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ABSTRACT 

The present paper studies the motion of an infinitesimal mass around a stellar primary and 

triaxial secondary moving around each other in the elliptic orbits about their common 

center of mass in the neighbourhood of Collinear equilibrium points. The location and 

stability of the collinear points are found to be affected by the radiation pressure and 

triaxility parameters. The nature of stability, however, remains unchanged. The collinear 

points 𝑳𝟏 and 𝑳𝟐  are unstable in the Lyapunov sense. But, the collinear point 𝑳𝟑 shows a

stable behavior for small values of radiation and triaxiality parameters. 
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1. INTRODUCTION

The restricted three body problem has been widely studied 

by many researchers. This is because of its application to the 

celestial and stellar bodies. The system consists of two finite 

bodies, known as primaries, moving about their common 

center of mass, being attracted by the gravitational attraction 

of each other. The motion of the third body is influenced by 

both the primaries. The primaries may describe either a 

circular or an elliptic path. If the system performs motion 

about a circular orbit, then it is a circular restricted three body 

problem otherwise it is an elliptic restricted three body 

problem. The elliptic restricted three body problem 

generalizes the circular restricted three body problem. The 

orbit of the Jupiter around the Sun is a fixed ellipse and the 

Trojan asteroids are influenced by the gravitational attraction 

of the Sun and Jupiter. The stability of such systems (ER3BP) 

moving in elliptic orbits was investigated by many authors, [1-

8] and many others.

The bodies in the classical model of the problem were

considered as spherical, but many celestial bodies are either 

oblate spheroids or triaxial or both, and not spheres. For 

instance, the Mars, Jupiter, Saturn, Neutron stars, Regulus and 

white dwarfs are oblate spheroids whereas, the Moon and 

Pluto and its moon Charon are triaxial. The Earth is also oblate 

and triaxial as well. This oblateness and triaxiality of the 

primaries cause perturbations in the system.  

This inspired many authors to include these 

characterizations in their study of Restricted/Elliptic Resricted 

three body problem. The stability of the collinear equilibrium 

points in the Photogravitational/Generalised 

Photogravitational Elliptic Restricted three body problem was 

studied in [9-11]. The linear stability of periodic orbits of the 

Lagrangian equilibrium points of the ERTBP, was studied in 

[12] based on some value of the mass ratio. The dynamical

properties of the solar sail in Elliptic Restricted three body

problem were also analysed and studied in [13-15]. The effect

of the solar radiation pressure on the location and stability of

the equilibrium points was studied in [16] taking bigger

primary as radiating and taking both primaries as radiating in 

[17]. In both studies the result was that the radiation pressures 

of the primaries affect the location of the collinear points. The 

positions and stability of the collinear equilibrium points, 

𝐿1,2,3  of an infinitesimal body in the elliptic restricted three-

body problem (ER3BP) when both primaries of the system are 

luminous and oblate spheroids moving in elliptic orbits around 

their common center of mass was studied in [18]. The stability 

of the Lagrangian equilibrium points in the elliptic restricted 

three body problem with radiating and triaxial primaries was 

studied based on Averaging method and Floquet's theory 

respectively in [19] and [20]. 

There are five equilibrium points in the Elliptic Restricted 

three body problem. The equilibrium points are the points at 

which the particle has zero velocity and zero acceleration and 

are very important for astronautical applications [16]. Three of 

the equilibrium points are called collinear points as they lie on 

the x-axis (axis joining the two primaries) and are denoted by 

𝑳1 , 𝑳𝟐 , 𝑳3 . The remaining two are called the Lagrangian

points and are denoted by 𝑳4 , 𝑳5 .

In the present work, we study the effects of solar radiation 

pressure and the triaxiality of the primaries. The motion of the 

Collinear equilibrium points has been studied in the frame 

work of the Elliptic Restricted three body problem. To the best 

of our knowledge propensities due to radiation of the primary 

and the triaxiality of the secondary has not been previously 

studied. 

The study of the collinear points is important. This is 

because the orbits near these points are useful for spacecraft 

missions. These are suitable to set permanent observatories of 

the Sun, the magnetosphere of the Earth, links with the hidden 

part of the Moon, and others [21]. The locations of the 

collinear points have been found analytically in terms of the 

mass ratio, solar radiation pressure and the triaxiality of the 

primaries. The method proposed in [22] and [16] has been used. 

The stability of the collinear points has also been studied by 

averaging the system. The numerical calculations and the 

graphs have been plotted using the Wolfram Mathematica 10.2 

and Matlab software, respectively. The locations of the 
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collinear points and the stability has been analysed for the Sun-

Earth system.  

The present paper is organised as follows: Section 1, which 

is introduction; Section 2 provides the equations of motion; 

Section 3 gives the location of the Collinear points; Section 4 

focuses on the stability of the different Collinear points. The 

conclusions of the work are drawn in Section 5. 

 

 

2. EQUATIONS OF MOTION 

 

The differential equations of motion of the infinitesimal 

mass in the elliptic restricted three body problem under 

radiating and triaxial primaries in the barycentric, pulsating 

and rotating, non-dimensional coordinates are derived in [19] 

and  given in equation (1). The notations in principle are taken 

from [4] with some minor modifications in the notation being 

done for adapting to the present problem, presented as : 

 

�̈� − 2�̇� =
1

(1 + 𝑒 cos 𝑣)

𝜕Ω

𝜕𝑥
 

 

 �̈� + 2�̇� =
1

(1+𝑒 𝑐𝑜𝑠 𝑣)

𝜕𝛺

𝜕𝑦
                                                                 (1) 

 

where denotes differentiation with respect to v, and   

 

Ω =
𝑥2+𝑦2

2
+

1

𝑛2 [
(1−𝜇)𝑞

𝑟1
+

𝜇

𝑟2
+

𝜇(2𝜎1−𝜎2)

2𝑟2
3 −

3𝜇(𝜎1−𝜎2)

2𝑟2
5 ]          (2) 

 

Let, 

 

𝑘 =
1

𝑛2 [
(1−𝜇)𝑞

𝑟1
3 +

𝜇

𝑟2
3 +

3𝜇(4𝜎1−3𝜎2)

2𝑟2
5 −

15𝜇(𝜎1−𝜎2)𝑦2

2𝑟2
7 ]                    (3) 

 

Then, (1) can be written as, 

 

�̈� − 2�̇� =
1

(1+𝑒 cos 𝑣)
[𝑥 (1 − 𝑘 +

3𝜇(𝜎1−𝜎2)

𝑛2𝑟2
5 ) +

𝜇(1−𝜇)

𝑛2 (
𝑞

𝑟1
3 −

                    
1

𝑟2
3 −

3(2𝜎1−𝜎2)

2𝑟2
5 +

15(𝜎1−𝜎2)𝑦2

2𝑟2
7 )]  

 

�̈� + 2�̇� =
1

(1+𝑒 cos 𝑣)
[1 − 𝑘]𝑦                                                               (4) 

 

where 

 

𝑛2 = 1 +
3

2
(2𝜎1 − 𝜎2);                                                                          (5) 

 

and, 

𝜎1 =
𝑎2 − 𝑏2

5𝑅2
; 𝜎2 =

𝑏2 − 𝑐2

5𝑅2
 ; 

 

𝑟1 = (𝑥 + 𝜇)2 + 𝑦2, 𝑟2 = (𝑥 − 1 + 𝜇)2 + 𝑦2                             (6) 

 

The dimensionless variables are introduced using the 

distance between the primaries given by: 

 

𝑟 =
𝑎(1 − 𝑒2)

(1 + 𝑒 cos 𝑣)
 

 

Here,  m1 and m2  are the masses of the bigger and smaller 

primaries positioned at (xi ,0), i= 1, 2,  q=1-δ the radiation 

pressure; 𝜎1,  𝜎2 are triaxiality parameters, 𝜎𝑖, (i=1,2)[23]; and 

a, b ,c  are semi axes and R is the distance between the 

primaries; 𝑟𝑖 (i=1,2) are the distances of the infinitesimal mass 

from the bigger and smaller primaries respectively; while e is 

the eccentricity of the either primary around the other and v is 

the true anomaly.  

 

 

3. LOCATION OF COLLINEAR EQUILIBRIUM 

POINTS 

 

The equilibrium points of the system are the points where 

the consumption of the resources is the minimum, hence, are 

given by the equations: 

 
𝜕Ω

𝜕𝑥
= 0;

𝜕Ω

𝜕𝑦
= 0.                                                                                        (7) 

 

where, Ω is given by equation (2). But, the collinear points lie 

on the x-axis; hence, are given by the conditions: 

 
𝜕Ω

𝜕𝑥
= 0;

𝜕Ω

𝜕𝑦
= 0;  𝑦 = 0.                                                                           (8) 

 

Hence, using equations (7) and (8), we get: 

 

𝑓(𝑥) = [𝑥 −
1

𝑛2 {
(1−𝜇)(𝑥+𝜇)𝑞

𝑟1
3 +

𝜇(𝑥−1+𝜇)

𝑟2
3 +

               
3𝜇(𝑥−1+𝜇)(2𝜎1−𝜎2)

2𝑟2
5 }] = 0                                                         (9) 

 

There are three collinear equilibrium points. These are 

denoted by  𝐿1 , lying between the bigger and the smaller 

primary (-μ<x<1-μ);  𝐿2, lying to the right of smaller primary 

(x>1-μ) and  𝐿3, lying to the left of the bigger primary (x<-μ). 

 

3.1 Location of 𝐋𝟏 

 

To find the solution for L1, substituting 𝑥 = 𝑥2 − 𝜌, such 

that 𝑟2 = 𝜌 and 𝑟1 = 1 − 𝜌 into equation (9), we have: 

 

1 − 𝜇 − 𝜌 −
1

𝑛2 {
(1−𝜇)𝑞

(1−𝜌)2 +
𝜇

𝜌2 +
3𝜇(2𝜎1−𝜎2)

2𝜌4 } = 0                   (10) 

 

Now, rearranging the terms, and simplifying we have: 

 

𝜌3 [1 −
{1−

3

2
(2𝜎1−𝜎2)−2𝛿}

{1−
(2𝜎1−𝜎2)

2
−

4𝛿

3
}

𝜌 +
{

1

3
−

3

2
(2𝜎1−𝜎2)−

4𝛿

3
}

{1−
(2𝜎1−𝜎2)

2
−

4𝛿

3
}

𝜌2] =

{[
𝜇(1+15(2𝜎1−𝜎2))

3(1−𝜇){1−
(2𝜎1−𝜎2)

2
−

4𝛿

3
}
] (1 − 𝜌)2 [1 − 30(2𝜎1 − 𝜎2)𝜌 +

45

2
(2𝜎1 − 𝜎2)𝜌2 − {𝑛2 + 6(2𝜎1 − 𝜎2)}𝜌3]}                            (11) 

 

Now, let,  

 

[
𝜇(1 + 15(2𝜎1 − 𝜎2))

3(1 − 𝜇) {1 −
(2𝜎1 − 𝜎2)

2
−

4𝛿
3

}
]

1
3

= 𝜆 

 

Then using series expansion given as: 

 

𝜌 = 𝜆(1 + 𝑐1𝜆 + 𝑐2𝜆2 + ⋯ )                                                            (12) 

 

The simplified equation can be written as: 
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𝜌 = 𝜆 [1 −
1

3
{

1+
59(2𝜎1−𝜎2)

2
−

2𝛿

3

1−
(2𝜎1−𝜎2)

2
−

4𝛿

3

} 𝜆 −
1

9
{

1+
387(2𝜎1−𝜎2)

2
−

2𝛿

3

{1−
(2𝜎1−𝜎2)

2
−

4𝛿

3
}

2} 𝜆2 +

        … ]                                                                                          (13) 

 

Hence, the solution for 𝐿1 is given by: 

 

𝑥 = 1 − 𝜇 − 𝜆 [1 −
1

3
{

1+
59(2𝜎1−𝜎2)

2
−

2𝛿

3

1−
(2𝜎1−𝜎2)

2
−

4𝛿

3

} 𝜆 −

            
1

9
{

1+
387(2𝜎1−𝜎2)

2
−

2𝛿

3

{1−
(2𝜎1−𝜎2)

2
−

4𝛿

3
}

2} 𝜆2 + ⋯ ]                                       (14) 

 

3.2 Location of 𝐋𝟐 

 

For finding the location of 𝐿2 , substituting 𝑥 = 𝑥2 +
𝜌  such that 𝑟2 = 𝜌, 𝑟1 = 1 + 𝜌. Then, substituting, the values 

in equation (9), we have: 

 

𝜌[(1+𝑛2)(1+𝜌+
𝜌2

3 )+
(𝑛2−𝑞)

3𝜌
]

(1+𝜌)2 =
𝜇

3(1−𝜇)
[

1−𝑛2𝜌3+
3

2

(2𝜎1−𝜎2)

𝜌2

𝜌2 ]             (15) 

 

On simplification, we have: 

 

𝜌3 [1 +
{1−

3

2
(2𝜎1−𝜎2)−2𝛿}

{1+
7(2𝜎1−𝜎2)

2
+

4𝛿

3
}

𝜌 +
{

1

3
+

5

2
(2𝜎1−𝜎2)+

4𝛿

3
}

{1+
7(2𝜎1−𝜎2)

2
+

4𝛿

3
}

𝜌2] =

{[
𝜇(1+15(2𝜎1−𝜎2))

3(1−𝜇){1+
7(2𝜎1−𝜎2)

2
+

4𝛿

3
}
] (1 − 𝜌)2 [1 − 30(2𝜎1 − 𝜎2)𝜌 +

45

2
(2𝜎1 − 𝜎2)𝜌2 − {1 +

15

2
(2𝜎1 − 𝜎2)} 𝜌3]}                          (16) 

 

Using the series as in equation (12), the value of ρ is given 

as: 

 

𝜌 = 𝜆 [1 −
1

3
{

1−
43(2𝜎1−𝜎2)

2
+

14𝛿

3

1+
7(2𝜎1−𝜎2)

2
+

4𝛿

3

} 𝜆 −

             
1

9
{

1+
67(2𝜎1−𝜎2)

2
+

16𝛿

3

{1+
7(2𝜎1−𝜎2)

2
+

4𝛿

3
}

2} 𝜆2 + ⋯ ]                                          (17) 

 

Hence, the solution for 𝐿2 is given as: 

 

𝑥 = 1 − 𝜇 + 𝜆 [1 −
1

3
{

1−
43(2𝜎1−𝜎2)

2
+

14𝛿

3

1+
7(2𝜎1−𝜎2)

2
+

4𝛿

3

} 𝜆 −

         
1

9
{

1+
67(2𝜎1−𝜎2)

2
+

16𝛿

3

{1+
7(2𝜎1−𝜎2)

2
+

4𝛿

3
}

2} 𝜆2 + ⋯ ]                                         (18) 

 

3.3 Location of 𝐋𝟑 

 

For the point 𝐿3 substituting 𝑥 = 𝑥1 − 𝜌  such that 𝑟1 =
𝜌 and 𝑟2 = 1 + 𝜌 in equation (9), we have: 

 
𝜇

1−𝜇
=

(𝑛2𝜌3−𝑞)(1+𝜌)2

𝜌2[1+
3(2𝜎1−𝜎2)

2
(1+𝜌)−2−𝑛2(1+𝜌)3]

                                        (19) 

 

taking, 𝜌 = 1 + 𝛼 , and using the elementary algorithm for 

division upto 𝑂[𝛼4], we have: 

 

−
𝜇

1−𝜇
= [(−

9

7
(2𝜎1 − 𝜎2) −

4

7
𝛿) + (1 −

11

14
(2𝜎1 − 𝜎2) −

19

21
𝛿) (−

12

7
𝛼) + (1 −

815

672
(2𝜎1 − 𝜎2) −

989

1008
𝛿) (−

12

7
𝛼)

2

+

(
1567

1728
−

10627

8064
(2𝜎1 − 𝜎2) −

5465

6048
𝛿) (−

12

7
𝛼)

3

+ ⋯ . ]          (20) 

 

Now, using the method of successive approximations and 

Lagrange inversion formula [24], and retaining only linear 

terms in 𝛿, 𝜎1 , 𝜎2 we get: 

 

𝜌 = [(1 −
3

4
(2𝜎1 − 𝜎2) −

1

3
𝛿) −

7

12
(1 −

25

14
(2𝜎1 − 𝜎2) −

         
5

21
𝛿) (

𝜇

1−𝜇
) +

7

12
(1 −

4075

1344
(2𝜎1 − 𝜎2) −

          
71

504
𝛿) (

𝜇

1−𝜇
)

2

+ (
−13223

20736
+

22307

41472
(2𝜎1 − 𝜎2) −

           
30481

31104
𝛿) (

𝜇

1−𝜇
)

3

+   𝑂 [
𝜇

1−𝜇
]

4

]                                        (21) 

 

Hence, the solution for 𝐿3 is given as: 

 

𝑥 = −𝜇 − [(1 −
3

4
(2𝜎1 − 𝜎2) −

1

3
𝛿) −

7

12
(1 −

25

14
(2𝜎1 −

         𝜎2) −
5

21
𝛿) (

𝜇

1−𝜇
) +

7

12
(1 −

4075

1344
(2𝜎1 − 𝜎2) −

          
71

504
𝛿) (

𝜇

1−𝜇
)

2

+ (
−13223

20736
+

22307

41472
(2𝜎1 − 𝜎2) −

           
30481

31104
𝛿) (

𝜇

1−𝜇
)

3

+   𝑂 [
𝜇

1−𝜇
]

4

]                                               (22) 

 

 

4. LINEAR STABILITY OF COLLINEAR POINTS 

 

The stability of motion of the collinear points is decided by 

the following lemma whose formulation is taken from [22], 

with some modifications in notations being done for adapting 

to the present problem. 

Lemma: At the collinear points: 

 

𝑘 =
1

𝑛2 [
(1−𝜇)𝑞

𝑟1
3 +

𝜇

𝑟2
3 +

3𝜇(4𝜎1−3𝜎2)

2𝑟2
5 −

15𝜇(𝜎1−𝜎2)𝑦2

2𝑟2
7 ] > 1        (23) 

 

Proof: For an equilibrium point, we have the condition: 

 

𝑥 −
1

𝑛2 {
(1−𝜇)(𝑥+𝜇)𝑞

𝑟1
3 +

𝜇(𝑥−1+𝜇)

𝑟2
3 +

3𝜇(𝑥−1+𝜇)(2𝜎1−𝜎2)

2𝑟2
5 −

15𝜇(𝑥−1+𝜇)(𝜎1−𝜎2)𝑦2

2𝑟2
7 } = 0                                                                     (24) 

 

The condition for a collinear equilibrium point is y=0, so the 

equation (24) gets simplified as: 

 

𝑥 −
1

𝑛2 {
(1−𝜇)(𝑥+𝜇)𝑞

𝑟1
3 +

𝜇(𝑥−1+𝜇)

𝑟2
3 +

3𝜇(𝑥−1+𝜇)(2𝜎1−𝜎2)

2𝑟2
5 −

15𝜇(𝑥−1+𝜇)(𝜎1−𝜎2)𝑦2

2𝑟2
7 } = 0                                                                     (25) 

 

Rearranging the terms, the equation (25) can be written as: 

 
1

𝑛2 {
(1−𝜇)(𝑥+𝜇)(𝑟1−𝑟1

−2𝑞)

𝑟1
+

𝜇(𝑥−1+𝜇)(𝑟2−𝑟2
−2)

𝑟2
+

3𝜇(𝑥−1+𝜇)(2𝜎1−𝜎2)(𝑟2−𝑟2
−4)

2𝑟2
+

3𝜇(1−𝜇)(𝑥+𝜇)(2𝜎1−𝜎2)

2
} = 0       (26)                                              

 

Next, to prove equation (23) we analyze each collinear 

equilibrium point separately. 
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4.1 Stability at collinear point 𝐋𝟏 

 

Now, at the point 𝐿1, 𝑟1 + 𝑟2 = 1, where,  𝑟1 = 𝑥 + 𝜇, and 

𝑟2 = 1 − 𝑥 − 𝜇. Substituting the values in equation (26) and 

simplifying using equation (3), we have: 

 

[
1

𝑛2
[(1 − 𝑘 +

3𝜇(2 − 𝜇)(2𝜎1 − 𝜎2)

2
) 𝑟1 +

3

2
𝜇(2𝜎1 − 𝜎2)

− 𝜇 (1 −
1

𝑟2
3 −

3(2𝜎1 − 𝜎2)

2𝑟2
5 )]] = 0 

 

Since, 
𝟏

𝐧𝟐 ≠ 𝟎 and  𝒓𝟐 < 𝟏, we have: 

 

𝑘 = 1 + [
𝜇

𝑟1
(

1

𝑟2
3 +

3(2𝜎1−𝜎2)

2𝑟2
5 −

3

2
(2𝜎1 − 𝜎2)) − 1 +

        
3𝜇(2−𝜇)(2𝜎1−𝜎2)

2𝑟1
]                                                                               (27) 

 

Hence, 𝑘 > 1 for collinear point 𝐿1. 

 

4.2 Stability at Collinear point 𝐋𝟐 

 

At L2 , 𝑟1 − 𝑟2 = 1 , 𝑟1 = 𝑥 + 𝜇 and 𝑟2 = 𝑥 + 𝜇 − 1 . 

Inserting, the values in equation (26), and using equation (3), 

and proceeding in the same way as for L1, also for collinear 

point L2, we have, 

 

𝑘 = 1 + [
𝜇

𝑟1
(

1

𝑟2
3 +

3(2𝜎1−𝜎2)

2𝑟2
5 −

3

2
(2𝜎1 − 𝜎2)) − 1 +

        
3𝜇(2−𝜇)(2𝜎1−𝜎2)

2𝑟1
]                                                                               (28) 

 

Hence, for collinear point 𝐿2, we have , k > 1. 

 

4.3 Stability at collinear point 𝐋𝟑 

 

At 𝐿3 , 𝑟2 − 𝑟1 = 1 , 𝑟1 = −𝑥 − 𝜇 , 𝑟2 = −𝑥 − 𝜇 + 1 . 

Proceeding in the same manner as in 𝐿1 and 𝐿2, substituting 

values in equation (26) and using equation (3) we have: 

 

𝑘 = 1 + [
𝜇

𝑟1
{1 − (

1

𝑟2
3 +

3(2𝜎1−𝜎2)

2𝑟2
5 −

3

2
(2𝜎1 − 𝜎2))} +

         
3𝜇(2−𝜇)(2𝜎1−𝜎2)

2𝑟1
]                                                                              (29) 

 

Hence, k > 1, for collinear point 𝐿3 also. 

Thus, for all collinear points  𝐿1, 𝐿2 𝑎𝑛𝑑  𝐿3, we have k >
1. This completes the proof of lemma. 

To analyses the stability of motion around the primaries 

near the collinear points, investigating the roots of the 

characteristic equations. For this, assuming, that the particle 

receives a small displacement from the equilibrium position. 

Then finding the variational equations of motion by 

substituting the coordinates of displaced point in the equation 

of motion equation (1) and expanding by Taylor's series about 

the collinear points and taking only the linear terms, we get the 

equation following [20] as: 

 

�̈� − 2�̇� = 𝜙[Ω𝑥𝑥
0 𝜉 + Ω𝑥𝑦

0 𝜂]; �̈� + 2�̇� = 𝜙[Ω𝑦𝑥
0 𝜉 + Ω𝑦𝑦

0 𝜂].(30) 

 

where 𝜙 =
1

(1+𝑒 cos 𝑣)
 and (𝑥0, 𝑦0) are the coordinates of the 

collinear points respectively. The subscript of Ω denotes the 

second order partial derivatives of Ω with respect to x and y, 

as it appears, respectively. 

Since, all the collinear points lie on the x-axis, hence y=0, 

resulting, Ω𝑥𝑦 = 0. Introducing new variables given by, 

 

𝑥1 = 𝜉, 𝑥2 = 𝜂, 𝑥3 =
𝑑𝜉

𝑑𝑣
, 𝑥4 =

𝑑𝜂

𝑑𝑣
 

 

Substituting these values in equation (30), the system of 

equations can be written as: 

 
𝑑𝑥𝑖

𝑑𝑣
= 𝑃𝑖1𝑥1 + 𝑃𝑖2𝑥2 + 𝑃𝑖3𝑥3 + 𝑃𝑖4𝑥4; 𝑖 = 1,2,3,4            (31) 

 

where, 

 

𝑃11 = 𝑃12 = 𝑃14 = 𝑃21 = 𝑃22 = 𝑃23 = 𝑃33 = 𝑃44 = 0; 𝑃13

= 𝑃24 = 1; 𝑃34 = 2;  𝑃43 = −2  ;    𝑃31

= 𝜙Ω𝑥𝑥
0 ;  𝑃42 = 𝜙Ω𝑦𝑦

0  

 

where, superscript '0' indicates the values evaluated at 

respective collinear points. 

The coefficients of equation (31) are 2𝜋 periodic functions 

of v. Hence, taking the averaged system, given by: 

 

𝑑𝑥𝑖
(0)

𝑑𝑣
= 𝑃𝑖1

(0)
𝑥1

(0)
+ 𝑃𝑖2

(0)
𝑥2

(0)
+ 𝑃𝑖3

(0)
𝑥3

(0)
+ 𝑃𝑖4

(0)
𝑥4

(0)
; 

𝑖 = 1,2,3,4                                                                                                  (32) 

 

where, 

 

𝑃𝑖𝑠
(0)

=
1

2𝜋
∫ 𝑃𝑖𝑠(𝑣)𝑑𝑣

2𝜋

0

; 𝑖, 𝑠 = 1,2,3,4 

 

So, we get: 

 

𝑃31
(0)

=
1

√1−𝑒2
Ω𝑥𝑥

0 ; 𝑃42
(0)

=
1

√1−𝑒2
Ω𝑦𝑦

0  

 

where, superscript '0' indicates the values evaluated at 

respective collinear points 𝐿1, 𝐿2, 𝐿3 . 
 

Thus, the characteristic equation for the system of equations 

(32) can be given as: 

 

𝜆4 + 𝑄𝜆2 + 𝑅 = 0                                                                             (33) 

 

where, 

 

𝑄 = −(4 − 𝑃31
0 − 𝑃42

0 ); 𝑅 = 𝑃31
0 . 𝑃42

0                                             (34) 

 

The motion of the infinitesimal particle will be stable near 

the collinear point when given a small displacement and small 

velocity, the particle oscillates for a considerable time about 

the points [9]. That is, the system will be stable if the roots of 

the characteristic equation are purely imaginary. Hence, the 

condition for stable roots can be given as: 

 

𝑄 < 0; 𝑅 > 0. 
 

Taking the latter inequality, the condition of stability can be 

written as: 
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−
1

2
−

3

4
(2𝜎1 − 𝜎2) −

3𝜇(𝜎1 − 𝜎2)

𝑟2
5 < 𝑘

< 1 +
3

4
(2𝜎1 − 𝜎2) −

3𝜇(𝜎1 − 𝜎2)

𝑟2
5  

 

If the values of 𝜎1, 𝜎2 are negligibly small. Then, the 

condition of stability can be written as: 

 

−
1

2
< 𝑘 < 1                                                                                 (35) 

 

But, from the above subsections, it is clear that for all the 

collinear equilibrium points, 𝐿1, 𝐿2, 𝐿3 we have k>1. Thus, the 

collinear points are unstable, using the above condition given 

by equation (35). 

The roots of the characteristic equation (36) are given by: 

 
𝜆1,2

2 =

[𝑘−2(1−𝑒2)−
3𝜇(2𝜎1−𝜎2)

𝑟2
5 ]±[(9𝑘2−8𝑘−

18𝜇𝑘(2𝜎1−𝜎2)

𝑟2
5 )+8𝑒2(1+𝑘−

3𝜇(2𝜎1−𝜎2)

𝑟2
5 )]

1
2⁄

2√1−𝑒2
  

                                                                                            (36) 

Let, 𝜆𝑖
2 = 𝑠𝑖 , 𝑖 = 1,2. Hence, the above equation (36) can 

be written as: 

 
𝑠1 =

[𝑘−2(1−𝑒2)−
3𝜇(2𝜎1−𝜎2)

𝑟2
5 ]+[(9𝑘2−8𝑘−

18𝜇𝑘(2𝜎1−𝜎2)

𝑟2
5 )+8𝑒2(1+𝑘−

3𝜇(2𝜎1−𝜎2)

𝑟2
5 )]

1
2⁄

2√1−𝑒2
  

𝑠2 =

[𝑘−2(1−𝑒2)−
3𝜇(2𝜎1−𝜎2)

𝑟2
5 ]−[(9𝑘2−8𝑘−

18𝜇𝑘(2𝜎1−𝜎2)

𝑟2
5 )+8𝑒2(1+𝑘−

3𝜇(2𝜎1−𝜎2)

𝑟2
5 )]

1
2⁄

2√1−𝑒2
       

                                                                      (37) 

 

As, 𝑘 > 1 for collinear points, we have: 

 

[(9𝑘2 − 8𝑘 −
18𝜇𝑘(2𝜎1−𝜎2)

𝑟2
5 ) + 8𝑒2 (1 + 𝑘 −

3𝜇(2𝜎1−𝜎2)

𝑟2
5 )]

1
2⁄

> 1                                                                     (38) 

 

for the values of 𝜎1, 𝜎2 < 1, 𝑒 < 1 . Thus, from the above 

equations (37) and (38), we have 𝑠1 > 0, 𝑠2 < 0. As 𝜆2 = 𝑠, 

𝑠1 > 0  gives two real roots of opposite signs, and 𝑠2 < 0 , 

results into two imaginary roots. Hence, the solution of 

equation (36) can be written in the form: 

 

𝜆𝑖 = 𝐶𝑖1𝜖𝑝1𝑣 + 𝐶𝑖2𝜖𝑝2𝑣 + 𝐶𝑖3 cos(𝑝3𝑣 − 𝐶𝑖4) , 𝑖 = 1,2.    (39) 

 

where, 𝑝1,𝑝2, 𝑝3  are the roots of equation (33). The first and 

second terms of equation (39) cause an exponential growth in 

the values of the roots  𝜆𝑖 and dominates the third term. Thus, 

from the values of the two characteristic roots, it is also clear 

that the motion is unstable near a collinear equilibrium point. 

 

 

4. CONCLUSION 

 

The formulas derived in the paper can be applied to the Sun 

and the Earth as primaries and the particle as space craft}. 

Hence, for the system, the mass parameter 𝜇 =
𝑚2

𝑚1+𝑚2
=

3.00317 × 10−6, the eccentricity of the elliptic orbit of the 

primaries, e=0.0167. 

The location of collinear points for the Sun-Earth system are 

given in table: [1], for different values of 𝛿, 𝜎1, 𝜎2 . 
The nature of motion around the collinear points can be 

analysed as: 

(i) the motion around the point 𝐿1 is unstable for all the 

values of 𝛿, 𝜎1 and 𝜎2  as k > 1 and 𝜆1
2 > 0, 𝜆2 

2 < 0 . This 

can be seen from table: [2] and is also evident from graph 

(figure:1) 

(ii) the point 𝐿2 also exhibits the instability of motion in its 

vicinity as 𝜆1
2 > 0  and  𝜆2 

2 < 0 and also k>1 for all 

values of 𝛿, 𝜎1 and 𝜎2  .This is evident from table: [3]. 

The instability can also be seen from the graph(figure:2) 

(iii) For 𝐿3  , the motion appears to be stable for some values 

of 𝛿, 𝜎1 and 𝜎2   because the values of k < 1 as well as 

𝜆1,2
2 < 0 . As, the value of 𝜎1 and 𝜎2  , increases the 

system becomes unstable, for a fixed value of   𝛿 , the 

roots of the system 𝜆1,2
2 < 0. That is, the roots will be 

imaginary implying the stability of the system which is 

evident from the table: [4] and also from the 

graph(figure:3) 

When 𝜎1 and 𝜎2   are negligibly small, the locations and 

stability of our results are in confirmation with [16] and [17]. 

The collinear point 𝐿3 was found to be stable for the value of 

radiation pressure 𝛽 ≥ 0.115 in [16] and [17]. This result is 

also in confirmation with [16] and [17] as the collinear point 

𝐿3 is found to be stable in our result also, clearly evident from 

table: [4]. The collinear points 𝐿1 and 𝐿2 are found unstable, 

as is given in [16-17] and [18]. 

The existence and stability of collinear equilibrium points 

of the elliptic restricted three body problem with radiating 

primary and triaxial secondary has been analysed by the 

method given by [16, 22]. The rotating coordinate system and 

dimensionless pulsating variables are used to make the system 

independent of time. The numerical calculations are 

performed using the software Mathematica 10.2 and the 

graphs are plotted using Matlab software. 

The location of the collinear points 𝐿1, 𝐿2  and 𝐿3   are given 

by equations (14), (18) and (22), respectively. The increment 

in the values of 𝛿, 𝜎1 and 𝜎2  affects the locations of the 

collinear points. The stability of the system can be analysed by 

the equations (33), (37) and (38) using the condition of 

stability given by equation (35). The points 𝐿1, 𝐿2   exhibit the 

unstable motion in their vicinity, which is evident from graphs 

(figure:1, figure:2). But, the motion around the point 𝐿3   is 

stable for a particular value of  𝛿, 𝜎1 and 𝜎2   (hypothetical 

values), which can be seen from the figure 3. Also, the stability 

has been numerically analysed for the Sun-Earth system. 

Thus, it can be concluded that the stability of the collinear 

point 𝐿3   is dependent on the parameters, radiation pressure 

and the triaxiality parameters, respectively. Increase in the 

value of the radiation parameter makes motion around the 

collinear point 𝐿3   stable. On the other hand, increase in the 

value of triaxiality parameters causes instability of motion 

around the collinear point 𝐿3   . 

 

Table 1. Location of collinear equilibrium points for Sun-Earth system for different values of 𝛿, 𝜎1 and 𝜎2   

 
Collinear Point           → 𝐿1 𝐿2 𝐿3 

For 𝜎1 = 0.00003, 𝜎2 = 0.00001 
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𝛿 = 0.01 (0.989979,0) (1.00999,0) (-0.996615,0) 

𝛿 = 0.001 (0.990019,0) (1.01003,0) (-0.999615,0) 

𝛿 = 0.2 (0.988948,0) (1.00929,0) (-0.933282,0) 

𝛿 = 0.3 (0.988195,0) (1.00899,0) (-0.899949,0) 

For 𝛿 = 0.001 

For 𝜎1 = 0.03, 𝜎2 = 0.01 (0.987962,0) (1.01216,0) (-0.962168,0) 

For 𝜎1 = 0.003, 𝜎2 = 0.001 (0.989777,0) (1.01029,0) (-0.995915,0) 

For 𝜎1 = 0.0003, 𝜎2 = 0.0001 (0.989997,0) (1.01006,0) (-0.993144,0) 

 

Table 2. Values of 𝜆1,2
2 , k for different values of 𝛿, 𝜎1, 𝜎2 and e for L1 

 

k, 𝜆1,2
2 → 𝑘 𝜆1

2 𝜆2
2 

𝛿↓ 

For 𝜎1 = 0, 𝜎2 = 0, 𝑒 = 0 

𝛿 = 0 4.06052 6.41385 -4.3503 

𝛿 = 0.001 4.01058 6.4304 -4.34795 

𝛿 = 0.01 4.055579 6.31279 4.30221 

𝛿 = 0.1 3.55847 5.40248 -3.84399 

𝛿 = 0.2 3.05618 4.338855 -3.33237 

𝛿 = 0.4 2.052 2.34335 -2.29135 

For 𝛿 = 0.001, e=0 

For 𝜎1 = 0.03, 𝜎2 = 0.01 1496.23 869.936 -1159.8 

For 𝜎1 = 0.003, 𝜎2 = 0.001 364.719 257.812 -299.108 

For 𝜎1 = 0.0003, 𝜎2 = 0.0001 44.5513 35.7023 -38.2083 

For 𝜎1 = 0, 𝜎2 = 0, 𝛿 = 0.001 

e=0.02 4.05579 6.4058 -4.34798 

e=0.04 4.05579 6.41198 -4.35134 

e=0.06 4.05579 6.4223 -4.35558 

e=0.1 4.05579 6.4555 -4.36925 

For 𝛿 = 0.001 

𝜎1 = 0.03, 𝜎2 = 0.04, 𝑒 = 0.04 1496.23 870.634 -1160.73 

𝜎1 = 0.003, 𝜎2 = 0.004, 𝑒 = 0.02 364.719 257.864 -299.165 

𝜎1 = 0.0003, 𝜎2 = 0.0004, 𝑒 = 0.04 44.5513 35.7325 -38.2373 

 

Table 3. Values of 𝜆1,2
2 , k for different values of 𝛿, 𝜎1, 𝜎2 and e for L2 

 

k, 𝜆1,2
2 → 𝑘 𝜆1

2 𝜆2
2 

𝛿↓ 

For 𝜎1 = 0, 𝜎2 = 0, 𝑒 = 0 

𝛿 = 0 3.94076 6.17231 -4.23155 

𝛿 = 0.001 3.9357 6.16213 -4.22643 

𝛿 = 0.01 3.89023 6.07061 -4.18039 

𝛿 = 0.1 3.43725 5.15805 -3.7208 

𝛿 = 0.2 2.93709 4.14759 -3.2105 

𝛿 = 0.4 1.9447 2.12041 -2.17634 

For 𝛿 = 0.001, e=0 

For 𝜎1 = 0.03, 𝜎2 = 0.01 1421.36 826.304 -1101.75 

For 𝜎1 = 0.003, 𝜎2 = 0.001 352.253 248.94 -288.877 

For 𝜎1 = 0.0003, 𝜎2 = 0.0001 43.3909 34.4808 -36.9571 

For 𝛿 = 0.001 

𝜎1 = 0.03, 𝜎2 = 0.04, 𝑒 = 0.04 352.253 248.97 -288.934 

𝜎1 = 0.003, 𝜎2 = 0.004, 𝑒 = 0.02 43.0939 34.5101 -36.9851 

 

Table 4. Values of 𝜆1,2
2 , k for different values of 𝛿, 𝜎1, 𝜎2 and e for L3 

 

k, 𝜆1,2
2 → 𝑘 𝜆1

2 𝜆2
2 

𝛿↓ 

For 𝜎1 = 0, 𝜎2 = 0, 𝑒 = 0 

𝛿 = 0.001 1.0000022 0.00000688 -1.00000458 

𝛿 = 0.01 0.999969 -0.00009299 -0.999938 

𝛿 = 0.1 0.996354 -.0109937 -0.992653 

𝛿 = 0.2 0.983968 -0.492158 -0.966816 

𝛿 = 0.4 0.921714 -0.278231 -0.80005 

For e=0.01 

For 𝜎1 = 0.003, 𝜎2 = 0.001, 𝛿 = 0.1 1.00054 0.00359971 -1.00246 

For 𝜎1 = 0.0003, 𝜎2 = 0.0001, 𝛿 = 0.1 0.996766 -0.00923806 -0.993846 

6



 

For 𝜎1 = 0.0003, 𝜎2 = 0.0001, 𝛿 = 0.11 0.995963 -0.0116716 -0.992216 

𝜎1 = 0.003, 𝜎2 = 0.001, 𝛿 = 0.11 0.999763 -0.000204296 -0.99988 

𝜎1 = 0.00003, 𝜎2 = 0.00001, 𝛿 = 0.2 0.984013 -0.0485452 -0.967293 

𝜎1 = 0.0003, 𝜎2 = 0.0001, 𝛿 = 0.2 0.984416 -0.0472766 -0.968158 

𝜎1 = 0.003, 𝜎2 = 0.001, 𝛿 = 0.2 0.98851 -0.0345095 -0.976831 

 

 

 
 

Figure 1. Correlation of characteristic root λ1 and δ for L1 

 

 
 

Figure 2. Correlation of characteristic root λ1 and δ for L2 

 

 
 

Figure 3. Correlation of characteristic root λ2 and δ for L3 
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