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ABSTRACT 

Fourier transform is a tool enabling the understanding and implementation of a large number 

of numerical methods for signal and image processing. This tool has many applications in 

domains such as vocal recognition, image quality improvement, digital transmission, the 

biomedical sector and astronomy. 

This paper proposes to focus on the design methodology and experimental implementation 

of Discrete Fourier Transform (DFT). The interest of this work is an improvement which 

makes it possible to reduce the processing time of calculates the DFT while preserving the 

best performances by using the operator CORDIC and the fixed point, so this work is 

compared with the results found in the literatures. 
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1. INTRODUCTION

Discrete Fourier Transformation (DFT) is a mathematical 

tool for processing the digital signal, which is the discrete 

equivalent of the continuous Fourier transform that is used for 

analog signal processing. The calculation of the DFT of the 

complex sequences in the time domain will convert these 

sequences into frequency domain and the inverse procedure is 

done by the Inverse Discrete Fourier Transform [1]. 

The COordinate Rotation Digital Computer (CORDIC) 

algorithm [2-4] was originally created by J.E.Volder [2]. The 

algorithm approximates most functions based on trigonometry. 

It performs rotations without using multiplication operations. 

Another advantage of this algorithm is that it makes it possible 

to obtain a precision determined in advance by performing a 

given number of iterations. 

In the DFT, to calculate the twiddle, we will use the sine and 

the cosine, the algorithm CORDIC implemented with fixed 

point will allow speed of calculating sinus and cosines, all this 

will allow us to have a reduced time with a better precision. 

In this work an implementation of the DFT on a Digital 

Signal Processor (DSP) c64x+ and compare the results with 

what was found in [5], to come out with a conclusion of the 

utility of the use of specialized circuits like the DSP. 

This paper is organized as follows: In section 2, we 

introduce the Discrete Fourier Transform, we will explain the 

algorithm CORDIC in section 3. The fixed point development 

is given in section 4. The methodology of the proposed 

implementation is presented in section 5 and 6. The results will 

be presented in section 7. We will end with a conclusion in 

section 8. 

2. DISCRETE FOURIER TRANSFORM

Physical processes can be described in the time domain 

using the value of a quantity h as a function of time t, or in the 

frequency domain using its amplitude H as a function of its 

frequency f, we can then consider that h(t) and H(f) are two 

representations of the same function. 

For a discrete and periodic signal the corresponding 

transform is called the Discrete Fourier Transform (DFT). We 

will focus exclusively on this type of transform in this paper. 

For an input sequence x(n), the DFT of N points is defined 

as follows: 

X(k) = ∑ x(n). WN
nkN−1

n=0  (1) 

where: k = 0,1, … … N − 1 

Where the integer n is the time index, the integer k is the 

frequency index and the complex number WN
nk  which

corresponds to the nth root of the unit, commonly called 

twiddle factor, is defined as follows: 

WN
nk = exp(

−2iπnk

N
) = cos(

2πnk

N
) − i. sin(

2πnk

N
)         (2) 

The inverse DFT (IDFT) is expressed as follows: 

x(n) =
1

N
∑ X(n). WN

−nkN−1
n=0  (3) 

where: k = 0,1, … … N − 1 

We observe that N complex multiplications and N-1 

complex additions are needed to compute a point, so we need 

N2 complex multiplications and N2-N complex additions to 

compute a DFT / IDFT of N samples. 

The direct calculation of the DFT is inefficient with 

increasing the size of the signal to be transformed. 

Advances in Modelling and Analysis B 
Vol. 61, No. 3, September, 2018, pp. 123-126 

Journal homepage: http://iieta.org/Journals/AMA/AMA_B 

123



 

3. CORDIC OPERATOR 
 

3.1 CORDIC Algorithm 

 

The CORDIC algorithm makes it possible to perform 

calculations such as vector rotations or cartesian-polar and 

polar cartesian coordinates changes in the plane Euclidean.  

We can cite, for example, applications where the CORDIC 

algorithm is used: single-sideband modulation, discrete, direct 

and fast Fourier transform [6-7], calculate arcsine function [19], 

frequency filtering (Gray-Marke trellis, orthogonal filters) and 

wave filters [8]), adaptive modeling of non-stationary 

processes (optimal recursive filtering, Kalman filter [9]). He is 

also involved in the resolution of a large number of linear 

algebra problems like the orthogonal algorithms of Givens [10], 

Fadeeva, singular value decomposition [11], QR and Cholesky 

decomposition. 

 

3.2 Principle of the CORDIC algorithm  

 

The CORDIC algorithm is based on trigonometric function 

calculations; its principle is to perform rotations on a base 

vector for a given angle. 

Suppose the rotation of the vector V(x, y) by an angle φ as 

illustrated in figure 1 
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Figure 1. Rotation of the vector V in the Cartesian plane 

 

The coordinates of the vector V’ are expressed according to 

the equations: 
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(4) 

 

If we restrict the angles of rotation tan 
−1( 2 

−i) wherei =
0,1,2,3, … , we then obtain φ by a series of successive 

elementary rotations of the order of: 

 

θi+1
 = θi

 − di
 . tan 

−1(2 
−i)                                                   (5) 

 

where: di
 =  1 

 

The index di
  indicates the direction of rotation of the angle 

for each iteration, this index is determined at each iteration 

according to the result of a comparison. 

Each iterative vector Vi+1
 (xi+1

 , yi+1
 ) is represented by: 

 

( ) 
( ) i

iiiii

i

iiiii

dxyKy

dyxKx

−

+

−

+

−=

−=

2

2

1

1

                                                       (6) 

 

Where: Ki = cos(tan 
−1(2 

−i)) = (1 + 2 
−2i)

1
2⁄  

 

Since for a relatively high number of iterations, the product 

tends towards a constant result, it is possible for us to apply it 

later in the algorithm. In fact, for a given sequence of 

elementary rotations, the factors Ki can be grouped together 

and applied at one time. Thus we obtain a set of simplified and 

specific equations for calculating the mathematical operations 

sought: 

 

iiii

iiii

dxdyy

dydxx

−=

−=

+

+

1

1

                                                                    (7) 

 

where: 

dyi
 = yi

 2 
−i                                                                           (8) 

 

dxi
 = xi

 2 
−i                                                                           (9) 

 

dθi
 = tan 

−1(2 
−i)                                                               (10) 

 

di
 =  1                                                                             (11) 

 
according to the sign of θi

  or yi
 . 

 

Then we calculate: 

 

x′=An
 x                                                                                (12) 

 

where the constant An
  depends only on the sequence of 

elementary rotations given by: 

 

An
 = ∏ Ki

n
i=0                                                                       (13) 

 

We notice that the main interest of this constant is that it 

does not depend on θ but only on the number of stages. For an 

increasing number of stages, this constant tends to the value 

equal to 0.607252935. 

 

3.3 Cosine and sine 

 

In the paper [12], it is shown that the sine and cosine of the 

input angle can simultaneously be calculated by CORDIC in 

rotation mode. 

 

00n

00n

sin.Y

cos.X

ZXA

ZXA

n

n

=

=

                                                       (14) 

 
by defining

nAX /10 = , the rotation produces a scaled sine and 

cosine of the angle
oZ . 
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4. FIXED-POINT DEVELOPMENT 

 

The diagram below illustrates a typical development 

scenario in use today: 

 

 
 

Figure 2. The dilemma of fixed-point development 

 

The design may initially start with a simulation (i.e. MatLab) 

of a control algorithm, which typically would be written in 

floating-point math (C or C++). Existing methodologies [13, 

14] achieve a floating-to-fixed-point transformation leading to 

an ANSI-C code with integer data types. This algorithm can 

be easily ported to a floating-point device. However, because 

of the commercial reality of cost constraints, most likely a 16-

bit or 32-bit fixed-point device would be used in many target 

systems. 

The effort and skill involved in converting a floating-point 

algorithm to function using a 16-bit or 32-bit fixed-point 

device is quite significant. A great deal of time (many days or 

weeks) would be needed for reformatting, scaling and coding 

the problem. Additionally, the final implementation typically 

has little resemblance to the original algorithm [15, 18].  

For digital signal processors (DSPs), the methodology aim 

is to define the optimized fixed point specification which 

minimizes the code execution time and leads to sufficient 

accuracy [16], some experiments [17] can represent up to 30% 

of the global implementation time. 

 

 

5. THE PROPOSED IMPLEMENTATION OF THE 

CORDIC ALGORITHM  

 

The figure 3 shows the proposed implementation of 

CORDIC which will be integrated in the DFT; we will name 

this proposition algorithm by CORFAST.  

 

 

6. THE PROPOSED IMPLEMENTATION OF THE DFT 

 

In this section the proposed DFT is presented, it is 

implemented on a fixed-point DSP and its performance will be 

evaluated and compared with the results in [5]. 

The flow diagram for DFT Computation is shown in Figure 

4. In the butterfly calculation part of the flowchart, the custom 

CORFAST is used. 

 

 
 
Figure 3. The proposed implementation by CORFAST 

 

 
 

Figure 4. Diagram for DFT Computation using CORFAST 
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7. DSP IMPLEMENTATION 

 

Using the Code Composer Studio software to do the 

simulations, this software uses the internal hardware of the 

DSP C64x+ very efficiently. The algorithms are implemented 

using DSP processor C64x+ and tested for different input data 

lengths. The following results are obtained for 10, 12 and 20 

point DFT length; the clock cycle is equal to 1 GHz (1ns). We 

will compare the results found with the results in the paper [5]. 

Table 1 summarizes the resul1ts. 

 

Table 1. The cycle’s number, time taken and their ratios 

 

Number of input sequences 

DFT 

This work 
DFT [5] 

Ratio 

Benchmark (cycles) 

Time taken 

(in ns) 

 

Benchmark (cycles) 

Time taken 

(in ns) 

 

10 372394 372394 24179 483580 1.3 

12 556878 556878 28999 579980 1.04 

20 1540534 1540534 96509 1930180 1.25 

 

 

8. CONCLUSION 

 

In this work we implemented a DFT using a DSP which is 

specialized in this kind of application, we can conclude that 

our implementation is faster (with a ratio of 1.3, 1.04, 1.25 for 

a number of sequences 10, 12, 20 respectively) compared work 

[5]. The results found leads us to conclude that the use of 

specialized circuits like the DSP will give better results than 

the use of circuits like FPGA which makes the implementation 

very expensive at the time level, architecture complexity. 
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