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ABSTRACT 

This article emphases on the study of the flow, heat and mass transfer from an 

exponentially stretching surface in a viscous fluid with heat source. The viscosity and 

thermal conductivity are assumed to vary as a linear function of temperature. The 

equations of the flow are converted into ordinary differential equations by utilizing the 

similarity transformations. The resulting non-linear system is solved applying the 

Successive linearization method along with the Chebyshev collocation method. The 

physical quantitites of the flow problem are computationally analyzed and exhibited via 

graphs. It is noticed that the rate of heat transfer increased with raise in Biot and 

decreased with increase in the value of thermal conductivity and heat source parameters. 

While, the rate of mass transfer increased with increase in the values of Biot, thermal 

conductivity and heat source parameters and skin-friction is increasing with viscosity 

parameter and decreasing with thermal conductivity and heat source parameters. 
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1. INTRODUCTION

The analysis of flow, heat and mass transfers over a sheet 

stretching exponentially in a viscous fluid is an important 

research area due to its applications in industry and 

technological processes, such as, the boundary layer along a 

liquid film condensation process, the aerodynamic extrusion 

of plastic sheets, crystal growth, glass and polymer industries. 

After the pioneering works of Sakiadis [1, 2], Crane [3] 

studied the stretched flow problem considering the velocity is 

proportional to the distance from the slit. Kumaran and 

Ramanaiah [4] reported the incompressible viscous fluid flow 

over a stretching sheet subjected to a linear mass flux, 

considering the stretching velocity as a second-degree 

polynomial of the distance between the sheet and the slit. 

Magyari and Keller [5] addressed the heat and mass transfer 

analysis of boundary layer flow on an exponentially 

stretching continuous surface. In continuation, several 

researchers, to mention a few Sajid and Hayat [6], Malvandi 

et al. [7], Rohni et al. [8], Hussain and Ahmed [9], Ur-

rehman et al. [10], Emam and Elmaboud [11], Kumar et al. 

[12], Aleng et al. [13], Srinivasacharya and Jagadeeshwar 

[14], Hayat and Nadeem [15] etc. investigated the heat and 

mass transfer characteristics of an exponentially stretching 

sheet via diverse physical situations. 

In most of the previous studies on the heat and mass 

transport, the thermo physical properties of fluid were 

assumed to be constant. However, it is known especially that 

the fluid viscosity and thermal conductivity may change with 

temperature. Considering the variation of viscosity is 

necessary to predict the heat transfer rate accurately. Even 

though the variation of the physical properties is important in 

many engineering applications, it has received rather little 

attention. Lai and Kulacki [16] described the effect of 

variations in the viscosity on the mixed convection along a 

vertical plate in a porous medium. Chiam [17-18] 

investigated this flow problem for stretching sheet assuming 

linear variations of the thermal conductivity with temperature. 

Khan et al. [19] analysed the flow and heat transfer in a 

laminar fluid film on a horizontal shrinking/stretching sheet 

by considering the variable viscosity and thermal 

conductivity. Rahman [20] reported the impact of variable 

viscosity and thermal conductivity on an unsteady laminar 

incompressible and electrically conducting non-Newtonian 

fluid flow and heat transfer over a non-isothermal stretching 

sheet under the external transverse magnetic field in a porous 

medium.   Siddheshwar et al. [21] examined the flow 

performance and heat exchange of a Newtonian fluid past an 

exponentially stretching sheet in presence of variable 

viscosity. Hayat et al. [22] studied the influence of chemical 

reaction and cross-diffusion effects on the three dimensional 

flow of a stretching surface with heat generation. Megahed 

[23] reported the flow and heat transfer analysis of Powell-

Eyring fluid due to a sheet stretching exponentially, with heat

flux and variable thermal conductivity. Hazarika and Phukan

[24] addressed the effects of temperature dependent viscosity

and thermal conductivity on MHD flow and heat transfer of a

micropolar fluid through a horizontal channel, lower being a

stretching sheet and upper being a permeable plate bounded

by porous medium. Recently, Srinivasacharya and

Jagadeeshwar [25] studied the effect of variable viscosity and

thermal conductivity on the flow over an exponentially

stretching sheet in presence of Hall effect with thermal

convective boundary conditions and heat source.

Hence, motivated by the aforesaid investigations, here we 

made an effort to analyze the convective boundary layer flow 

considering the variable fluid properties, heat source over an 

exponential stretching surface subjected to suction or 

injection. 
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2. MATHEMATICAL FORMULATION 

 

Consider a stretching sheet in a laminar slip flow of 

viscous incompressible fluid with a temperature T∞ and 

concentration C∞. The Cartesian framework is selected by 

taking positive x -axis is along the sheet and y -axis is 

orthogonal to the sheet. The stretching velocity of the sheet is 

assumed as U*( x ) = U0 

x
Le  where x  the distance from the 

slit. Assume that the sheet is either cooled or heated 

convectively through a fluid with temperature Tf and which 

induces a heat transfer coefficient hf, where hf = h 

0

2

U

L  

2
x

Le . ( u
x, u

y) is the velocity vector, C  is the 

concentration and T  is the temperature. The 

suction/injection velocity of the fluid through the sheet is 

V*( x ) = V0 2
x

Le , where V0 is the strength of 

suction/injection. Further, the heat source is assumed as Q( x ) 

= Q0 

x
Le , where Q0 is the constant. Hence, the following are 

the equations which governs the present flow. 
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Figure 1. Physical model and coordinate system 

 

where µ is the viscosity of the fluid, κ is the thermal 

conductivity, ρ is fluid density (assumed constant), cp is 

specific heat capacity at the constant pressure and D is the 

mass diffusivity of the medium. 

Here, we assume that the viscosity µ( T ) fluctuates as 

inverse function of temperature [16] and thermal conductivity 

κ (T ) fluctuates as the linear function of temperature [17] 

such as 

1


= b(T -Tr), κ = κ∞[1+ε w

T T

T T





 −
 

−  ]                              (5) 

 

where Tr = T∞- 1/δ, b = δ/ µ∞, b and Tr are the constants and 

their values depend on the reference state, δ is the thermal 

property of the fluid, ε is the variable conductivity parameter 

and κ∞ is the conductivity of the fluid far away from the sheet. 

The conditions on the surface of the stretching sheet are 
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Presenting the stream functions through 
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into the Eqs. (1) – (4), we obtain 
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C''+Sc FC' = 0                                   (10) 

 

The corresponding conditions on the boundary are  

 

(0) , (0) 1, (0) (1 (0)), (0) 1 at 0

( ) 0, ( ) 0, ( ) 0 as
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where υ∞ is the kinematic viscosity of the fluid in the free 

stream, the prime denotes derivative with respect to y, θr = -

1/δ(Tf - T∞) is the fluid viscosity parameter, 
h

Bi 


=  is 

the Biot number, 0
0

2LS V
U

=  is the suction/injection 

parameter according as S > 0 or S < 0 respectively, Sc = υ∞ 

/D is the Schmidt number, q1 = 2LQ0/ρcpU0 is the internal 

heat source/sink and Pr =  /α is the Prandtl number. 
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The non-dimensional skin friction 
2
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x
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
=

 is the local Reynolds number. 

 

 

3. NUMERICAL SOLUTION 

 

The system of Eqs. (8) – (10) is linearized using successive 

linearisation method (SLM) ([26, 27]). In this method, the 

functions F(y), T(y) and C(y) are expressed as 
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where Fr(y), Tr(y) and Cr(y) (r = 1, 2, 3, ...) are functions, 

which are not known and Fi(y), Ti(y) and Ci(y) (i > 1) are 

approximations. Substituting Eq. (13) in Eqs. (8) to (10) and 

taking the linear part, we get 
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where the coefficients , 1lk r −  and , 1k i − , (l = 1, 2, 3 and  k 

= 1, 2, 3, 4, 5, 6) are in terms of the approximations Fi, Ti and 

Ci, (i =1,2,3,..., r-1) and their derivatives.  

The boundary associated conditions are 
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Choosing the initial approximation F0(y), T0(y) and C0(y) 

satisfy the conditions (11) and solving Eqs. (14) to (16) 

recursively, we get the solutions for Fr(y), Tr(y) and Cr(y) (r > 

1) and hence, F(y), T(y) and C(y). To solve Eqs. (14) to (16) 

along with the boundary conditions (17), Chebyshev spectral 

method is used (see for reference [28]). 

 

 

4. RESULTS AND DISCUSSIONS 

 

To elucidate the significance of relevant parameters, the 

numerical calculations are carried out bytaking S = 0.5, q1 = 

0.1, ε = 0.1, Sc = 0.22, Pr = 1.0, θr = 3.0, Bi = 1.0, N = 100 

and L = 20 unless otherwise mentioned. 
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Figure 2. Influence of (a) θr, (b)q1, (c) Bi and (d) S on F΄ 
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Figure 3. Influence of (a) ε, (b) q1, (c) Bi and (d) S on T 

 

 

The variation of velocity profile for diverse values of θr, q1, 

Bi and S is presented in the Figs. (2a) – (2d). It is obvious 

that fluid velocity decreasing with enhancement in the value 

of θr as shown in the Fig. (2a). This is due to the fact that, 

viscosity of the fluid thickens the boundary layer and hence, 

reduction in fluid velocity. Heat source parameter q1 has 

almost negligible influence on velocity. Figure (2b) depicts 

that the velocity is increasing, but negligibly, as the value of 

q1 is increasing. Biot number Bi has considerable effect on 

fluid velocity as shown in the Fig. (2c). It is seen that 

velocity is enhances with raise in the value of Bi. From Fig. 

(2d), it is clear that velocity rising with injection (S < 0) and 

reducing with suction (S > 0). This is due to the fact that wall 

suction has the tendency to reduce the momentum boundary. 

The effect of the parameters ε, q1, Bi and S on temperature 

is shown in the Figs. (3a) – (3d). It is observed that 

temperature increases as the value of thermal conductivity 

parameter ε increases as shown in the Fig. (3a). Heat source 

(q1 > 0) in the boundary layer generates energy which causes 

the temperature to increase, while the presence of heat sink 

(q1 < 0) in the boundary layer absorbs the energy which 

causes the temperature to decrease. Therefore, increase in the 

values of heat source parameter increases the temperatue as 

shown in the Fig. (3b). On the other hand, Biot number 

increases the temperature as shown in the Fig. (3c). Further, 

for large value of Biot number, the convective thermal 

condition from (11) transforms to (0) 1T → , which signifies 

the constant wall condition. i.e., the stronger convection leads 

to the higher surface temperatures which appreciably 

increases the temperature and the thermal boundary layer 

thickness. Reduction in temperature is observed with increase 

in suction and enhanced with blowing as shown in the Fig. 

(3d). This is due to the fact that the wall suction, reduces 

thermal boundary layer thickness. 

The behaviour of concentration profile for various values 

of the parameters θr, q1, Bi and S is depicted in the Figs. (4a) 

– (4d). Raising the value of θr, concentration of the fluid is 

increasing as shown in the Fig. (4a). It is noticed from the 

Figs. (4b) and (4c) that increase in the values of q1 and Bi, 

increases the concentration. It is also noticed that the effect of 

heat source parameter q1 on concentration is almost 

negligible. On the other hand, from the Fig. (4d) increase in 

the value of suction/injection parameter S reduces the 

concentration of the fluid. This is because of the fact that the 

wall suction, reduces the concentration boundary layer 

thickness. Therefore, the concentration of the fluid decreases 

with suction and increases with injection as depicted in the 

Fig. (4d).  
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Figure 4. Influence of (a) θr, (b) q1, (c) Bi and (d) S on C 
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Figure 5. Influence of (a) θr, (b) Bi, (c) q1 and (d)   on (θr 

/( θr – T(0))) F΄΄(0) 

 

The variation of skin-friction coefficient with varying 

values of θr, Bi, q1 and ε against S is presented in the Figs. 

(5a) - (5d). It is evident from the Fig. (5a) that increase in the 

value of viscosity parameter increases the skin-friction. 

Hence, decrease in the fluid velocity. Increase in the value of 

Bi, diminishing the skin-friction and increases the fluid 

velocity in the bounady layer as shown in the Fig. (5b). 

While, there is negligible effect of q1 and ε on skin-friction as 

depicted in the Figs. (5c) and (5d). It is obvious from these 
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Bi, q1 and ε against S is portrayed in the Figs. (6a) – (6d). The 

rate of heat transfer from the sheet to the fluid is diminishing 

with raise in θr as shown in the Fig. (6a). Further, it is noticed 

that the trend is reversed. ie., heat transfer from the sheet to 

the fluid is increasing with increase in the values of S and θr. 

Figure (6b) narrates that the raise in Bi enhances the rate of 

heat transfer from the sheet to the fluid. Increase in the value 

of the heat generation parameter leads to a decrease in the 

local Nusselt number. This is because the heat generation 

mechanism will increase the fluid temperature near the 

surface and thus temperature gradient at the surface decreases, 

thereby decreasing the heat transfer at the sheet as shown in 

the Fig. (6c). On the other hand, rate of heat transfer reduced 

with raise in the value of ε as shown in the Fig. (6d). While, 

it is clear from the figures that the rate of heat transfer 

increasing with wall suction. Further, the wall suction has the 

tendency to cut down the thermal boundary, and hence, 

maximum heat transfer at the surface of the boundary as 

shown in the Figs. (6a) – (6d). 
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Figure 6. Influence of (a) θr, (b) Bi, (c) q1 and (d)   on 
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For distinct values θr, Bi, q1 and ε, the fluctuation of rate of 

mass transfer is graphitised against S through the Figs. (7a) – 

(7d). Increasing the value of viscosity parameter θr, the rate 

of mass transfer is diminishing as shown in the Fig. (7a). 

Whereas, from the Fig. (7b), it is obvious that the rate of 

mass transfer is increasing with raise in Bi. On the other hand, 

there's mild effect of heat source and thermal conductivity 

parameters on the rate of mass transfer as depicted in the Figs. 

(7c) and (7d). It is obvious from these figures that the rate of 

mass transfer is slightly enhanced with raise in q1 and ε. 

Further, it is noticed that the wall suction increases the rate of 

mass transfer as it reduces the concentration boundary layer 

thickness. 
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Figure 7. Influence of (a) θr, (b) Bi, (c) q1 and (d)  on 

(0)C−  

 

 

5. CONCLUSIONS 

 

The significance of variable visocity and thermal 

conductivity on the flow over a sheet stretching exponentially, 

in presence of heat source is studied. Successive linearization 

procdure along with the Chebyshev spectral method is used 

to solve the governing equations. 

• The velocity is increasing with increase in 

the values of heat source parameter and Biot number. 

But, decreasing with variable viscosity and suction 

parameters. 

• Temperature of the fluid enhances, raising 

the values of thermal conductivity, heat source 

parameters and Biot number and decreases with 

suction parameter. 

• Concentration of the fluid increases with 

increase in viscosity parameter and decreasing with 

heat source, suction parameters and Biot number.  

• Skin-friction is increasing with viscosity 

parameter and decreasing with thermal conductivity, 

heat source, suction parameters and Biot number.  

• The rate of heat transfer increased with a 

raise in Bi and decreased with increase in the value 

of thermal conductivity and heat source parameters. 

But, dual nature is observed with increase in the 

value of viscosity parameter.  

The rate of mass transfer is reduced with raise in the value 

of viscosity parameter and increased with increase in the 

values of Bi, thermal conductivity and heat source parameters. 
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