as human presence, activity, gesture and so on. 

 

 
 

Figure 1. Radio signal propagation in indoor environment  

 

Commonly, a typical Wi-Fi (IEEE 802.11a/g/n) system 

increases the data transfer capacity of the link by multiplexing 

data streams over the multiple transmit antennas to multiple 

receive antennas. Specifically, this type of arrangement also 

called as a Multiple-Input and Multiple-Output (MIMO) 

communication system, which typically contains M antennas 

at the transmitter and N antennas at the receiver, each receiver 

antenna receives the LOS signal and also a fraction of the 

signal from other propagation paths. 

 

 
 

Figure 2. Example of a MIMO system 
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As shown in Figure 2, each receiver antenna receives not 

only the direct signal intended for it but also the signals from 

other propagation paths. 

Based on the incoming signal that contains amplitude and 

phase, the receiver measures discrete Channel Frequency 

Response (CFR) in two domains: CFR of time and CFR of 

frequency. Afterwards, the system can generate Channel State 

Information (CSI) as a matrix with the dimension of N × M. 

 

3.2 Channel state information 

 

CSI describes how the radio signal propagates from the 

transmitter to the receiver and discloses the channel properties 

of the wireless link with respect to the reflection, fading, and 

scattering. Commonly, Wi-Fi (IEEE 802.11a/g/n) systems use 

Orthogonal Frequency Division Multiplexing (OFDM) to 

divide the overall spectrum band into many small and partially 

overlapped frequency bands called subcarriers for high 

performance wireless communications [38]. In the OFDM 

systems, CSI contains the complex values of the CFR which 

represents the channel properties of each subcarrier. 

In general, for the narrowband flat fading channel (a Wi-Fi 

channel in the 2.4 GHz/5GHz band) with MIMO, the CSI is 

represented in terms of the channel transmission matrix H by 

 

Y = HX + N                            (1) 

 

where Y and X are the received and transmitted vector. N is the 

noise vector, which denotes the noise that corrupts the 

received data. Overall, the vectors can be expressed as follows: 

 

𝑌 = [

𝑦1

𝑦2

⋮
𝑦𝑛

] 𝑋 = [

𝑥1

𝑥2

⋮
𝑥𝑚

]𝐻 =

[
 
 
 
ℎ1,1 ℎ1,2 ⋯ ℎ1,𝑚

ℎ2,1 ℎ2,2 ⋯ ℎ2,𝑚

⋮ ⋮ ⋱ ⋮
ℎ𝑛,1 ℎ𝑛,2 ⋯ ℎ𝑛,𝑚]

 
 
 
          (2) 

 

For example, for a 2 × 2 MIMO configuration, the received 

signal vector is expressed as 

 
𝑦1 = ℎ1,1𝑥1 + ℎ1,2𝑥2 + 𝑛1

 
𝑦2 = ℎ2,1𝑥1 + ℎ2,2𝑥2 + 𝑛2

 

[
𝑦1

𝑦2
] = [

ℎ1,1 ℎ1,2

ℎ2,1 ℎ2,2
] [

𝑥1

𝑥2
] + [

𝑛1

𝑛2
]

 

             (3) 

 
Moreover, the estimated CSI for a single sub-carrier can be 

represented as: 

 

𝐻𝑛,𝑖 =∥ 𝐴𝑛,𝑖 ∥ 𝑒𝑗∠𝑃𝑛,𝑖              (4) 

 

where ∥ 𝐴𝑛,𝑖 ∥ is the amplitude, ∠𝑃𝑛,𝑖 is the phase in which n 

is the subcarrier and i is the number of the received stream. 

 

 

4. METHODOLOGY AND EXPERIMENTS 

 

In this section, we describe the methodology of the 

proposed people density sensing system along with the 

experiments. As shown in Fig. 3, the system consists of three 

main stages: data collection, data processing, and 

classification. 

 

 
 

Figure 3. Architecture of the proposed system 

 

4.1 Data collection 

 

In the data collection phase, the main task is collecting data 

from different arrangements (empty room, a single person, two 

persons etc.) that can be used as the training dataset. We 

deployed TP-Link TL-R940N Wi-Fi router with three 

antennas as a transmitter and the receiver is an Intel Ultimate 

N WiFi Link 5300 IEEE 802.11a/b/g/n wireless network 

adapter with Linux 802.11n CSI Tool [21] installed on a laptop 

(HP Elitebook G3). The laptop sends ICMP packets to the Wi-

Fi router in which the packet transmission rate is 100 packets 

per second and extracts the CSI information from the received 

ICMP echo reply packets. 

 

 
 

Figure 4. Experiment area 

 

The experiment area is a small classroom with the size of 5 

× 7 meters and the distance between the transmitter and the 

receiver is approximately 3.3 meters (see Figure 4). In our 

experimental setup, we have used 3 transmit antennas (M) and 

3 receive antennas (N), and so 9 RF streams are available for 

CSI processing. Moreover, the 802.11n CSI Tool can capture 

30 OFDM subcarriers at the receiver end and therefore we 

have 3 × 3 × 30 CSI data points (270) in each received packet 

for the processing. So, we can simply represent these CSI data 

points with relevance to the RF streams as follows. 

 

CSI1 = { CSI1,1, CSI1,2, CSI1,3, …, CSI1,30 } 

CSI2 = { CSI2,1, CSI2,2, CSI2,3, …, CSI2,30 } 

CSI9 = { CSI9,1, CSI9,2, CSI9,3, …, CSI9,30 }                           (5) 

 

where in CSIi, n, i and n is the RF stream number and the 

OFDM subcarrier number respectively. 
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We collected data for one minute in each situation with the 

rate of 100Hz, which indicates that we acquired over 5000 

packets to extract the unique features from each scenario. 

During the data collection, firstly, we collected the first CSI 

data set of the empty room. Thereafter, we asked participants 

to come into the room one by one. When the first object is in 

the room, we recorded CSI data for one minute, and then ask 

the second object to come in, and recorded CSI in a minute, 

and so on. Finally, with this manner, we have collected CSI 

data sets for 16 participants in total. 

 

4.2 Data processing 

 

In the data processing stage, the first task is to clean the raw 

CSI data. In general, wireless signals are influenced by three 

main factors—path loss, multi-path fading and shadowing—

due to various environmental factors such as humidity, other 

wireless devices, furniture, etc. Therefore, as the first step, the 

system has to normalise the recorded raw CSI data as 

mentioned in [39] and also design an exponential filter to 

remove the noise. 

 

 
(a) An empty room 

 
(b) One person 

 
(c) Many persons 

 

Figure 5. Multi-paths and scattering caused by humans 

 

After the normalisation, the CSI data moves to the feature 

extraction step. The main idea of feature extraction step is 

extracting as much information as possible towards showing 

how the corresponding CSI reflect the number of people in the 

environment. 

During the experiment, we have noticed that in some time 

slots, although there are three antennas at the transmitter, the 

receiver receives data only from the two transmit antennas. 

After investigation, we have realised that this is due to the 

behaviour of the rate adaptation algorithm at the Wi-Fi router. 

Because of this reason, we have some datasets with nine 

streams (3 Tx and 3 Rx) and some data sets with six streams 

(2 Tx and 3 Rx). This is a kind of technical issue which is 

beyond our control and therefore, we decided to continue the 

data processing with six streams. 

 

 
(a) An Empty room 

 
(b) Five persons 

 
(c) Ten persons 
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(d) Fifteen persons 

 

Figure 6. Extracted CSI streams for different crowd densities 

 

When there are more people in the room, the more scattering 

of signals from the human bodies occur [40]. For example, 

when there is no one in the room, the distortion of the signal 

due to the multi-path propagation will be stable. On the other 

hand, as shown in Figure 5, when the number of people 

increases, the multi-path- induced fading will increase too. 

With the captured CSI of the empty room, five persons, ten 

persons and fifteen persons, Figure 6 clearly shows that when 

there are more persons in the environment, the greater is the 

CSI variation. Moreover, we have observed that the presence 

of the humans affects all streams independently and 

differently. For instance, if we consider the amplitude levels 

of all streams, in Figure 6a (empty room), stream 2 has a higher 

amplitude level in the subcarriers 6-8 and 23,24, and the 

stream 4 has a higher amplitude level in the subcarriers 4-6 

and 22-24. When there are five persons (see Figure 6b), stream 

2 has a higher amplitude level in the subcarriers 7,8, and the 

stream 4 has a higher amplitude level in the subcarriers 5-7 

and 23,24. Also the stream 3 has a higher amplitude level in 

the streams 2,3 and 18-20. However, when there are fifteen 

persons, we can see the significant affection on the stream 2 

and 3 compared to other density levels. As shown in Figure 

6d, the amplitude level of the stream 2 has reduced and the 

stream 3 has higher amplitude levels, which is a significant 

difference in the density of fifteen people. 

 

4.3 Classification 

 

The next step is classifying the captured CSI amplitude 

series to estimate the number of people in the room. Preparing 

collected datasets for the classification is done as follows. As 

mentioned earlier, we have observed that each antenna has a 

unique CSI feature in particular subcarriers. As mentioned in 

the literatures [25, 30] taking the average CSI across all 

subcarriers will lose some important information. Instead, in 

this experiment, taking the average CSI of each antenna in 

each subcarrier for 100ms (for 10 received packets) is more 

informative and also tolerates the sudden changes of 

environmental factors that may affect only a part of the dataset. 

For each situation (empty room, a single person, 2 persons, 

etc.), for the classification task, there should be a separate 

dataset which can provide as many significant features from 

the CSI for the training and testing purposes. The preparation 

of the dataset is as follows. 

As the first step, 500 packets of the raw dataset from the 

empty room was divided into fifty samples in which each 

sample contains ten packets. Each packet has a CSI matrix size 

of 180 data points (3 Rx antennas, 2 Tx antennas, 30 

subcarriers), and with all ten packets, we have a total of 1800 

data points. After that, we create a list of CSI amplitudes of 

the first stream of the first subcarrier from all ten packets. 

Moreover, we remove the sudden noises by applying the 

exponential filter on the values of the list, and then take the 

average amplitude value from the list. This value refers to the 

average amplitude value of the first stream of the subcarrier 

one. In this manner, we calculate the list of average amplitude 

values for each stream for each subcarrier for one sample. 

According to the experimental setup, we have fifty samples 

per scenario. 

We follow the same method to prepare datasets for one 

person, two persons, and so on, up to sixteen persons. 

Thereafter, from each dataset, 60% of records are used to train 

the classifier and 40% of records use as a test set. 

 

4.4 Density estimation 

 

In order to estimate the people density from the prepared 

dataset, the first part is training the machine learning algorithm 

with training data. In this experiment for each scenario, we 

have a dataset which contains 850 records and we consider 510 

records as the training set and 340 records as the testing set. 

Table 1 shows the sample of the training dataset. As 

mentioned earlier, we have 180 data points per record and we 

need 180 columns to keep those observations. The first column 

is a categorical variable called “Population”, which is used as 

a label for each density class. In this training dataset, we have 

17 density classes as “Empty” representing no person, “One” 

representing one person, “Two” representing two persons, etc., 

up to “Sixteen” for sixteen persons. Also, each density class 

contains 30 records. These density classes are considered as 

the response classes by the Classification Leaner. Rests of the 

columns contain the values of each antenna regard to each 

subcarrier. Since there are six antennas and thirty subcarriers, 

there are 180 columns to keep data from each antenna and each 

subcarrier. Therefore, the second column is labelled as 

“S1A1” that denotes subcarrier-1 antenna-1, the third column 

is labelled as “S1A2” that denotes subcarrier-1 antenna-2, and 

so on until the last column “S30A6”, subcarrier-30 antenna-6. 

Data classification is done with a MATLAB Classification 

Leaner tool by applying three different classification models 

as: a) Complex Tree b) Support vector machine c) Weighted 

K-Nearest Neighbour. Moreover, the training dataset consists 

of 180 predictors (variables), 17 response classes, and 510 

observations. 

Table 2 shows a detailed comparison of classification 

models with their corresponding configuration parameters. 

With the Complex Tree classifier, the training model achieves 

the maximum of 94.3% accuracy with the configuration: 

maximum number of splits as 100 and the split criterion as the 

Twoing rule. These are the best configuration parameters for 

this model. The second model is trained with the Medium 

Gaussian SVM classifier with the parameters of Gaussian as 

the Kernel function, 13 as the Kernel scale, and 1 as the Box 

constraint level. This classifier achieves the maximum of 

99.4% accuracy. The best classifier is the Weighted K-NN 

which achieves 99.8% accuracy. The configuration parameters 

of the model are: 10 neighbours, Euclidean distant metric, 

squared in-verse distant weight, and standardise data distance. 
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Table 1. Sample of the training dataset 

 
Population S1A1 S1A2 S1A6 S2A1 S2A6 S30A5 S30A6 

Empty 8.791110648 2.817050387 7.006465943 0.66009879 5.201691782 15.01303821 5.305919547 

Empty 8.761823618 2.834738854 7.295316224 0.154014817 5.104513236 16.24097758 5.727554083 

Five 13.15708808 8.332728406 2.510295517 18.73988295 3.54976989 3.351741948 2.00481519 

Ten 14.21931672 12.09246283 3.448009984 18.37839203 5.157626068 3.084589767 2.654696582 

Sixteen 17.55739829 17.81347935 5.556473994 22.36546911 6.130249828 3.214668408 1.982171616 

 

Table 2. Comparison of classification models 

 
Classification 

algorithm 
Configuration Accuracy 

Complex Tree Maximum amount of split: 100, Split criterion: Twoing rule 94.3% 

Medium Gaussian SVM 

Kernel function: Gaussian 

Kernel scale: 13 

Box constraint level: 1 

99.4% 

Weighted K-NN 

Number of neighbours: 10 

Distance Metric: Euclidean 

Distance weight: Squared inverse 

Standardised data: true 

99.8% 

 

 
 

Figure 7. Confusion matrix - complex tree 

 

Figure 7 shows the confusion matrix of the Complex Tree 

classifier. The columns show the predicted classes and the 

rows show the true classes. In the top row, 93% of the records 

from “Eight” density class are correctly classified and other 

records in the “Eight” rows are misclassified. For example, 3% 

of the records are incorrectly classified as from the density 

class “Six”, and 3% are classified as from “Twelve”. So, 93% 

is the true positive rate and 7% is the false negative rate for 

this density class that is shown in the last green and red 

columns. Moreover, the Complex Tree classifier can classify 

“Empty”, “Fourteen”, “Seven” and “Sixteen” density classes 

with 100% of accuracy and the class “Four” with the least 

accuracy (true positive rate 80%, false negative rate 20%).
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Figure 8. Confusion matrix - medium gaussian SVM 

 

 
 

Figure 9. Confusion matrix - weighted KNN 
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Figure 8 shows the confusion matrix of the Medium 

Gaussian SVM classifier. This classifier can correctly classify 

most of the density classes with 100% true positive rate except 

for classes “Five”, “Four” and “Three” which are classified 

with 97% true positive rate and 3% false negative rate. 

The confusion matrix in figure 9 represents the Weighted 

K-NN classifier. Here, almost all the density classes are 

classified with 100% true positive rate except the density class 

“Five”, which has 97% true positive rate and 3% false negative 

rate. 

We also noticed that a certain amount of records from the 

density class “Five” is misclassified in all classifiers due to 

some reason. This may be due to a kind of radio signal 

interference affected to the received signal amplitude that 

suddenly occurred at the data collection. 

According to the performance testing, the Weighted K-NN 

classification model shows the best accuracy (99.8%) with the 

training dataset. Therefore, we have selected this model for the 

future crowd density estimations. 

 

 

5. CONCLUSION 

 

In this paper, we proposed a CSI-based device free 

framework for crowd estimation. Instead of averaging the CSI 

information into a smaller dimension, we proposed to extract 

the CSI amplitude of each stream (antenna) for a particular 

subcarrier separately, which is able to preserve more CSI 

information. We evaluated the proposed method in the real 

environment and the experimental results show that it has 99% 

accuracy with the Weighted KNN classification model. 

However, the proposed model assumes that there are no major 

changes in the environment during the training and the testing 

phase. 

As for the future research, we would like to investigate a 

predictive model that including the following features. 

• To recognise a situation if all people in the room are 

sitting or standing. 

• Predict actual people count in the different environments. 

For example, estimate the people count in a much bigger or 

much smaller room or in the entire floor of a building. 

• In the current implementation, we filtered out some high-

frequency components that caused by the movement of people. 

We would like to add a feature that can recognise if people in 

the room are moving or stationary. 

We also upload the raw datasets, training and testing 

datasets, and Matlab codes that used in this paper into a 

GitHub repository (see https://github.com/ldmohan/People-

Density-Sensing-using-CSI) for the readers’ further reference. 
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