
DSP implementation of the Discrete Fourier Transform using the CORDIC algorithm on fixed

point

Youness Mehdaoui1*, Rachid El Alami2

1 Research Team in Electronics, Instrumentation and Measurements, USMS, Béni-mellal 23030, Morocco, Computer and

Interdisciplinary Physics Laboratory, USMBA, Fez, Morocco, USMBA, Fez 30003, Morocco
2 LESSI Laboratory, Department of Physics, Faculty of Sciences Dhar El Mehraz, Fez 30003, Morocco

Corresponding Author Email: youness.mehdaoui@gmail.com

https://doi.org/10.18280/ama_b.610303

Received: 16 July 2018

Accepted: 25 Auguet 2018

ABSTRACT

Fourier transform is a tool enabling the understanding and implementation of a large number

of numerical methods for signal and image processing. This tool has many applications in

domains such as vocal recognition, image quality improvement, digital transmission, the

biomedical sector and astronomy.

This paper proposes to focus on the design methodology and experimental implementation

of Discrete Fourier Transform (DFT). The interest of this work is an improvement which

makes it possible to reduce the processing time of calculates the DFT while preserving the

best performances by using the operator CORDIC and the fixed point, so this work is

compared with the results found in the literatures.

Keywords:

DFT, cordic, fixed point, dsp, time of

processing

1. INTRODUCTION

Discrete Fourier Transformation (DFT) is a mathematical

tool for processing the digital signal, which is the discrete

equivalent of the continuous Fourier transform that is used for

analog signal processing. The calculation of the DFT of the

complex sequences in the time domain will convert these

sequences into frequency domain and the inverse procedure is

done by the Inverse Discrete Fourier Transform [1].

The COordinate Rotation Digital Computer (CORDIC)

algorithm [2-4] was originally created by J.E.Volder [2]. The

algorithm approximates most functions based on trigonometry.

It performs rotations without using multiplication operations.

Another advantage of this algorithm is that it makes it possible

to obtain a precision determined in advance by performing a

given number of iterations.

In the DFT, to calculate the twiddle, we will use the sine and

the cosine, the algorithm CORDIC implemented with fixed

point will allow speed of calculating sinus and cosines, all this

will allow us to have a reduced time with a better precision.

In this work an implementation of the DFT on a Digital

Signal Processor (DSP) c64x+ and compare the results with

what was found in [5], to come out with a conclusion of the

utility of the use of specialized circuits like the DSP.

This paper is organized as follows: In section 2, we

introduce the Discrete Fourier Transform, we will explain the

algorithm CORDIC in section 3. The fixed point development

is given in section 4. The methodology of the proposed

implementation is presented in section 5 and 6. The results will

be presented in section 7. We will end with a conclusion in

section 8.

2. DISCRETE FOURIER TRANSFORM

Physical processes can be described in the time domain

using the value of a quantity h as a function of time t, or in the

frequency domain using its amplitude H as a function of its

frequency f, we can then consider that h(t) and H(f) are two

representations of the same function.

For a discrete and periodic signal the corresponding

transform is called the Discrete Fourier Transform (DFT). We

will focus exclusively on this type of transform in this paper.

For an input sequence x(n), the DFT of N points is defined

as follows:

X(k) = ∑ x(n). WN
nkN−1

n=0 (1)

where: k = 0,1, … … N − 1

Where the integer n is the time index, the integer k is the

frequency index and the complex number WN
nk which

corresponds to the nth root of the unit, commonly called

twiddle factor, is defined as follows:

WN
nk = exp(

−2iπnk

N
) = cos(

2πnk

N
) − i. sin(

2πnk

N
) (2)

The inverse DFT (IDFT) is expressed as follows:

x(n) =
1

N
∑ X(n). WN

−nkN−1
n=0 (3)

where: k = 0,1, … … N − 1

We observe that N complex multiplications and N-1

complex additions are needed to compute a point, so we need

N2 complex multiplications and N2-N complex additions to

compute a DFT / IDFT of N samples.

The direct calculation of the DFT is inefficient with

increasing the size of the signal to be transformed.

Advances in Modelling and Analysis B
Vol. 61, No. 3, September, 2018, pp. 123-126

Journal homepage: http://iieta.org/Journals/AMA/AMA_B

123

3. CORDIC OPERATOR

3.1 CORDIC Algorithm

The CORDIC algorithm makes it possible to perform

calculations such as vector rotations or cartesian-polar and

polar cartesian coordinates changes in the plane Euclidean.

We can cite, for example, applications where the CORDIC

algorithm is used: single-sideband modulation, discrete, direct

and fast Fourier transform [6-7], calculate arcsine function [19],

frequency filtering (Gray-Marke trellis, orthogonal filters) and

wave filters [8]), adaptive modeling of non-stationary

processes (optimal recursive filtering, Kalman filter [9]). He is

also involved in the resolution of a large number of linear

algebra problems like the orthogonal algorithms of Givens [10],

Fadeeva, singular value decomposition [11], QR and Cholesky

decomposition.

3.2 Principle of the CORDIC algorithm

The CORDIC algorithm is based on trigonometric function

calculations; its principle is to perform rotations on a base

vector for a given angle.

Suppose the rotation of the vector V(x, y) by an angle φ as

illustrated in figure 1

Y

X

V

V’

x

y

x'

y'

φ

Figure 1. Rotation of the vector V in the Cartesian plane

The coordinates of the vector V’ are expressed according to

the equations:





sincosy'

sincosxx'

xy

y

+=

−=

(4)

If we restrict the angles of rotation tan
−1( 2

−i) wherei =
0,1,2,3, … , we then obtain φ by a series of successive

elementary rotations of the order of:

θi+1
 = θi

 − di
 . tan

−1(2
−i) (5)

where: di
 =  1

The index di
 indicates the direction of rotation of the angle

for each iteration, this index is determined at each iteration

according to the result of a comparison.

Each iterative vector Vi+1
 (xi+1

 , yi+1
) is represented by:

() 
() i

iiiii

i

iiiii

dxyKy

dyxKx

−

+

−

+

−=

−=

2

2

1

1

 (6)

Where: Ki = cos(tan
−1(2

−i)) = (1 + 2
−2i)

1
2⁄

Since for a relatively high number of iterations, the product

tends towards a constant result, it is possible for us to apply it

later in the algorithm. In fact, for a given sequence of

elementary rotations, the factors Ki can be grouped together

and applied at one time. Thus we obtain a set of simplified and

specific equations for calculating the mathematical operations

sought:

iiii

iiii

dxdyy

dydxx

−=

−=

+

+

1

1

 (7)

where:

dyi
 = yi

 2
−i (8)

dxi
 = xi

 2
−i (9)

dθi
 = tan

−1(2
−i) (10)

di
 =  1 (11)

according to the sign of θi

 or yi
 .

Then we calculate:

x′=An
 x (12)

where the constant An
 depends only on the sequence of

elementary rotations given by:

An
 = ∏ Ki

n
i=0 (13)

We notice that the main interest of this constant is that it

does not depend on θ but only on the number of stages. For an

increasing number of stages, this constant tends to the value

equal to 0.607252935.

3.3 Cosine and sine

In the paper [12], it is shown that the sine and cosine of the

input angle can simultaneously be calculated by CORDIC in

rotation mode.

00n

00n

sin.Y

cos.X

ZXA

ZXA

n

n

=

=

 (14)

by defining

nAX /10 = , the rotation produces a scaled sine and

cosine of the angle
oZ .

124

4. FIXED-POINT DEVELOPMENT

The diagram below illustrates a typical development

scenario in use today:

Figure 2. The dilemma of fixed-point development

The design may initially start with a simulation (i.e. MatLab)

of a control algorithm, which typically would be written in

floating-point math (C or C++). Existing methodologies [13,

14] achieve a floating-to-fixed-point transformation leading to

an ANSI-C code with integer data types. This algorithm can

be easily ported to a floating-point device. However, because

of the commercial reality of cost constraints, most likely a 16-

bit or 32-bit fixed-point device would be used in many target

systems.

The effort and skill involved in converting a floating-point

algorithm to function using a 16-bit or 32-bit fixed-point

device is quite significant. A great deal of time (many days or

weeks) would be needed for reformatting, scaling and coding

the problem. Additionally, the final implementation typically

has little resemblance to the original algorithm [15, 18].

For digital signal processors (DSPs), the methodology aim

is to define the optimized fixed point specification which

minimizes the code execution time and leads to sufficient

accuracy [16], some experiments [17] can represent up to 30%

of the global implementation time.

5. THE PROPOSED IMPLEMENTATION OF THE

CORDIC ALGORITHM

The figure 3 shows the proposed implementation of

CORDIC which will be integrated in the DFT; we will name

this proposition algorithm by CORFAST.

6. THE PROPOSED IMPLEMENTATION OF THE DFT

In this section the proposed DFT is presented, it is

implemented on a fixed-point DSP and its performance will be

evaluated and compared with the results in [5].

The flow diagram for DFT Computation is shown in Figure

4. In the butterfly calculation part of the flowchart, the custom

CORFAST is used.

Figure 3. The proposed implementation by CORFAST

Figure 4. Diagram for DFT Computation using CORFAST

125

7. DSP IMPLEMENTATION

Using the Code Composer Studio software to do the

simulations, this software uses the internal hardware of the

DSP C64x+ very efficiently. The algorithms are implemented

using DSP processor C64x+ and tested for different input data

lengths. The following results are obtained for 10, 12 and 20

point DFT length; the clock cycle is equal to 1 GHz (1ns). We

will compare the results found with the results in the paper [5].

Table 1 summarizes the resul1ts.

Table 1. The cycle’s number, time taken and their ratios

Number of input sequences

DFT

This work
DFT [5]

Ratio

Benchmark (cycles)

Time taken

(in ns)

Benchmark (cycles)

Time taken

(in ns)

10 372394 372394 24179 483580 1.3

12 556878 556878 28999 579980 1.04

20 1540534 1540534 96509 1930180 1.25

8. CONCLUSION

In this work we implemented a DFT using a DSP which is

specialized in this kind of application, we can conclude that

our implementation is faster (with a ratio of 1.3, 1.04, 1.25 for

a number of sequences 10, 12, 20 respectively) compared work

[5]. The results found leads us to conclude that the use of

specialized circuits like the DSP will give better results than

the use of circuits like FPGA which makes the implementation

very expensive at the time level, architecture complexity.

REFERENCES

[1] Proakis JG, Manolakis DG. (1996). Digital signal

processing, principles, algorithms and applications.

Prentice Hall India Publication 459-462.

[2] Volder JE. (1959). The CORDIC trigonometric

computing technique. IRE Transactions on Electronic

Computers (3): 330-334.

http://dx.doi.org/10.1109/TEC.1959.5222693

[3] Andraka R. (1998). A survey of CORDIC algorithms for

FPGA based computers. Proc. of the 1998 CM/SIGDA

Sixth International Symposium on FPGAs, Monterey,

CA. 191-200. http://dx.doi.org/10.1145/275107.275139

[4] Parhami B. (2010). Computer Arithmetic. Oxford

University Press, 361-371.

[5] Debaprasad De, Gaurav Kumar K, rchisman Ghosh,

Anurup Saha. (2017). FPGA implementation of discrete

fourier transform using CORDIC algorithm. Advances in

Modelling and Analysis B 60(2): 332-337.

http://dx.doi.org/10.18280/ama_b.600205

[6] Despain AM. (1979). Very fast fourier transform

algorithms hardware for implementation. IEEE

Transactions on Computers C-28(5): 333–341.

http://dx.doi.org/10.1109/TC.1979.1675363

[7] Despain AM. (1974). Fourier transform computers using

CORDIC iterations. IEEE Transactions on Computers C-

23(10): 993–1001. http://dx.doi.org/10.1109/T-

C.1974.223800

[8] RAO SK. (1984). Orthogonal digital filters for VLSI

implementation. IEEE Transactions on circuits and

systems CAS 31(11).

http://dx.doi.org/10.1109/TCS.1984.1085452

[9] Sung TY, Hu YH. (1986). VLSI Implementation of real-

time Kalman filter, Acoustics, Speech, and Signal

Processing. IEEE International Conference on ICASSP

86(11): 2223–2226.

http://dx.doi.org/10.1109/ICASSP.1986.1169136

[10] Ahmed HM, Delosme JM, Morf M. (1982). Highly

concurrent computing structures for matrix arithmetic

and signal processing. Computer 15(1): 65–82.

http://dx.doi.org/10.1109/MC.1982.1653828.

[11] Joseph R, Franklin C, Luk T. (1988). CORDIC

Arithmetic for an SVD Processor. J. Parallel Distrib.

Comput. 5(3): 271–290.

http://doi.org/10.1109/ARITH.1987.6158686

[12] Andraka R. (1998). A survey of CORDIC algorithms for

FPGA based computers. ACM 0 89791978-5/98/01.

http://dx.doi.org/10.1145/275107.275139

[13] Kum KI, Kang J, Sung W. (2000). AUTOSCALER for

C: An optimizing floating-point to integer C program

converter for fixed-point digital signal processors. IEEE

Transactions on Circuits and Syst—Part II 47(9): 840–

848. http://doi.org/10.1109/82.868453

[14] Willems M, Bursgens V, Meyr H. (1997). FRIDGE:

floating point programming of fixed-point digital signal

processors. In Proceeding of 8th International

Conference on Signal Processing Applications and

Technology (ICSPAT ’97), SanDiego, Calif, USA.

[15] DSPArithmeticTutorial. (2008). Texas Instrument.

[16] Menard D, Chillet D, Sentieys O. (2006). Floating-to-

Fixed-Point Conversion for Digital Signal Processors.

EURASIP Journal on Applied Signal Processing 1–19.

http://dx.doi.org/10.1155/ASP/2006/96421

[17] Grotker T, Multhaup E, Mauss O. (1996). Evaluation of

HW/SW tradeoffs using behavioral synthesis. In

Proceeding of 7th International Conference on Signal

Processing Applications and Technology(ICSPAT’96),

781–785, Boston, Mass, USA.

[18] Mehdaoui Y, Mrabti M. (2010). A faster MC-CDMA

system using a DSP implementation of the FFT, 5th

International Symposium On I/V Communications and

Mobile Network, Rabat, Morocco.

http://dx.doi.org/10.1109/ISVC.2010.5656245

[19] Anurup Saha, Archisman Ghosh, K. Gaurav Kumar.

(2017). FPGA implementation of arcsine function using

CORDIC algorithm. Advances in Modelling and

Analysis A 54(2): 197-202.

http://doi.org/10.18280/ama_a.540205

126

http://dx.doi.org/10.1109/TEC.1959.5222693
http://dx.doi.org/10.1145/275107.275139
http://iieta.org/sites/default/files/Journals/AMA/AMA_B/60.02_05.pdf
http://dx.doi.org/10.1109/TC.1979.1675363
http://dx.doi.org/10.1109/T-C.1974.223800
http://dx.doi.org/10.1109/T-C.1974.223800
http://dx.doi.org/10.1109/TCS.1984.1085452
http://dx.doi.org/10.1109/ICASSP.1986.1169136
http://dx.doi.org/10.1109/MC.1982.1653828
https://doi.org/10.1109/ARITH.1987.6158686
http://dx.doi.org/10.1145/275107.275139
https://doi.org/10.1109/82.868453
http://www.ti.com/
http://dx.doi.org/10.1155/ASP/2006/96421
http://dx.doi.org/10.1109/ISVC.2010.5656245
http://iieta.org/sites/default/files/Journals/AMA/AMA_A/54.02_05.pdf
http://iieta.org/sites/default/files/Journals/AMA/AMA_A/54.02_05.pdf

