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ABSTRACT 

In this paper, a robust controller for a Six Degrees of Freedom (6 DOF) coaxial octorotor 

unmanned aerial vehicle (UAV) control is proposed in presence of the disturbances and 

uncertainties. Adaptive control theory based on type-1 and interval type-2 Fuzzy inference 

systems is used to design a controller for each subsystem of the octorotor helicopter. The 

proposed control scheme allows avoiding the difficult modeling, guaranteeing the stability 

and the robustness of the system. Exponential stability of the closed loop is guaranteed by 

using Lyapunov theory. The performance and the effectiveness of the proposed controller, 

simulation results are confirmed by simulation study. 

Keywords: 
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1. INTRODUCTION

Helicopters are dynamically unstable and therefore suitable 

control methods are needed to stabilize them. In order to be 

able to optimize the operation of the control loop in terms of 

stability, precision and reaction time, it is essential to know the 

dynamic behavior of the process which can be established by 

a representative mathematical model.  

However, in practical situations, there are many difficult 

problems in controlling multirotors helicopters because of the 

inevitable uncertainties. Thus many efforts have been made to 

control quadrotor helicopter and some strategies have been 

developed to solve the path following problems for this type 

of system. In [1], a PID controller which can perform steady 

flight of quadrotor helicopter from one point to anther has been 

designed.  

Sliding mode control has been extensively tested to control 

quadrotors systems. The advantage of this approach is its 

insensitivity to the model errors and parametric uncertainties, 

as well as the ability to globally stabilize the system in the 

presence of other disturbances [2]. The sliding mode controller 

designed in [3] improves robustness of the external 

disturbances and model uncertainty of quadrotor system. In [4] 

backstepping approach was used to control quadrotor system 

where some parametric and non-parametric uncertainties are 

considered. In [5] a fuzzy controller based on on-line 

optimization of a zero order Takagi-Sugeno fuzzy inference 

system, which is tuned by a back propagation-like algorithm, 

is applied to a quadrotor. Where some uncertainties are 

considered. The work presented in [6] proposes an adaptive 

neural network control to stabilize a quadrotor helicopter 

against modeling error and wind disturbance.  

The robust control methods proposed in the literature are all 

based on the inherent structure of quadrotor that leads to the 

deficiency in driving capability. A novel coaxial eight-rotor 

UAV model proposed in [7] has been used in this paper. It is 

designed with eight rotors that are arranged as four counter 

rotating offset pairs mounted at the ends of four carbon fiber 

arms in a cruciform configuration. In addition, the coaxial 

octorotor UAV can be designed to accommodate when some 

of motors fail and still permit to the helicopter to continue 

flying. 

The main contribution provided in this paper consists of the 

developpement adaptive and robust controller for a class of 

systems encountered mainly in aerial vehicles. The 

mathematical model of the aerial vehicles can be regarded as 

the association of several interconnected subsystems. First, the 

type-2 fuzzy systems are utilized to approximate the local 

nonlinearities of each subsystem, and then the fuzzy 

parameters are on-line adjusted by adaptive laws with stability 

and convergence analysis of the Lyapunov theory in order to 

achieve the expected tracking performance. The robust-

control terms based on type-1 fuzzy systems are added in order 

to attenuate the influence of external disturbances, 

interconnection effects between subsystems and the type-2 

fuzzy approximation error. It should be noted that the 

advantage of decentralized control design is to reduce 

complexity and this allows the control implementation to be 

more feasible and in addition the computing time is reduced. 

In order to show the effectiveness of the proposed approach, 

simulation studies of the control scheme are carried out using 

the coaxial octorotor helicopter dynamical model. In addition 

the proposed control scheme allows to avoid the nonlinear 

modeling problems, guarantee the stability of the helicopter in 

closed loop, to provide the robustness and to obtain the desired 

trajectory tracking with best performances.  

The rest of paper is organized as follow. First, the problem 

formulation is presented in section 2. A brief description of 

interval type-2 fuzzy logic system (IT2FLS) is then introduced 

in section 3. Adaptive type-1 and interval type-2 fuzzy 
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controller design for MIMO systems is given in section 4. In 

section 5 and 6, the proposed scheme performances are 

evaluated by simulation in the case of the coaxial octorotor 

helicopter. Finally conclusions on the present paper are driven. 

2. PROBLEM FORMULATION

Consider a class of nonlinear MIMO dynamic systems that 

is encountered mainly in the multirotor UAV field described 

the following differential equations:  

( ) ( ) ( ) ( )

1,2, ,

ir

i i i i i i i

i i i

x F x g x u t

y x i m

 = + +


= =


  (1) 

where 𝑢𝑖 = [𝑢1 𝑢2 𝑢3  … 𝑢𝑚]𝑇  and 𝑦𝑖 = [𝑦1 𝑦2 𝑦3  … 𝑦𝑚]𝑇

are the control input and output of the system, the functions 

𝐹𝑖(�̄�𝑖) are continuous nonlinear functions, which are supposed

unknown, �̄�𝑖(�̄�) are continuous nonlinear functions, which are

supposed unknown, �̄�𝑖 = [𝑥𝑖 �̇�𝑖 �̈�𝑖  … 𝑥𝑖

(𝑟𝑖−1)
]

𝑇

are the states

variables, 𝑟𝑖 are positive integers 𝑖 = 1,2, … , 𝑚  which means

the order time derivative of the variable 𝑥𝑖, and 𝛥𝑖(𝑡) are the

external disturbances and uncertainties. The control objective 

to force the system output 𝑦𝑖  to follow the given reference

signal 𝑦𝑑𝑖 under external disturbances and uncertainties. In

order to attain this objective, some assumptions have been 

introduced.  

Assumption1. �̄�𝑖(�̄�)  are continuous nonlinear functions,

which are supposed unknown. 

Assumption2. The external disturbances and uncertainties 

𝛥𝑖(𝑡) are bounded, i.e.,

( )
0

sup i i
t

t 


 
      (2) 

where 𝛿𝑖 are known positive constant.

Let us now define the reference signal vector 𝑦𝑑𝑖  and the

tracking error vector 𝑒𝑖 as follows:

( )1i
T

r

i i di i i i ie y y e e e e
− = − =

   (3) 

The sliding surface is defined as: 

( ) ( )1 2

1 1...i i

i

r rT

i i i r i is c e e c e c e
− −

−= = + + +
      (4) 

where 𝑐𝑇 = [𝑐1  … 𝑐𝑟𝑖−2 𝑐𝑟𝑖−1 1 ]
𝑇

∈ ℜ
𝑛

 are the coefficients

of the Hurwitz polynomial. If the initial condition 𝑒𝑖(0) = 0
then the tracking problem can be considered as the state error 

vector remaining on the sliding surface 𝑠𝑖 = 0for all 𝑡 ≥ 0. A

sufficient condition that the system controlled is stable is given 

in [2] as: 

, 0i i i i is s s  − 
  (5) 

where 𝜂𝑖  is a constant design parameter. Then sliding

condition of (5) can be rewritten as follow: 

( )sgni i is s −
     (6) 

where:  

( )

1 0

sgn 0 0

1 0

i

i i

i

for s

s for s

for s




= =
−   (7) 

In the case of our work in order to eliminate the chattering 

effect which can damage the actuators, a continuous type-1 

fuzzy logic control (T1FLC) is used to approximate the hitting 

control (𝑢𝑑𝑐𝑖 = 𝑠𝑔𝑛(𝑠𝑖)).

where 𝑢𝑑𝑐𝑖 is the outputs of the T1FLC, which is obtained by

the sliding surfaces variables 𝑠𝑖.

The fuzzy membership functions of the input variables 𝑠𝑖

and output discontinuous control 𝑢𝑑𝑐𝑖  sets are presented by

Fig.1. 

Figure 1. Membership functions of input variables 𝑠𝑖 and

output 𝑢𝑓𝑠𝑖for 𝑖 = 𝜓, 𝜑

All the membership functions of the fuzzy input variable are 

chosen to be triangular. The used labels of the fuzzy variable 

surfaces 𝑠𝑖 are: {negative (N), zero (Z) and positive (P)}.

The fuzzy labels of the hitting control variables 𝑢𝑑𝑐𝑖 are a

singletons membership functions decomposed into three levels 

represented by a set of linguistic variables: {negative (N), zero 

(Z) and positive (P)}. Table.2 presents the rules base which

contains 3 rules:

Table 1. Rules base [8] 

Rule1 Rule2 Rule3 

𝑠𝑖 P Z N 

𝑢𝑓𝑠𝑖 P Z N 

The hitting control laws are computed by fuzzy logic 

inference mechanism as [8]:  

( )

3

1

3

1

1 1 2 2 3 3

1

i j i j

j

dci i

i j

j

i i i i i i

u T FLC s

 



     

=

=

= =

= + +




    (8) 

where 0 ≤ 𝛼𝑖1 ≤ 1 , 0 ≤ 𝛼𝑖2 ≤ 1  and 0 ≤ 𝛼𝑖3 ≤ 1  are the

membership degree of rules 1,2 and 3 presented in Table.1, 

𝜎𝑖1 = 𝜎𝑖 , 𝜎𝑖2 = 0  and 𝜎𝑖3 = −𝜎𝑖 are the center of output

membership functions 𝑢𝑑𝑐𝑖 .The relation 𝛼𝑖1 + 𝛼𝑖2 + 𝛼𝑖3 = 1
is valid according to the triangular membership functions. 

Moreover, the fuzzy hitting control can be further analyzed as 
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the following four conditions, and only one of four conditions 

will occur for any value of 𝑠𝑖, according to Fig.1 [8]. 

 

Condition 1 

Only rule 1 is activated (𝑠𝑖 > 𝛽𝑖 ,  𝛼𝑖1 = 1,  𝛼𝑖2 = 𝛼𝑖3 = 0)  

 

( )1dci i iu T FLC s = =
                                                       (9) 

 

Condition 2  

Rule 1 and 2 are activated simultaneously (0 < 𝑠𝑖 ≤ 𝛽𝑖 ,
 0 < 𝛼𝑖1,  𝛼𝑖2 ≤ 1, 𝛼𝑖3 = 0)  

 

( ) 1 1 11dci i i i i iu T FLC s    = = =
                               (10) 

 

Condition 3 

Rule 2 and 3 are activated simultaneously (−𝛽 < 𝑠𝑖 ≤ 0𝑖 ,
 0 < 𝛼𝑖2,  𝛼𝑖3 ≤ 1, 𝛼𝑖1 = 0)  

 

( ) 3 3 31dci i i i i iu T FLC s    = = = −
                           (11) 

 

Condition 4 

Only rule 3 is activated (𝑠𝑖 ≤ −𝛽𝑖 ,  𝛼𝑖1 = 1,  𝛼𝑖2 = 𝛼𝑖3 =
0) 

 

( )1dci i iu T FLC s = =
                                                     (12) 

 

According to four possible conditions shown in (9)-(12) [8], 

we obtain:    

 

( ) ( )1 31dci i i i iu T FLC s   = = −
                                    (13) 

 

And it can see that 

  

( ) 1 31i dci i i i i i is u s T FLC s s  = = −
                           (14) 

 

The equation (5) can be rewritten by:    

 

1 3 , 0i i i i i i i is s s     − − 
                       (15) 

 

Or   

 

( )1i i is T FLC s −
                                                   (16) 

 

The time derivative of the sliding surface in (4) is computed 

by: 

 

( ) ( ) ( )

1

1

1

1

i

i i

i

i

r
r rk

i k i di

k

r
rk

k i i i i i i i di

k

s c e x y

c e F x g x u t y

−

=

−

=

= + −

= + + +  −





                      (17) 

 

Substituting (17) into (16), sliding condition can be re-

expressed as:  

 

( ) ( ) ( )

( )

1

1

1

i

i

r
rk

k i i i i i i i di

k

i i

c e F x g x u t y

T FLC s

−

=

 
+ + +  − 

 

 −


                      (18) 

 

If 𝐹𝑖(�̄�𝑖)  and �̄�𝑖(�̄�𝑖)  are known and free of external 

disturbance and uncertainties, i.e., 𝛥𝑖(𝑡) = 0 , the ideal 

controls law can be obtained as:  

( )
( ) ( )

1
*

1

1
1

i

i

r
rk

i k i i i di i i

ki

u c e F x y T FLC s
g x


−



=

 
= − − + − 

 


    (19) 

 

where 𝜂𝑖𝛥
≥ 𝜂𝑖 ≥ 0. 

Sadly, 𝐹𝑖(�̄�𝑖) , �̄�𝑖(�̄�𝑖)are unknown and 𝛥𝑖(𝑡)  terms which 

include external disturbance and uncertainties are not null, in 

our problem, so it is impossible to obtain the control law (19). 

In order to solve such problems, an adaptive control strategy 

by the use of type-2 fuzzy systems is proposed. This approach 

rests on the online estimation of the local nonlinearities 

𝐹𝑖(�̄�𝑖)and �̄�𝑖(�̄�𝑖) using the type-2 fuzzy systems where the 

conclusions parameters are adjusted on-line according to some 

adaptive laws. In this paper, additional robust-control term 

based on fuzzy type-1 inference system is employed to 

attenuate both the effects of fuzzy type-2 approximation error, 

external disturbance and uncertainties effect.  

 

 

3. INTERVAL TYPE-2 FUZZY LOGIC SYSTEM 

 

In this section, the interval type-2 fuzzy set and the 

inference of type-2 fuzzy logic system will be presented. The 

structure of an IT2FLS, as presented in Fig. 2, is quite similar 

to a    type-1 fuzzy logic system (T1FLS). The only difference 

is that the antecedent and/or consequent sets in an IT2FLS are 

type-2, so that each rule output set is a type-2. There are five 

principal parts in an IT2FLS: Fuzzifier, rule base, inference 

engine, type-reducer and defuzzifier. 

 

 
 

Figure 2. Type-2 fuzzy logic system structure 

 

The type-reducer performs a type-reduction operation 

which is an extended version of type-1 defuzzification. Type 

reduction yields a type-1 set from the type-2 rule output set. 

The resulting type-1 set is called type-reduced set. The type-

reduced set can then be defuzzified to obtain a crisp output. 

The type reduced set of an IT2FLS shows the possible 

variation in the crisp output of the fuzzy logic system due to 

the uncertain natures of the antecedents and/or consequents. 

The general form of the 𝑙𝑡ℎ  rule of the type-2 Takagi-

Sugeno-Kang (TSK) fuzzy logic system can be written as: 

 If x1 is �̃�1
𝑙 and x2 is �̃�2

𝑙 and … xn is �̃�𝑛
𝑙, Than  

 
l ly G=

 1, ,l M=                                                            (20) 
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where: �̃�𝑗
𝑙 represent the type-2 fuzzy system of the input state 

𝑗 of the 𝑙𝑡ℎ rule, 𝑥1, 𝑥2, … , 𝑥𝑛 are the inputs, �̃�𝑙is the output of 

type-2 fuzzy system for the rule 𝑙 , and 𝑀  is the number of 

rules. As can be seen, the rule structure of type-2 fuzzy logic 

system is similar to type-1 fuzzy logic system except that type-

1 membership functions are replaced with their type-2 

counterparts. 

In Fig. 3, the footprint of uncertainty of each membership 

function (MF) can be represented as a bounded interval in 

terms of the upper MF �̄�
�̃�𝑗

𝑖(𝑥𝑗) and the lower �̱�
�̃�𝑗

𝑖(𝑥𝑗), where 

 

( )
1

exp
2

i
j

j j

jF
j

x m
x



  −
= −  

      and  

( ) ( )0.8i i
j j

j jF F
x x =

                                                      (21) 

 

 
 

Figure 3. Interval type-2 gaussian MFs 

 

In fuzzy system interval type-2 using the minimum or 

product t-norms operations, the 𝑙𝑡ℎ activated rule 𝐹𝑖(𝑥1, … 𝑥𝑛) 

gives us the interval that is determined by two extremes 

𝑓𝑙(𝑥1, … 𝑥𝑛) and 𝑓
𝑙
(𝑥1, … 𝑥𝑛) [9]: 

 

( )1 1 1, [ ( , ), ( , )] [ , ]
l ll ll

n n nF x x f x x f x x f f= 
              (22) 

 

with 𝑓𝑙 and 𝑓𝑙are given as: 

 

( ) ( )

( ) ( )

1

1

1

1

i i
n

i i
n

l

nF F

l

nF F

f x x

f x x

 

 

=  

=  

                                                  (23) 

 

There are many kinds of type-reduction, such as centroid, 

height, modified weight and center-of-sets [10]. The center-to-

sets type-reduction will be used in this paper and can be 

expressed as:  

 

1 1

1

1

, 1 /
M M

M
l l

l
L R My y f f

l

l

f y

Y y y

f

=

=

= =  


   


                          (24) 

 

Also, 𝑦𝑙 ∈ 𝑌𝑙  and 𝑌𝑙 = [𝑦𝐿
𝑙 , 𝑦𝑅

𝑙 ] is the centroid of the type-

2 interval consequent set �̃�𝑙 , the centroid of a type-2 fuzzy set 

[9, 10]. For any value 𝑦 ∈ 𝑌, 𝑦  can be expressed as:     

 

1

1

M
l l

l

M
l

l

f y

y

f

=

=

=



                                                                         (25) 

where 𝑦  is a monotonic increasing function with respect to 𝑦𝑙 . 

Also, 𝑦𝐿  is the minimum associated only with 𝑦𝐿
𝑙  and 𝑦𝑅  is the 

maximum associated only with 𝑦𝑅
𝑙 . Note that 𝑦𝐿  and 𝑦𝑅  

depend only on the mixture off 𝑓 𝑙 or 𝑓
𝑙
 values. Therefore, the 

left-most point 𝑦𝐿and the right-most point 𝑦𝑅  can be expressed 

as a fuzzy basis function (FBF) expansion, i.e., 

 

1

1

M
l l

L L
Tl

L L LM
l

L

l

f y

y

f

 =

=

= =



                                                          (26) 

 

where 𝜃𝐿
𝑙 = 𝑦𝐿

𝑙  and 𝜃𝐿 = [𝜃𝐿
1, . . . , 𝜃𝐿

𝑀]𝑇 , 𝜉𝐿
𝑙 =

𝑓𝐿
𝑙

∑ 𝑓𝐿
𝑙𝑀

𝑙=1

 and 𝜉𝐿 =

[𝜉𝐿
1, . . . , 𝜉𝐿

𝑀]𝑇.   

 

1

1

M
l l

R R
Tl

R R RM
l

R

l

f y

y

f

 =

=

= =



                                                          (27) 

 

where 𝜃𝑅
𝑙 = 𝑦𝑅

𝑙  and 𝜃𝑅 = [𝜃𝑅
1 , . . . , 𝜃𝑅

𝑀]𝑇 , 𝜉𝑅
𝑙 =

𝑓𝑅
𝑙

∑ 𝑓𝑅
𝑙𝑀

𝑙=1

 and 

𝜉𝑅 = [𝜉𝑅
1 , . . . , 𝜉𝑅

𝑀]𝑇. 

In order to compute Y, we need to compute 𝑦𝐿  and 𝑦𝑅 . This 

can be achieved by the use of the iterative Karnik Mendel 

algorithms procedure given in [11, 12].  

Initially we compute 𝑦𝐿  

Without loss of generality, assume that 𝜃𝐿
𝑙  are arranged in 

ascending order; i.e., 𝜃𝐿
1 ≤ 𝜃𝐿

2 ≤ ⋯ ≤ 𝜃𝐿
𝑀  

1. Compute 𝑦𝐿in (26) by initially setting 𝑓𝐿
𝑙 =

𝑓𝑙+𝑓
𝑙

2
 for 

l=1,…,M  where 𝑓 𝑙 and 𝑓
𝑙
 are given in (23). 

2. Find k (1 ≤ 𝜅 ≤ 𝑀 − 1)such that 𝜃𝐿
𝜅 ≤ 𝑦𝐿 ≤ 𝜃𝐿

𝜅+1. 

3. Compute 𝑦𝐿
′  in (26) with 𝑓𝐿

𝑙 = �̄�𝑙 for 𝑙 ≤ 𝜅 and 𝑓𝐿
𝑙 =

�̱�𝑙 for 𝜅 < 𝑙. 

4. If 𝑦𝐿
′ ≠ 𝑦𝐿  set 𝑦𝐿 = 𝑦𝐿

′  and go to step 2. If 𝑦𝐿
′ = 𝑦𝐿  

then stop and 𝑦𝐿 = 𝑦𝐿
′ . 

The procedure to compute 𝑦𝑅  is similar to compute 𝑦𝐿  in 

step 2, it only determines 𝜅(1 ≤ 𝜅 ≤ 𝑀 − 1), such that 𝜃𝐿
𝜅 ≤

𝑦𝑅 ≤ 𝜃𝐿
𝜅+1. In step3, compute 𝑦𝑅

′  in (27) by n𝑓𝑅
𝑙 = �̱�𝑙 for 𝑙 ≤

𝜅 and 𝑓𝑅
𝑙 = �̄�𝑙 for 𝜅 < 𝑙. �̱�𝑙. 

The type-2 fuzzy system output is obtained using the 

average value of 𝑦𝑅 and 𝑦𝐿  given by:  

 

( )
1

2 2

T TL R

L L R R

y y
y    

+
= = +

                                        (28) 

 

 

4. ADAPTIVE CONTROLLER DESIGN USING TYPE-1 

AND INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS  

 

The IT2FLS is principally used to estimate the online 

nonlinear functions 𝐹𝑖(�̄�𝑖)  and �̄�𝑖(�̄�𝑖) . These functions are 

expressed as  

 

( ) ( )
1

2
\ˆ

i i i i i

T T T

i i F F Li F Li F Ri F Ri Fi FiF x       = + =
                    (29) 
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( ) ( )
1

2
\ˆ

i i i i i

T T T

i i g g Li g Li g Ri g Ri gi gig x       = + =
                    (30) 

 

Using the estimated function (29) and (30), the control laws 

become:  

 

( )
( )

( ) ( )

1

1

\ˆ1

ˆ \ 1

ii
rkr

k i i i Fi di

i

ki i gi i i i

c e F x y
u

g x T FLC s



  

−

= 

 − + −
= − 

 + 
                  (31) 

 

where 𝛿𝑖 is obtained by (2). 

 

Theorem 1.  

Consider the nonlinear system (1) with the control input 

(31), if the fuzzy-based adaptive laws are chosen as 

 

1i iF Li i i F Lis  =
                                                             (32) 

2i iF Ri i i F Ris  =
                                                           (33) 

3i ig Li i i g Li is u  =
                                                        (34) 

4i ig Ri i i g Ri is u  =
                                                      (35) 

 

where 𝛾1𝑖 , 𝛾2𝑖 , 𝛾3𝑖  and 𝛾4𝑖  are positive constants, then, the 

overall adaptation scheme ensures the overall stability of the 

closed-loop system resulting in the sense that the tracking error 

converges to zero asymptotically and all the variables of the 

closed loop system are bounded. 

The optimal parameter estimations of type-2 fuzzy 

parameters 𝜃𝐹𝑖
∗  and 𝜃𝑔𝑖

∗  are defined as:  

 

( ) ( )* ˆarg min su \p
n

Fi Fi i

Fi i i Fi i i
x

F x F x


 
 

 
= − 

                              (36) 

( ) ( )* ˆarg min sup \
n

gi gi i

gi i i g i i
x

g x g x


 
 

 
= − 

                              (37) 

 

where 𝛺𝐹𝑖  and 𝛺�̄�𝑖  are constant sets for 𝜃𝐹𝑖  and 𝜃�̄�𝑖 

respectively, and they are defined as 𝛺𝐹𝑖 = {𝜃𝐹𝑖 ∈ ℜ
𝑛||𝜃𝐹𝑖| ≤

𝑀𝐹𝑖
} and 𝛺�̄�𝑖 = {𝜃�̄�𝑖 ∈ ℜ

𝑛|0 < |𝜃�̄�𝑖| ≤ 𝑀�̄�𝑖}, where 𝑀𝐹𝑖
 and 

𝑀�̄�𝑖 are positive constant.  

Let us define the minimum approximation error:  

 

( ) ( ) ( ) ( )* *ˆ \ \ˆ
i i i i i Fi i i i i gi iF x F x g x g x u     = − + −

              (38) 

 

Then from substituting (31) and (38) into (17), the time 

derivative of sliding surface is obtained by:  

 

( ) ( ) ( ) ( )( )
( ) ( ) ( )

\ˆ

1

\ˆ
i i i i i Fi i i i i gi i

i i i i

s F x F x g x g x u

t T FLC s

 

 

= − + −

+ − +
 

( ) ( ) ( ) ( )( )
( ) ( ) ( )

* *ˆ ˆ

1

\ \ ˆ\ \ˆ
i i Fi i i Fi i i gi i i gi i

i i i i i

F x F x g x g x u

t T FLC s

   

  

= − + −

+ − + +
  

( ) ( )
( ) ( ) ( )

* *

1

T T T T

Fi Fi Fi Fi gi gi gi gi i

i i i i i

u

t T FLC s

       

  

= − + −

+ − + +
 

( ) ( ) ( )1T T

Fi Fi gi gi i i i i i iu t T FLC s    =  + + − + +
   (39) 

 

where: 𝛤𝐹𝑖 = 𝜃𝐹𝑖
∗ − 𝜃𝐹𝑖  and 𝛤𝑔𝑖 = 𝜃𝑔𝑖

∗ − 𝜃𝑔𝑖   

The equation (39) is rewritten by: 

 

( )

( )

( ) ( ) ( )

1

2

1

2

1

i i i i

i i i i

T T

i F Li F Li F Ri F Ri

T T

g Li g Li g Ri g Ri i

i i i i i

s

u

t T FLC s

 

 

  

=  + +

 +

+ − + +

                                   (40) 

 

Stability analysis 

Let us choose the Lyapunov function candidate as: 

 

2

1 2

3 4

1 1 1

2 4 4

1 1

4 4

i i i i

i i i i

T T

i i F Li F Li F Ri F Ri

i i

T T

g Li g Li g Ri g Ri

i i

V s
 

 

= +   +  

+   +  

                        (41) 

 

The derivative of (41) with respect to time, gives:  

 

1 2

3 4

1 1

2 2

1 1

2 2

i i i i

i i i i

T T

i i i F Li F Li F Ri F Ri

i i

T T

g Li g Li g Ri g Ri

i i

V s s
 

 

= +   +  

+   +  

 

( )

( ) ( )

( ) ( )

1

2

1

2

1

i i i i

i i i i

T T

F Li F Li F Ri F Ri

T T

i g Li g Li g Ri g Ri i i

i i i i

s u t

T FLC s

 

 

  

 
 +  + 

 
 =  + +  +
 
 
− + + 
  

 

1 2

3 4

1 1

2 2

1 1

2 2

i i i i

i i i i

T T

F Li F Li F Ri F Ri

i i

T T

g Li g Li g Ri g Ri

i i

 

 

  +   +

  +  

 

( )

( )

1

1

2

2

1

2

1

2

i i i

i i i

T

F Li F Li i i F Li

i

T

F Ri F Ri i i F Ri

i

s

s

 


 


=   + +

  + +

 

( )

( )

3

3

4

4

1

2

1

2

i i i

i i i

T

g Li g Li i i g Li i

i

T

g Ri g Ri i i g Ri i

i

s u

s u

 


 


  + +

  + +

 

( ) ( ) ( )1i i i i i i i is t s T FLC s s   − + +
                        (42) 

 

where:  

 

1

2

3

4

i i

i i

i i

i i

F Li i i F Li

F Ri i i F Ri

g Li i i g Li i

g Ri i i g Ri i

s

s

s u

s u

 

 

 

 

 = −

 = −

 = −

 = −                                                   (43) 
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Substituting (43) into (42), yields: 

 

( ) ( ) ( )1i i i i i i i iV s t T FLC s s  =  − + +
 

( ) ( ) 1 3i i i i i i i i i is t s s     =  − + − +
 

( )i i i is s − +
                                                          (44) 

 

Since 𝜔  it the minimum approximation error, (44) is the 

best result that we can obtain. Therefore, all signals in the 

system are bounded. Obviously, if 𝑒(0) is bounded, then 𝑒(𝑡) 

is also bounded for all 𝑡. 

Since the reference signal 𝑦𝑑𝑖
𝑟𝑖  is bounded, then the system 

states �̄�𝑖 is bounded as well. 

To complete the proof and establish asymptotic 

convergence of the tracking error, we need proving that 𝑠𝑖 →
0 as 𝑡 → ∞ Besides, assume that ‖𝑠𝑖‖ ≤ 𝜇𝑠𝑖

, then Eq. (44) can 

be rewritten as : 

( )
ii i i s iV s   − +

                                                      (45) 

 

The integral of Eq. (45) provides, 

 

( ) ( )( )
0 0

1
0 i

T T
s

i i i i

i i

s d V V T d


  
  

 + + 
                   (46) 

 

The above inequalities mean that all the signals are 

uniformly bounded in the closed-loop. Then we have 𝑠𝑖 ∈ 𝐿1. 

Form Eq. (44), we know that 𝑠𝑖 is bounded and every term in 

Eq. (44) is bounded. Hence, (𝑠𝑖 , �̇�𝑖) ∈ 𝐿∞. We have 𝑠𝑖 → 0 as 

𝑡 → ∞, and from Eq. (4) the tracking error 𝑒𝑖(𝑡) will converge 

to zero, which proves the system stability. The block diagram 

of the proposed adaptive interval type-2 fuzzy control system 

is presented in Fig.4. 

 

 
 

Figure 4. Block diagram of the proposed adaptive interval type-2 fuzzy control system 

 

 

5. APPLICATION TO THE COAXIAL OCTOROTOR 

UAV 

 

5.1. Dynamical modeling of the coaxial octorotor  

 

The configuration of the octorotor is represented in Fig. 5. 

It is similar to a quadrotor with two coaxial counter-rotating 

motors at the ends of each arm. This configuration has several 

advantages compared to the star configuration used in the 

literature [13] in terms of stability and size. A classical star 

octorotor needs more arms, and each arm needs to be longer to 

guarantee adequate spacing among the rotors. We have 

adopted this configuration for its higher thrust to weight ratio.  

 

 
 

Figure 5. Coaxial octorotor configuration 

 

Consider first a body-fixed reference frame RB with the X, 

Y, Z axis originating at the center of mass of the vehicle. 

The X axis points to the front direction, the Y axis to the left 

direction and the Z axis upwards. Consider second an inertial 

frame RI fixed to the earth {𝑜, 𝑥, 𝑦, 𝑧}. 

The equations governing the motion of the system are 

obtained using the Euler-Lagrange approach and give the 

commonly used model [14] 

 

1 1 1 1

2 2 2 2

3 3 3 3

2

4 5 6 4 4 1

2

7 8 9 5 5 2

2

10 11 6 6 3

x a x b u W

y a y b u W

z a z b u g W

a a a b u d

a a a b u d

a a b u d

  

 

  

= + +


= + +
 = + − +


=  + + + +
 = +  + + +

 = + + +                              (47) 

 

where:   

 

31 2

1 2 3

4

4 5 6

5

7 8 9

6

10 11

3 3

1 2 3

4 5 6

, , ,

, ,

, ,

,

cos cos
, , ,

1 1 1
, ,

y z H

x x x

z x H

y y y

x y

z z

x y z

KK K
a a a

m m m

I I K J
a a a

I I I

I I K J
a a a

I I I

I I K
a a

I I

u u
b b b

m m m

b b b
I I I



−− −
= = =


−  − − 

= = = 
 

  − − −  = = = 
   


−   −

= = 
 

 
= = =




= = =

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1

2

cos sin cos sin sin

cos sin sin sin cos

u

u

   

   

=  +


=  −  
 

where 𝑚 denotes the total mass, 𝑔 represents the acceleration 

of gravity, 𝑙 denotes the distance from the center of each rotor 

to the center of gravity, 𝐾1, … , 𝐾6 denote the drag coefficients 

and positive constants, 𝑊1, … , 𝑊3 represent the effect of the 

wind guests on the octorotor translational acceleration, 

aerodynamics and drag effect and other disturbances, 

𝑑1, … , 𝑑3 are the disturbances and drag effects.  

 

2 3 6 7 1 4 5 8 =  + + + − − − −
                        (48) 

 

𝛺𝑗; stand for the angular speed of the propeller j with 𝑗 =

1, . . . ,8.  

𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧  represent the inertias of the coaxial octorotor; 𝐽𝐻 

denotes the inertia of the propeller; 𝑢3 denotes the total thrust 

on the body in the z-axis; 𝑢4  and 𝑢5  represent the roll and 

pitch inputs, respectively; 𝑢6 denotes a yawing moment.  

 

( )

( )

( )

3 1 2 3 4 5 6 7 8

4 7 8 5 6 3 4 1 2

5 3 4 5 6 7 8 1 2

6 2 3 6 7 1 4 5 8

2

2

2

2

u F F F F F F F F

u l F F F F F F F F

u l F F F F F F F F

d
u F F F F F F F F

b

= + + + + + + +



= + + + − − − −



= + + + − − − −



= + + + − − − −
               (49) 

 

where 𝐹𝑗 = 𝑏𝛺𝑗
2 with 𝑗 = 1, . . . ,8 denote the thrust generated 

by eight rotors and are considered as the real control inputs to 

the dynamical system, 𝑏 denotes the lift coefficient; 𝑑 denotes 

the force to moment scaling factor. 

Assumption 1  

The roll, the pitch and the yaw angles (𝜑, 𝜃, 𝜓) are bounded 

as follows: roll angle by 
−𝜋

2
< 𝜑 <

𝜋

2
; pitch angle, 

−𝜋

2
< 𝛩 <

𝜋

2
; 

and yaw angle, −𝜋 < 𝜓 < 𝜋. 

The dynamic model (47) can be rewritten as follows 

 

( )1 1 1 1

1 1

,x F x x g u

y x

 = + + 


=


                                               (50) 

( )2 2 2 2

2 2

,y F y y g u

y y

 = + + 


=


                                            (51) 

( )3 3 3 3

3 3

,z F z z g u

y z

 = + + 


=


                                              (52) 

( )4 4 4 4

4 4

,F g u

y

  



 = + + 


=


                                            (53) 

( )5 5 5 5

5
5

,F g u

y

 =   + + 


= 


                                          (54) 

( )5 6 6 6

6 6

,F g u

y

  



 = + + 


=


                                          (55) 

 

where: 

 

( )

( )

( )

( )

( )

( )

1 1

2 2

3 3

2

4 5

2

5 8

2

6 11

,

,

,

,

,

,

F x x a x

F y y a y

F z z a z g

F a

F a

F a

  

  

=


=


= −


=
   = 

 = , 

1 1

2 2

3 3

4 4

5 5

6 6

g b

g b

g b

g b

g b

g b

=


=
 =


=
 =

 =  and 

1 1

2 2

3 3

4 1

5 2

6 3

W

W

W

d

d

d

 =

 =

 =

 =
 =

 =   

 

In model (50) to (55), we have 𝑚 = 6, 𝑟𝑖=1,..,6 = 2, and 𝑥 =

[𝑥, �̇�, 𝑦, �̇�, 𝑧, �̇�, 𝜑, �̇�, 𝛩, �̇�, 𝜓, �̇�]𝑇112
𝑇
 

 

5.2. Control strategy of the coaxial octorotor  

 

Before synthesizing the control law the following 

assumption are assumed [14]:  

Assumption 2  

The variables 𝜑 and 𝛩 move exclusively inside the open set 

(
−𝜋

2
,

𝜋

2
) and the thrust 𝑈1 is always has to be strictly positive 

(𝑈1 > 0); otherwise, the device will certainly fall. 

 

 

 
 

Figure 6. Bloc diagram of the proposed flight control strategy 

 

This assumption reflects a realistic situation. That is, 

exclude the singular cases where the aircraft is either vertically, 

horizontally inclined, or is free falling. Therefore, the adopted 

control strategy cannot be applied to these singular cases [14]. 
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The translational motion control is performed in two stages. 

In the first one, the helicopter height, 𝑧, is controlled and the 

total thrust, 𝑢3, is the manipulated signal. In the second stage, 

the reference of pitch and roll angles (𝛩𝑑  and 𝜑𝑑, respectively) 

are generated through the two virtual inputs 𝑢1  and 𝑢2 , 

computed to follow the desired 𝑥𝑦  movement. Finally the 

rotation controller is used to stabilize the octorotor under near 

quasi-stationary conditions with control inputs 𝑢4, 𝑢5, 𝑢6. The 

overall scheme of the control strategy is depicted in Fig.6. 

 

5.2.1 x position control  

The x position subsystem is presented by: 

 

( )1 1 1 1

1 1

,x F x x g u

y x

 = + + 


=


                                               (56) 

 

with �̄�1 = [𝑥, �̇�] 
To apply the proposed control based on an adaptive type-2 

fuzzy controller, the functions 𝐹1(𝑥, �̇�), �̄�1  have been 

estimated online by zero-order type-2 Takagi-Sugeno fuzzy 

systems. The functions are estimated by:  

 

( ) ( )
1 1 1 1 1 1 1 1 11 1

1ˆ
2

\ T T

F F L F L F R F RF x     = +
                                (57) 

( ) ( )
1 1 1 1 1 1 1 1 11 1

1ˆ
2

\ T T

g g L g L g R g Rg x     = +
                                (58) 

 

where 𝜃𝐹1𝐿1
𝑇 , 𝜃𝐹1𝑅1

𝑇 , 𝜃𝑔1𝐿1
𝑇  and 𝜃𝑔1𝑅1

𝑇  are the vector parameter 

of the fuzzy system. The fuzzy system has two inputs 𝑥 and �̇�, 

each input is described by seven interval type-2 Gaussian MFs.  

The control law that is provided by the adaptive controller 

is expressed by: 

 

( )
( ) ( )( )1 1 1 1 1 1 1 1 1

1 1 1

\
\

1 ˆ 1F d

g

u c e F x y T FLC s
g x

 


= − − + −

(59) 

 

where: 𝑒1 = 𝑥 − 𝑥𝑑 , �̇�1 = �̇� − �̇�𝑑  , �̈�𝑑1 = �̈�𝑑  , 𝑠1 = �̇�1 + 𝑐1𝑒1 

and (𝜂1𝛥
, 𝑐1) > 0.  

The type-2 fuzzy systems parameters are adjusted by the 

following law:    

 

1 1

1 1

1 1

1 1

1 11 1 1

1 21 1 1

1 31 1 1 1

1 41 1 1 1

F L F L

F R F R

g L g L

g R g R

s

s

s u

s u

  

  

  

  

 =


=


=


=                                                     (60) 

 

where 𝛾11, 𝛾21, 𝛾31 and 𝛾41 are the positive constant.  

 

5.2.2 y position control  

The y position subsystem is presented by: 

 

( )2 2 2 2

2 2

,y F y y g u

y y

 = + + 


=


                                            (61) 

 

With �̄�2 = [𝑦, �̇�] 

To apply the proposed control based on an adaptive type-2 

fuzzy controller, the functions 𝐹2(𝑦, �̇�), �̄�2  have been 

estimated online by zero-order type-2 Takagi-Sugeno fuzzy 

systems. The functions are estimated by:  

 

( ) ( )
2 2 2 2 2 2 2 22 2 2

1ˆ
2

\ T T

F F L F L F R F RF x     = +
                            (62) 

( ) ( )
2 2 2 2 2 2 2 2 22 2

1ˆ
2

\ T T

g g L g L g R g Rg x     = +
                             (63) 

 

where 𝜃𝐹2𝐿2
𝑇 , 𝜃𝐹2𝑅2

𝑇 , 𝜃𝑔2𝐿2
𝑇  and 𝜃𝑔2𝑅2

𝑇  are the vector 

parameter of the fuzzy system. The fuzzy system has two 

inputs 𝑦 and �̇�, each input is described by seven interval type-

2 Gaussian MFs.  

The control law that is provided by the adaptive controller 

is expressed by: 

 

( )
( )

( )

2 2 2 2 2

2

2 2 2 2 2 2

\

\

ˆ1

1

F

g d

c e F x
u

g x y T FLC s



  

 − − +
=  

 − 

                          (64) 

 

where: 

2 de y y= −
, 2 de y y= −

, 2d dy y=
, 2 2 2 2s e c e= +

 and 

( )2 2, 0c  
.  

The type-2 fuzzy systems parameters are adjusted by the 

following law:    

 

2 2

2 2

2 2

2 2

2 12 2 2

2 22 2 2

2 32 2 2 2

2 42 2 2 2

F L F L

F R F R

g L g L

g R g R

s

s

s u

s u

  

  

  

  

 =


=


=


=                                                  (65) 

 

where 𝛾12, 𝛾22, 𝛾32 and 𝛾42 are the positive constant. 

 

5.2.3 Altitude control (z) 

The z position subsystem is presented by: 

 

( )3 3 3 3

3 3

,z F z z g u

y z

 = + + 


=


                                              (66) 

 

With  �̄�3 = [𝑧, �̇�] 
To apply the proposed control based on an adaptive type-2 

fuzzy controller, the functions 𝐹3(𝑧, �̇�), �̄�3  have been 

estimated online by zero-order type-2 Takagi-Sugeno fuzzy 

systems. The functions are estimated by:  

 

( ) ( )
3 3 3 3 3 3 3 33 3 3

1ˆ
2

\ T T

F F L F L F R F RF x     = +
                             (67) 

( ) ( )
3 3 3 3 3 3 3 3 33 3

1ˆ
2

\ T T

g g L g L g R g Rg x     = +
                              (68) 

 

where 𝜃𝐹3𝐿3
𝑇 , 𝜃𝐹3𝑅3

𝑇 , 𝜃𝑔3𝐿3
𝑇  and 𝜃𝑔3𝑅3

𝑇  are the vector parameter 

of the fuzzy system. The fuzzy system has two inputs z  and 

z , each input is described by seven interval type-2 Gaussian 

MFs.  
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The control law that is provided by the adaptive controller 

is expressed by: 

 

( )
( )

( )

3 3 3 3 3 3

3

3 3 3 3 3

\

\

ˆ1

1

F d

g

c e F x y
u

g x T FLC s



  

 − − +
=  

 − 

                      (69) 

 

where: 

𝑒3 = 𝑧 − 𝑧𝑑 , �̇�3 = �̇� − �̇�𝑑 , �̈�𝑑3 = �̈�𝑑 , 𝑠3 = �̇�3 + 𝑐3𝑒3  and 

(𝜂3𝛥
, 𝑐3) > 0.  

The type-2 fuzzy systems parameters are adjusted by the 

following law:    

 

3 3

3 3

3 3

3 3

3 13 3 3

3 23 3 3

3 33 3 3 3

3 43 3 3 3

F L F L

F R F R

g L g L

g R g R

s

s

s u

s u

  

  

  

  

 =


=


=


=                                                          (70) 

 

where 𝛾13, 𝛾23, 𝛾33 and 𝛾43 are the positive constant.    

 

5.2.4 Roll control (φ) 

The roll angle subsystem is presented by: 

 

( )4 4 4 4

4 4

,F g u

y

  



 = + + 


=


                                               (71) 

 

With �̄�4 = [𝜑, �̇�] 
To apply the proposed control based on an adaptive type-2 

fuzzy controller, the functions 𝐹4(𝜑, �̇�), �̄�4  have been 

estimated online by zero-order type-2 Takagi-Sugeno fuzzy 

systems. The functions are estimated by:  

 

( ) ( )
4 4 4 4 4 4 4 44 4 4

1ˆ
2

\ T T

F F L F L F R F RF x     = +
                           (72) 

( ) ( )
4 4 4 4 4 4 4 4 44 4

1ˆ
2

\ T T

g g L g L g R g Rg x     = +
                             (73) 

 

where 𝜃𝐹4𝐿4
𝑇 , 𝜃𝐹4𝑅4

𝑇 , 𝜃𝑔4𝐿4
𝑇  and 𝜃𝑔4𝑅4

𝑇  are the vector parameter 

of the fuzzy system. The fuzzy system has two inputs 𝜑 and �̇�, 

each input is described by seven interval type-2 Gaussian MFs.  

The control law that is provided by the adaptive controller 

is expressed by: 

 

( )
( )

( )

4 4 4 4 4 4

4

4 4 4 4 4

\

\

ˆ1

1

F d

g

c e F x y
u

g x T FLC s



  

 − − +
=  

 − 

                          (74) 

 

where: 𝑒4 = 𝑧 − 𝑧𝑑 , �̇�4 = �̇� − �̇�𝑑  , �̈�𝑑4 = �̈�𝑑  , 𝑠4 = �̇�4 + 𝑐4𝑒4 

and (𝜂4𝛥
, 𝑐4) > 0.  

The type-2 fuzzy systems parameters are adjusted by the 

following law:  

 

4 4

4 4

4 4

4 4

4 14 4 4

4 24 4 4

4 34 4 4 4

4 44 4 4 4

F L F L

F R F R

g L g L

g R g R

s

s

s u

s u

  

  

  

  

 =


=


=


=                                                        (75) 

where 𝛾14, 𝛾24, 𝛾34 and 𝛾44 are the positive constant.    

The desired roll angel is given by: 

 

( )2d arctg u = −
                                                               (76) 

 

5.2.5 Pitch control (𝛩) 

The pitch angle subsystem is presented by: 

 

( )5 5 5 5

5
5

,F g u

y

 =   + + 


= 


                                          (77) 

 

with �̄�5 = [𝛩, �̇�] 

To apply the proposed control based on an adaptive type-2 

fuzzy controller, the functions 𝐹5(𝛩, �̇�), �̄�5  have been 

estimated online by zero-order type-2 Takagi-Sugeno fuzzy 

systems. The functions are estimated by:  

 

( ) ( )
5 5 5 5 5 5 5 55 5 5

1ˆ
2

\ T T

F F L F L F R F RF x     = +
                             (78) 

( ) ( )
5 5 5 5 5 5 5 5 55 5

1ˆ
2

\ T T

g g L g L g R g Rg x     = +
                              (79) 

 

where 𝜃𝐹5𝐿5
𝑇 , 𝜃𝐹5𝑅5

𝑇 , 𝜃𝑔5𝐿5
𝑇  and 𝜃𝑔5𝑅5

𝑇  are the vector parameter 

of the fuzzy system. The fuzzy system has two inputs 𝛩and �̇�, 

each input is described by seven interval type-2 Gaussian MFs.  

The control law that is provided by the adaptive controller 

is expressed by: 

 

( )
( )

( )

5 5 5 5 5 5

5

5 5 5 5 5

\

\

ˆ1

1

F d

g

c e F x y
u

g x T FLC s



  

 − − +
=  

 − 

                      (80) 

 

where: 𝑒5 = 𝛩 − 𝛩𝑑 , �̇�5 = �̇� − �̇�𝑑 , �̈�𝑑5 = �̈�𝑑 , 𝑠5 = �̇�5 + 𝑐5

𝑒5 and (𝜂5𝛥
, 𝑐5) > 0.  

The type-2 fuzzy systems parameters are adjusted by the 

following law:  

 

5 5

5 5

5 5

5 5

5 15 5 5

5 25 5 5

5 35 5 5 5

5 45 5 5 5

F L F L

F R F R

g L g L

g R g R

s

s

s u

s u

  

  

  

  

 =


=


=


=                                                   (81) 

 

where 𝛾15, 𝛾25, 𝛾35 and 𝛾45 are the positive constant.  

The desired pitch angel is given by: 

 

( )( )1 cosd arctg u  =
                                                     (82) 

 

5.2.6 Yaw control (ѱ) 

The yaw angle subsystem is presented by: 

 

( )5 6 6 6

6 6

,F g u

y

  



 = + + 


=


                                          (83) 

 

With �̄�6 = [𝜓, �̇�] 

166



 

To apply the proposed control based on an adaptive type-2 

fuzzy controller, the functions 𝐹6(𝜓, �̇�), �̄�6  have been 

estimated online by zero-order type-2 Takagi-Sugeno fuzzy 

systems. The functions are estimated by:  

 

( ) ( )
6 6 6 6 6 6 6 66 6 6

1ˆ
2

\ T T

F F L F L F R F RF x     = +
                            (84) 

( ) ( )
6 6 6 6 6 6 6 6 66 6

1ˆ
2

\ T T

g g L g L g R g Rg x     = +
                             (85) 

 

where 𝜃𝐹6𝐿6
𝑇 , 𝜃𝐹6𝑅6

𝑇 , 𝜃𝑔6𝐿6
𝑇  and 𝜃𝑔6𝑅6

𝑇  are the vector parameter 

of the fuzzy system. The fuzzy system has two inputs 𝜓 and 

�̇�, each input is described by seven interval type-2 Gaussian 

MFs.  

The control law that is provided by the adaptive controller 

is expressed by: 

 

( )
( )

( )

6 6 6 6 6

6

6 6 6 6 6 6

\

\

ˆ1

1

F

g d

c e F x
u

g x y T FLC s



  

 − − +
=  

 − 

                           (86) 

 

where: 𝑒6 = 𝜓 − 𝜓𝑑 , �̇�6 = �̇� − �̇�𝑑 , �̈�𝑑6 = �̈�𝑑 , 𝑠6 = �̇�6 + 𝑐6

𝑒6 and (𝜂6𝛥
, 𝑐6) > 0.  

The type-2 fuzzy systems parameters are adjusted by the 

following law:  

 

6 6

6 6

6 6

6 6

6 16 6 6

6 26 6 6

6 36 6 6 6

6 46 6 6 6

F L F L

F R F R

g L g L

g R g R

s

s

s u

s u

  

  

  

  

 =


=


=


=                                                  (87) 

 

where 𝛾16, 𝛾26, 𝛾36 and 𝛾46 are the positive constant.    

 

 

6. SIMULATION RESULTS 

 

The proposed control strategy has been tested by simulation 

in order to check the effectiveness and the performance 

attained for the path following problem. The nominal 

parameters of the coaxial octorotor system are given as [14] 

presented by the following table. 

 

 

 

Table 2. Physical parameters of the coaxial octorotor 

 

Symbol  Value 

Ix 4.2×10-2 (Kg.m2) 

Iy 4.2×10-2 (Kg.m2) 

IZ 7.5×10-2 (Kg.m2) 

Kp 2.9842×10-5 (Ns2) 

Kd 3.2320×10-7 (Nms2) 

m 1.6 (Kg) 

g 9.81(m/s2) 

l 0.23 (m) 

K1 5.5670×10-4 (N/m/s) 

K2 5.5670×10-4 (N/m/s) 

K3 6.3540×10-4 (N/m/s) 

K4 5.5670×10-4 (N/rad/s) 

 K5 5.5670×10-4 (N/rad/s) 

K6 6.3540×10-4 (N/rad/s) 

 

Two flight tests have been carried out to demonstrate the 

performance of the proposed control. First, an application 

which does not take into accounts the external disturbances 

and model uncertainty on the six degrees of freedom. Secondly, 

a simulation with parametric variations (at t=60 s). Indeed, 

these variations impose an increase of 75% of the inertias (Ix, 

Iy and Iz) and an increase of 50% on the masse and with the 

wind and torques disturbances are introduced, which are 

chosen as: 

 

( )

( ) ( )

( )

( )

( ) ( )

( )

( )

0 , 0 15

30 30
0.5sin 0.3sin

31 7

30
0.08sin

2

30
0.056sin , 15 45

11

0 , 45 65

65 65
0.5sin 0.3sin

31 7

65
0.08sin

2

65
0.056sin , 65 85

11

0 , 85 100

i

N t

t t

t

t
N t

W t N t

t t

t

t
N t

N t

 





 





 


− − + +



−



−+  



=  
 − −
 +



−
+



−+  

  

 for 1,2,3i =     (88) 

 

The disturbances 𝑊𝑖(𝑡) and 𝑑𝑖(𝑡)has been depicted in Fig.7. 

 

 
 

Figure 7. The disturbances effect. (a) Wind effect. (b) torques disturbances effect 
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6.1. Flight with wind and torques disturbances and 

uncertainties of the inertia and masse 

 

To demonstrate the robustness, the wind disturbances are 

selected like in (88), the torques disturbances are selected like 

in (107) and the inertias uncertainties are presented in Fig.7. 

The obtained results are depicted in Figs.8-11.  

Fig.8 shows the absolute position of the octorotor during its 

flight, when the wind force, torques disturbances and 

parametric variations are introduced, the assigned navigational 

task are successfully achieved and the reference trajectories 

are tracked with high accuracy. Fig.9 represents the position 

trajectories. From these figures, we can see a well good 

tracking of the desired trajectories, the controller is able to 

reject them showing the robustness of the proposed control 

approach and the stability of the closed loop dynamics is 

guaranteed, we can notice in Fig.10 an optimization of tilt 

angles (pitch and roll) and consequently the use of minimal 

energy. On the other hand, it can be seen from the control 

curvature presented by Fig.11 a smooth signal could easily be 

applied to a real life model. 

 

 

  
  

Figure 7. Evolution of the inertias and masse variation Figure 8. Absolute position of the octorotor with disturbances 

and parametric variations (case b) 

 

 

 
 

Figure 9. Trajectory of the output variables 

 

 
 

Figure 10. Trajectory of roll and pitch 
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Figure 11. Control inputs 

 

 

7. CONCLUSIONS 

 

In this paper, the robust adaptive controller that is based on 

type-1 and type-2 fuzzy systems has been investigated. In this 

controller, the adaptive fuzzy control law ensures the 

convergence of tracking errors and all signal plants in presence 

the external disturbances and parametric variations. This law 

incorporates adaptive parameters to compensate the external 

disturbances effect and the reconstruction errors. The 

application of the developed method is carried out for a coaxial 

octorotor. The obtained simulation results show that this 

robust adaptive control type-1 and type-2 fuzzy law maintains 

the tracking errors in an acceptable interval in the presence of 

extreme or significant parameter variations or external 

disturbances. Because of the simple nature of the proposed 

approach, it is easy to implement in real-time control systems. 

In addition the comparative study performed with other works 

developed in the literature, has shown the effectiveness of the 

proposed control approach. In the future work the 

experimental implementation of the proposed control scheme 

will be addressed. The future works should synthesize non 

linear observer to deal with unmeasured states. It should 

consider actuator faults and developing a fault tolerant 

controller based on control design proposed in this paper. As 

will as should envisage the experimental implementation of 

the proposed control scheme. 
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