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ABSTRACT 

The present paper studies a chaotic system with one cubic nonlinear term and deals with 

optimal control of this system. The problem analysis technique of this paper, which is a 

major issue in oscillators, robotics, lasers, etc., has not been proposed in previous studies. 

Modal Series technique was used to solve the problem of optimal control with infinite time 

horizon for chaotic system. Nonlinear boundary value obtained in this technique is 

converted to a sequence of time invariable linear boundary value using Pontryagin's 

minimum principle. By resolving this sequence, state trajectory and optimal control law are 

obtained in the form of series with uniform convergence. Moreover, this technique allows 

for selection of suitable number of answers to reach an appropriate approximation of the 

main answer. In addition, the number of series terms is not limited. A reverse algorithm for 

drawing approximate state trajectory and sub-optimal control law. The results of 

simulations confirmed efficiency and accuracy of the proposed algorithm.  

Keywords: 

optimal control, chaos, four-scroll chaotic 
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1. INTRODUCTION

Nonlinear dynamics can found in various fields including 

engineering, physics as well as others. Chaotic systems are 

nonlinear dynamic systems sensitive to initial conditions. 

Sensitivity to initial conditions means that slight changes in 

initial values of a process may result in significant differences 

in process fate. Thus, synchronization, stabilizing and control 

of such systems is much difficult. Chaotic systems were first 

reported by Lorenz in 1963 [1], when he found a three 

dimensional chaotic system during investigation of climatic 

patterns. Afterward, many three dimensional chaotic systems 

were identified including Rössler system [2], Rabinovich 

system [3], Arneodo system [4], Sprott systems [5], Chen 

system [6], Lü system [7], Shaw system [8], Cai system [9], 

Tigan system [10], Colpitt’s oscillator [11], Zhou system [12], 

etc. more chaotic systems have been recently discovered as 

follows: Li system [13], Sundarapandian system [14], 

Sundarapandian-Pehlivan system [15], Zhu system [16]. 

During the past decades, well-known chaotic systems 

representing n-scroll chaotic attractors were discovered such 

as: double-scroll attractors (like the Lorenz system [1], Chen 

system [6], Lü system [7], Tigan system [10]), three-scroll 

attractors (like Wang system Pan system [17]), and four-scroll 

chaotic attractors (like Liu system [18]). Chaos theory is 

widely used in various fields including oscillators [19], lasers 

[20], robotics and mechanics [21-24], neural networks [25], 

secure communications [26-27], etc.  

Recent studies are oriented toward chaos control including 

establishment of instable equilibrium points and instable 

periodic responses [28]. Suitable methods have been 

developed for suppressing chaos in chaotic systems. These 

methods include adaptive control, adaptive fuzzy control, 

sliding mode control, robust control, time-delayed feedback 

control, double delayed feedback control, bang-bang control, 

optimal control, intelligent control, etc. [29-40].   

During recent decades, optimal control has been an active 

filed of control theory whose range has been extended to many 

scientific fields. In this paper, using Pontryagin's minimum 

principle, nonlinear equation of Four-Scroll chaotic system is 

converted to nonlinear boundary value problem with infinite 

time horizon whose solving by analytical approach is too 

difficult. Various methods have been developed for solving 

nonlinear boundary value problems. In Successive 

approximation approach (SAA), for example, instead of direct 

solving of nonlinear boundary value obtained by Pontryagin's 

minimum principle, a sequence of variable linear boundary 

value problems with heterogeneous time is solved in reversible 

manner [41]. Sensitivity approach is similar to previous 

approach which only requires solving of a sequence of variable 

linear boundary value problems with heterogeneous time to 

propose optimal control law as series form [42]. However, 

solving of time variable equation is much more difficult than 

that of time invariable equations.  

In this paper, an analytical method called Modal Series 

Method is proposed for solving the problem of optimal control 

with infinite time horizon for four-scroll chaotic system. 

Modal Series Method has been first developed by Dr. Pariz 

[43]. This method represents a tool for solving nonlinear 

differential equations such as non-linear optimal control issues 

[44-47]. Nonlinear boundary value with infinite time horizon 

in this technique is converted to a sequence of time-

independent linear boundary value problems. By solving this 

sequence, optimal response is obtained as a series with 

uniform convergence. Moreover, this technique allows for 

selection of suitable number of answers to reach an appropriate 

approximation of the main answer. In addition, the number of 

series terms is not limited. 
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2. FOUR-SCROLL CHAOTIC SYSTEM 

 

In this section, equilibrium points of Four-scroll chaotic 

system are evaluated. Nonlinear dynamic equations of Four-

scroll chaotic system are presented as follows [48]:  
 

{

�̇�1 = 𝑎(𝑥2 − 𝑥1) + 𝑏𝑥2𝑥3,    

�̇�2 = −10𝑥2
3 − 𝑥2 + 4𝑥1𝑥3,

�̇�3 = 𝑐𝑥3 − 𝑥1𝑥2,                     

                                             (1) 

 

where, x1, x2 and x3 are state variables and a, b and c represent 

constant parameters. System Eq. 1 is a polynomial eight term 

system with three second order nonlinear terms and one cubic 

nonlinear term. By selecting parameters as presented below, 

system Eq. 1 describes a four-scroll chaotic attractor. 

 

𝑎 = 3, 𝑏 = 14, 𝑐 = 3.9,                                                        (2) 

 

Time responses according to this initial condition is 

presented in Fig. 1. In addition, 2D and 3D graphs of the 

responses are presented in Fig. 2. 

 

x0: {

x1(0) = 0.2

x2(0) = 0.4

x3(0) = 0.2

                                                                  (3) 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 1. Time response of state variables to Piecewise 

Modal Series and Runge–Kutta 

 

Simulation was performed using Runge–Kutta method in 

Matlab and Modal Series analytical method. 

 

 

3. FOUR-SCROLL CHAOTIC SYSTEM PROPERTIES 

 

In this section, Four-scroll chaotic system and its 

fundamental properties including dissipativity, symmetry, 

equilibrium and invariance are discussed as proposed in [48].  

 

3.1. Dissipativity 

 

Right side of system Eq. 1 in vector state can be written as 

follows: 

 

𝐹 = [

𝐹1
𝐹2
𝐹3

] = [

𝑎(𝑥2 − 𝑥1) + 𝑏𝑥2𝑥3
−10𝑥2

3 − 𝑥2 + 4𝑥1𝑥3
𝑐𝑥3 − 𝑥1𝑥2

]                                    (4) 

 

Divergence of vector 𝐹 can be written as follows: 

 

𝛻. 𝐹 =
𝜕𝐹1

𝜕𝑥1
+
𝜕𝐹2

𝜕𝑥2
+
𝜕𝐹3

𝜕𝑥3
= −𝑎 − 1 + 𝑐,                                (5) 

 

The necessary and sufficient condition for dissipativity of 

system Eq. 1 is that vector 𝐹 divergence be negative. Relation 

Eq. 5 shows that system Eq. 1 is dissipative if and only if −𝑎 −
1 + 𝑐 < 0. According to values of parameters of Eq. 2, this 

condition is met and thus, system Eq. 1 is dissipative. 

 

3.2. Equilibrium points and stability 

 

Equilibrium points of the chaotic system Eq. 1 is simply 

obtained by solving the following equation ( 𝑎 = 3, 𝑏 =
14, 𝑐 = 3.9). 

 

{

𝑎(𝑥2 − 𝑥1) + 𝑏𝑥2𝑥3 = 0,

−10𝑥2
3 − 𝑥2 + 4𝑥1𝑥3 = 0,

𝑐𝑥3 − 𝑥1𝑥2 = 0,                   

                                                        (6) 
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Figure 2. 2D and 3D graph of chaotic system 

 
Equilibrium points are estimated by these calculations: 

 

𝐸0 = [
0
0
0
] , 𝐸1 = [

2.590
0.7670
0.5095

], 

𝐸2 = [
−2.590
−0.7670
0.5095

] , 𝐸3 = [
−3.4089
1.0449
−0.9134

], 

𝐸4 = [
3.4089
−1.0449
−0.9134

],                                                                  (7) 

 

Jacobian matrix of system Eq. 1 can be presented as follows: 

 

𝐽 = [

−𝑎 𝑏𝑥3 + 𝑎 𝑏𝑥2
4𝑥3 −30𝑥2

2 − 1 4𝑥1
−𝑥2 −𝑥1 𝑐

] =

[

−3 14𝑥3 + 3 14𝑥2
4𝑥3 −30𝑥2

2 − 1 4𝑥1
−𝑥2 −𝑥1 3.9

],                                               (8) 

 

Jacobian matrix in equilibrium point 𝐸0 has been estimated 

as follows: 

 

𝐽0 = 𝐽(𝐸0) = [
−3 3 0
0 −1 0
0 0 3.9

]                                            (9) 

 

Eigenvalue of 𝐽0 is estimated as follows: 

 

𝜆0,1 = −3, 𝜆0,2 = −1, 𝜆0,3 = 3.9,                                       (10) 

 

It can be observed that eigenvalue of 𝜆0,3  is positive and 

thus equilibrium point 𝐸0  is a saddle point and hence, 

according to Lyapanov stability theory, equilibrium point 𝐸0 

is instable. Now, Jacobian matrix is calculated in equilibrium 

points of 𝐸1, 𝐸2: 

 

𝐽1 = 𝐽(𝐸1) = [
−3.000 10.1330 10.7380
2.0380 −18.6487 10.3600
−0.7670 −2.5900 3.9000

] , 𝐽2 =

𝐽(𝐸2) = [
−3.000 10.1330 −10.7380
2.0380 −18.6487 −10.3600
0.7670 2.5900 3.9000

]                    (11) 

 

Eigenvalue of J1, J2 is estimated as follows: 

 

𝜆1,1 = 𝜆2,1 = −19.1231, 

 𝜆1,2 = 𝜆2,2 = 0.6872 + 3.4271𝑖, 

𝜆1,3 = 𝜆2,3 = 0.6872 − 3.4271𝑖,                                       (12) 

 

Therefore, equilibrium points of 𝐸1 , 𝐸2  are saddle-focus 

point and hence, these points are instable. Similarly, 

eigenvalue of equilibrium points of 𝐸3 , 𝐸4  are obtained as 

follows: 

 

𝜆3,1 = 𝜆4,1 = −33.9537, 

 𝜆3,2 = 𝜆4,2 = 0.5496 + 4.5771𝑖, 

𝜆3,3 = 𝜆4,3 = 0.5496 − 4.5771𝑖,                                       (13) 

 

Therefore, equilibrium points of 𝐸3 , 𝐸4  are saddle-focus 

points. Thus all equilibrium points of the chaotic system Eq. 1 

are instable. In this paper, only the problem of equilibrium 

point E0 is investigated. 
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4. OPTIMAL CONTROL OF FOUR-SCROLL 

CHAOTIC SYSTEM 

 

In this section, optimal control of Four-scroll chaotic system 

is investigated. For optimal control, controlled Four-scroll 

chaotic system is considered: 

 

{

�̇�1 = 𝑎(𝑥2 − 𝑥1) + 𝑏𝑥2𝑥3 + 𝑢1,     

�̇�2 = −10𝑥2
3 − 𝑥2 + 4𝑥1𝑥3 + 𝑢2,

�̇�3 = 𝑐𝑥3 − 𝑥1𝑥2 + 𝑢3,                     

                                  (14) 

 

where, 𝑢1, 𝑢2, 𝑢3 stand for control inputs that meet optimality 

conditions and are achieved by Pontryagin’s minimum 

principle (PMP). The proposed control strategy is designing 

optimal control inputs of 𝑢1, 𝑢2, 𝑢3 so that state trajectories in 

limited time interval [0, 𝑡𝑓]  are oriented to instable 

equilibrium point 𝐸0. Thus, boundary condition should be as 

follows: 

 

𝑥1(0) = 𝑥10,   𝑥1(𝑡𝑓) = 0, 

𝑥2(0) = 𝑥20,   𝑥2(𝑡𝑓) = 0, 

𝑥3(0) = 𝑥30,   𝑥3(𝑡𝑓) = 0,                                                 (15) 

 

Objective function that should be minimum is defined as 

follows: 

 

𝐽 =
1

2
∫ (𝛼1𝑥1

2 + 𝛼2𝑥2
2 + 𝛼3𝑥3

2 + 𝛽1𝑢1
2 + 𝛽2𝑢2

2 + 𝛽3𝑢3
2)𝑑𝑡,

𝑡𝑓

0

 

                                                                                            (16) 

 

where, 𝛼𝑖(𝑖 = 1,2,3)  and 𝛽𝑖  are positive parameters. Now, 

optimal condition according to Pontryagin's minimum 

principle is obtained in the form of nonlinear two-point 

boundary value problems (TPBVPs). The corresponding 

Hamiltonian function will be as follows: 

 

𝐻 = −
1

2
[𝛼1𝑥1

2 + 𝛼2𝑥2
2 + 𝛼3𝑥3

2 + 𝛽1𝑢1
2 + 𝛽2𝑢2

2 + 𝛽3𝑢3
2] +

𝜆1[𝑎𝑥2 − 𝑎𝑥1 + 𝑏𝑥2𝑥3 + 𝑢1] + 𝜆2[−10𝑥2
3 − 𝑥2 + 4𝑥1𝑥3 +

𝑢2] + 𝜆3[𝑐𝑥3 − 𝑥1𝑥2 + 𝑢3]                                                (17) 

 

where, 𝜆𝑖(𝑖 = 1,2,3) stand for costate variables. According to 

PMP, Hamiltonian function is obtained as follows: 

 

�̇�1 = −
𝜕𝐻

𝜕𝑥1
, �̇�2 = −

𝜕𝐻

𝜕𝑥2
, �̇�3 = −

𝜕𝐻

𝜕𝑥3
,                                  (18) 

 

By replacing Hamiltonian function H from Eq. 17 in 

relation Eq. 18, costate equations are achieved as follows: 

 

{
 
 

 
 �̇�1 = 𝑎𝜆1 + 𝑥2𝜆3 − 4𝑥3𝜆2 + 𝛼1𝑥1,                      

�̇�2 = 𝛼2𝑥2 − 𝑎𝜆1 − 𝑏𝜆1𝑥3 + 30𝜆2𝑥2
2                   

+𝜆2 + 𝜆3𝑥1,                      

�̇�3 = 𝛼3𝑥3 − 𝑏𝜆1𝑥2 − 4𝑥1𝜆2 − 𝑐𝜆3,                     

             (19) 

 

Optimal control functions that should be used, are obtained 

using the condition 
𝜕𝐻

𝜕𝑢𝑖
= 0 (𝑖 = 1,2,3). Thus, 

 

𝑢𝑖
∗ =

𝜆𝑖

𝛽𝑖
 (𝑖 = 1,2,3)                                                            (20) 

 

By inserting 𝑢𝑖
∗  from Eq. 20 in Eq. 14, this relation is 

obtained.  

 

{
 
 

 
 �̇�1 = 𝑎(𝑥2 − 𝑥1) + 𝑏𝑥2𝑥3 +

𝜆1

𝛽1
,     

�̇�2 = −10𝑥2
3 − 𝑥2 + 4𝑥1𝑥3 +

𝜆2

𝛽2
,

�̇�3 = 𝑐𝑥3 − 𝑥1𝑥2 +
𝜆3

𝛽3
,                     

                                  (21) 

 

Ordinary differential equations (ODEs) Eq. 21 and Eq. 19 

are perfect systems for optimal control of Four-scroll chaotic 

system. Boundary condition of this system is presented in 

relation Eq. 15. It should be noted that this problem is TPBVP 

by solving of which, optimal control law and optimal state 

trajectories are obtained. As can be seen, relations Eq. 19 and 

Eq. 21 is a nonlinear boundary value problem that is not solved 

in general manner. Thus, Modal Series Method is used for 

solving this problem. 

 

 

5. MODAL SERIES METHOD 

 

In this section, Modal Series approach for solving nonlinear 

boundary value problem Eq. 21 and Eq. 19 with boundary 

condition Eq. 15 is used. Thus the following problem equation 

apparatus is considered: 

 

{
 
 
 
 

 
 
 
 �̇�1 = 𝑎(𝑥2 − 𝑥1) + 𝑏𝑥2𝑥3 +

𝜆1

𝛽1
=                          

𝑔1(𝑥1, 𝑥2, 𝑥3, 𝜆1, 𝜆2, 𝜆3),    

�̇�2 = −10𝑥2
3 − 𝑥2 + 4𝑥1𝑥3 +

𝜆2

𝛽2
=                       

𝑔2(𝑥1, 𝑥2, 𝑥3, 𝜆1, 𝜆2, 𝜆3),

�̇�3 = 𝑐𝑥3 − 𝑥1𝑥2 +
𝜆3

𝛽3
=                                           

    𝑔3(𝑥1, 𝑥2, 𝑥3, 𝜆1, 𝜆2, 𝜆3),
                     

           (22) 

 

{
 
 
 

 
 
 
�̇�1 = 𝑎𝜆1 + 𝑥2𝜆3 − 4𝑥3𝜆2 + 𝛼1𝑥1 =              

   𝑔4(𝑥1, 𝑥2, 𝑥3, 𝜆1, 𝜆2, 𝜆3),     

�̇�2 = 𝛼2𝑥2 − 𝑎𝜆1 − 𝑏𝜆1𝑥3 + 30𝜆2𝑥2
2 +      

𝜆2 + 𝜆3𝑥1 =                                 

𝑔5(𝑥1, 𝑥2, 𝑥3, 𝜆1, 𝜆2, 𝜆3),

�̇�3 = 𝛼3𝑥3 − 𝑏𝜆1𝑥2 − 4𝑥1𝜆2 − 𝑐𝜆3 =           

𝑔6(𝑥1, 𝑥2, 𝑥3, 𝜆1, 𝜆2, 𝜆3),

                  (23) 

 

𝑥(0) = [𝑥1(0), 𝑥2(0), 𝑥3(0)] = 𝑥0, 𝜆(∞) =
[𝜆1(∞), 𝜆2(∞), 𝜆3(∞)] = 0                                                          (24) 

 

where, 𝑔𝑖(∙)   ، 𝑖 = 1,⋯ ,6 is analytical function with  𝑔𝑖(0) =
0. Taylor series of non-polynomial terms is required in the first 

step. Since all nonlinear terms in Eq. 21 and Eq. 19 are non-

polynomial, there is no need for extension of Taylor series. 

Obviously, the response is function of initial condition and 

time; thus response of the abovementioned nonlinear system 

to initial condition x0 is written as follows: 

 

{
𝑥(𝑡) = 𝜃(𝑥0, 𝑡)

𝜆(𝑡) = �̅�(𝑥0, 𝑡)
                                                                 (25) 

 

And 𝑥(𝑡) = [

𝑥1(𝑡)

𝑥2(𝑡)

𝑥3(𝑡)
]  and 𝜆(𝑡) = [

𝜆1(𝑡)

𝜆2(𝑡)

𝜆3(𝑡)
] . Moreover, the 

functions 𝜃, �̅�  are analytical function in relation to initial 
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condition 𝑥0 . It can be shown that �̅�(0, 𝑡) = 𝜃(0, 𝑡) = 0 . 

Therefore, Maclaurin series of these functions in relation to 

initial condition 𝑥0 can be written as follows: 

 

𝑥(𝑡) = 𝜃(𝑥0, 𝑡) = 𝜃(0, 𝑡)⏟  
0

+
𝜕𝜃(𝑥0,𝑡)

𝜕𝑥0
|
𝑥0=0

𝑥0
⏟        

𝑔1(𝑡)

+

1

2!

[
 
 
 
 
 𝑥0
𝑇 (

𝜕2𝜃1(𝑥0,𝑡)

𝜕𝑥0
2 |

𝑥0=0

) 𝑥0

⋮

𝑥0
𝑇 (

𝜕2𝜃𝑖(𝑥0,𝑡)

𝜕𝑥0
2 |

𝑥0=0

) 𝑥0
]
 
 
 
 
 

⏟                
𝑔2(𝑡)

+⋯ = ∑ 𝑔𝑗(𝑡)
∞
𝑗=1 ,                  (26) 

 

𝜆(𝑡) = �̅�(𝑥0, 𝑡) = �̅�(0, 𝑡)⏟  
0

+
𝜕�̅�(𝑥0,𝑡)

𝜕𝑥0
|
𝑥0=0

𝑥0
⏟        

ℎ1(𝑡)

+

1

2!

[
 
 
 
 
 𝑥0
𝑇 (

𝜕2�̅�1(𝑥0,𝑡)

𝜕𝑥0
2 |

𝑥0=0

) 𝑥0

⋮

𝑥0
𝑇 (

𝜕2�̅�𝑖(𝑥0,𝑡)

𝜕𝑥0
2 |

𝑥0=0

) 𝑥0
]
 
 
 
 
 

⏟                
ℎ2(𝑡)

+⋯ = ∑ ℎ𝑗(𝑡),
∞
𝑗=1                   (27) 

 

where, 𝜃𝑖 and �̅�𝑖 represent the ith entries of vector functions 𝜃 

and �̅� .In addition since the functions 𝜃 and �̅� are analytical to 

x0, presence of Maclaurin in relations Eq. 26 and Eq. 27 and 

uniformly convergence of these relations are ensured. This 

theorem is true for every initial condition of 𝑥0. Therefore, if 

initial condition is 𝜀𝑥0 , with 𝜀  being an arbitrary scalar 

parameter, it can be written according to Eq. 26 and Eq. 27 

that: 

 

𝑥(𝑡) = 𝜃(𝜀𝑥0, 𝑡) = 𝜀𝑔1(𝑡) + 𝜀
2𝑔2(𝑡) + 𝜀

3𝑔3(𝑡) + ⋯ =
∑ 𝜀𝑗𝑔𝑗(𝑡)
∞
𝑗=1 → 𝑥𝑖(𝑡) = ∑ 𝜀𝑗𝑔𝑖𝑗(𝑡), 𝑖 = 1,2,3

∞
𝑗=1              (28) 

 

𝜆(𝑡) = �̅�(𝜀𝑥0, 𝑡) = 𝜀ℎ1(𝑡) + 𝜀
2ℎ2(𝑡) + 𝜀

3ℎ3(𝑡) + ⋯ =
∑ 𝜀𝑗ℎ𝑗(𝑡) → 𝜆𝑖(𝑡) = ∑ 𝜀𝑗ℎ𝑖𝑗(𝑡), 𝑖 = 1,2,3

∞
𝑗=1

∞
𝑗=1               (29) 

 

Replacing above response in Eq. 22 and Eq. 23 and 

arrangement according to ε results in: 

 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝜀�̇�11(𝑡) + 𝜀
2�̇�12(𝑡) + ⋯ =

 𝜀 (
𝑎 𝑔21(t) − 𝑎 𝑔11(t) +

ℎ11(t)

𝛽1

) +

 𝜀2 (
𝑎 𝑔22(t) − 𝑎 𝑔12(t) +

b 𝑔21(t)𝑔31(t) +
ℎ12(t)

𝛽1

) +⋯ ,

𝜀�̇�21(𝑡) + 𝜀
2�̇�22(𝑡) + ⋯ =

𝜀 (−𝑔21(t) +
ℎ21(t)

𝛽2
) +            

𝜀2 (
4 𝑔11(t)𝑔31(t) −

𝑔22(t) +
ℎ22(t)

𝛽2

) +⋯,      

𝜀�̇�31(𝑡) + 𝜀
2�̇�32(𝑡) + ⋯ =

𝜀 (c 𝑔31(t) +
ℎ31(t)

𝛽3
) +        

 𝜀2 (
−𝑔11(t)𝑔21(t) +

𝑐 𝑔32(t) +
ℎ32(t)

𝛽3

) +⋯ ,

                                 (30) 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝜀ℎ̇11(𝑡) + 𝜀

2ℎ̇12(𝑡) + ⋯ =                          

𝜀(𝑎 ℎ11(t) + 𝛼1𝑔11(t) ) +

𝜀2 (
𝑎 ℎ12(t) + 𝑔21(t)ℎ31(t) −

4𝑔31(t)ℎ21(t) + 𝛼1𝑔12(t)
) + ⋯,    

𝜀ℎ̇21(𝑡) + 𝜀
2ℎ̇22(𝑡) + ⋯ =                          

𝜀(ℎ21(t) − 𝑎 ℎ11(t) + 𝛼2𝑔21(t)) +

𝜀2 (

−𝑏 𝑔31(t)ℎ11(t)

−𝑎 ℎ12(t) + 𝑔11(t)ℎ31(t)

+ℎ22(t) + 𝛼2𝑔22(t)
) + ⋯ ,

𝜀ℎ̇31(𝑡) + 𝜀
2ℎ̇32(𝑡) + ⋯ =                           

𝜀(−𝑐 ℎ31(t) + 𝛼3𝑔31(t)) +

𝜀2 (
−𝑏 𝑔21(t)ℎ11(t) − 𝑐 ℎ32(t) −

4𝑔11(t)ℎ21(t)+𝛼3𝑔32(t)
) + ⋯ ,

                     (31) 

 

In above relations, by equalizing the terms with identical 

coefficients of 𝜀  powers, a sequence of time invariable 

nonlinear differential equations is obtained as follows: 

 

𝜀2:

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
�̇�12(𝑡) = 𝑎 𝑔22(t) − 𝑎 𝑔12(t) +   

              b 𝑔21(t)𝑔31(t) +
ℎ12(t)

𝛽1
    

�̇�22(𝑡) = 4 𝑔11(t)𝑔31(t)                 

 −𝑔22(t) +
ℎ22(t)

𝛽2
   

�̇�32(𝑡) = −𝑔11(t)𝑔21(t)                

      +𝑐 𝑔32(t) +
ℎ32(t)

𝛽3
      

ℎ̇12(𝑡) = 𝑎 ℎ12(t) + 𝑔21(t)ℎ31(t)

            −4𝑔31(t)ℎ21(t) + 𝛼1𝑔12(t)  

ℎ̇22(𝑡) = −𝑏 𝑔31(t)ℎ11(t)             

           −𝑎 ℎ12(t) + 𝑔11(t)ℎ31(t)

+ℎ22(t) + 𝛼2𝑔22(t) 

ℎ̇32(𝑡) =  −𝑏 𝑔21(t)ℎ11(t)               

           −𝑐 ℎ32(t) − 4𝑔11(t)ℎ21(t)

+𝛼3𝑔32(t)                 
                  

                 

 

𝜀1:

{
 
 
 
 
 

 
 
 
 
 
�̇�11(𝑡) = 𝑎 𝑔21(t) − 𝑎 𝑔11(t)      

+
ℎ11(t)

𝛽1
     

�̇�21(𝑡) = −𝑔21(t) +
ℎ21(t)

𝛽2
           

�̇�31(𝑡) = c 𝑔31(t) +
ℎ31(t)

𝛽3
           

ℎ̇11(𝑡) = 𝑎 ℎ11(t) + 𝛼1𝑔11(t)      

ℎ̇21(𝑡) = ℎ21(t) − 𝑎 ℎ11(t)          

+𝛼2𝑔21(t)     

ℎ̇31(𝑡) = −𝑐 ℎ31(t) + 𝛼3𝑔31(t)    
                  

                               (32) 

 

It can be seen that the abovementioned equation system 

should be solved reversibly. Boundary condition is obviously 

required for solving this system. For estimation of new 

boundary condition, 𝑡0 = 0 , 𝑡 = ∞ is replaced in Eq. 28 and 

Eq. 29: 

 

𝑥𝑖(𝑡0) = 𝜀𝑥𝑖0 = 𝜀𝑔𝑖1(𝑡0) + 𝜀
2𝑔𝑖2(𝑡0) + 𝜀

3𝑔𝑖3(𝑡0) + ⋯, (33) 

 

𝜆𝑖(∞) = 0 = 𝜀ℎ𝑖1(∞) + 𝜀
2ℎ𝑖2(∞) + 𝜀

3ℎ𝑖3(∞) + ⋯,      (34) 
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In these relations for 𝑖 = 1,2,3, by equalizing the terms with 

identical coefficients of 𝜀  powers, boundary condition is 

achieved as follows: 

 

{
𝑔𝑖1(𝑡0) = 𝑥𝑖0,

ℎ𝑖1(∞) = 0,   
         𝑖 = 1,2,3 

{
𝑔𝑖𝑗(𝑡0) = 0,              

ℎ𝑖𝑗(∞) = 0,.             
𝑗 ≥ 2                                                (35) 

 

Finally, the response of nonlinear boundary value problem 

with infinite time horizon Eq. 19 and Eq. 21 can be written as 

follows: 

 

𝑥𝑖(𝑡) = ∑ 𝑔𝑖𝑗(𝑡)
∞
𝑗=1 ,                                                            (36) 

 

𝜆𝑖(𝑡) = ∑ ℎ𝑖𝑗(𝑡)
∞
𝑗=1 ,                                                           (37) 

 

where, the j-th order terms of 𝑔𝑖𝑗(𝑡) and ℎ𝑖𝑗(𝑡) are obtained 

only by reversible solving of the sequence of time invariable 

linear boundary value problems Eq. 32 with boundary 

condition Eq. 35. Based on aforementioned notes, state 

variable and optimal control law for nonlinear optimal control 

problem can be expressed as follows: 

 

𝑥𝑖(𝑡) = ∑ 𝑔𝑖𝑗(𝑡)
∞
𝑗=1 ,                                                            (38) 

 

𝑢𝑖
∗ =

𝜆𝑖(𝑡)

𝛽𝑖
=

1

𝛽𝑖
∑ ℎ𝑖𝑗(𝑡)
∞
𝑗=1 ,                                                 (39) 

 

 

6. PRACTICAL APPLICATION AND DESIGN OF 

SUBOPTIMAL CONTROL 

 

Since it is impossible to achieve response in series form 

according to Eq. 38 and Eq. 39 as it contains infinite terms, in 

practical applications, state variable and 𝑀 order suboptimal 

control are obtained by replacing ∞ with a positive integer 𝑀 

as follows: 

 

𝑥𝑖
(𝑀)(𝑡) =∑𝑔𝑖𝑗(𝑡)

𝑀

𝑗=1

, 

𝑢𝑖
∗(𝑀)

=
1

𝛽𝑖
∑ ℎ𝑖𝑗(𝑡)
𝑀
𝑗=1 ,                                                       (40) 

 

where, 𝑀 is determined according to required accuracy of the 

problem. Moreover, there is no constraint for selection of 𝑀 

value. State variable and 𝑀 order suboptimal control law is 

accurate if the following condition is met for predefined 

positive constant 𝜎: 

 

|
𝐽(𝑀)−𝐽(𝑀−1)

𝐽(𝑀)
| < 𝜎,                                                                (41) 

 

𝐽(𝑀) =
1

2
∫ (𝛼1(𝑥1

𝑀)2 + 𝛼2(𝑥2
𝑀)2 + 𝛼3(𝑥3

𝑀)2 + 𝛽1(𝑢1
𝑀)2 +

𝑡𝑓
0

𝛽2(𝑢2
𝑀)2 + 𝛽3(𝑢3

𝑀)2)𝑑𝑡,                                                    (42) 

 

For achieving suboptimal control law with sufficient 

accuracy, an algorithm with low calculation has been proposed. 

Step 1. The repetition index j is assigned 1.  

Step 2. The j -th order terms of gij(t)  and hij(t)  are 

calculated by solving the sequence of time invariable linear 

boundary value problems Eq. 32 with boundary condition Eq. 

35.  

Step3. M  is equalized with j and xi
(M)(t)  and ui

∗(M)(t)  are 

estimated from Eq. 40 and J(M) is calculated from Eq. 42. 

Step4. If stop condition Eq. 41 is the case for predefined 

positive constant σ, go to step 5. Otherwise, add a unit to j and 

go to step 2. 

Step5. The algorithm is stopped and state variable and 

suboptimal control law and xi
(M)(t)  and ui

∗(M)(t)  are 

sufficiently accurate. 

 

 

7. NUMERICAL SOLVING  

 

 
 

Figure 3. Time response of state variable x1(t). Difference 

graph between bvp4e and Modal Series responses with 7 

approximate 

 

 
 

Figure 4. Time response of state variable x2(t). Difference 

graph between bvp4e and Modal Series responses with 7 

approximate 

 

This section shows efficiency of the proposed method for 

optimal control of four-scroll chaotic system. In numerical 

simulations, Modal Series Method and bvp4c of Matlab are 

used for solving TPBVP. The proposed algorithm for σ =
14 × 10−3 and positive constants in the function J with αi =
1, βi = 1 values has been performed to find state variable and 

suboptimal control law with suitable accuracy. Under this 

condition, convergence is achieved only after 7 repetitions that 
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is |
J(5)−J(4)

J(5)
| = 13.2 × 10−3 < 15 × 10−3 . This shows high 

speed of convergence of the proposed algorithm. The results 

of simulation of state variable are presented in Fig. 3- Fig. 5. 

Moreover, simulated graphs have been obtained by direct 

solving of nonlinear boundary value problem using bvp4c 

function. The graph of error between real and approximate 

responses of Modal Series is also presented in Fig. 3- Fig. 5. 

As seen, the responses achieved by the proposed method 

accord with those obtained by direct solving. This indicates 

high accuracy of the proposed method. 

 

 
 

Figure 5. Time response of state variable x3(t). Difference 

graph between bvp4e and Modal Series responses with 7 

approximate 

 

8. CONCLUSION 

 

In this paper, Modal Series technique was used to solve the 

problem of optimal control with infinite time horizon for fur-

scroll chaotic system. Nonlinear boundary value obtained in 

this technique is converted to a sequence of time invariable 

linear boundary value using Pontryagin's minimum principle. 

By reversible resolving of this sequence, state trajectory and 

optimal control law are obtained in the form of series with 

uniform convergence. Then, by considering a limited number 

of the related series terms, approximate response for state 

variable and sub-optimal control law is obtained. Moreover, 

an algorithm was proposed for practical implementation of 

Modal Series Method that provides close responses with 

suitable accuracy for state variable and sub-optimal control 

law. 
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