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This paper presents a fault tolerant control (FTC) based on the type-2 fuzzy logic system
(IT2FLS) using an adaptive control law for a double star induction machine (DSIM) under
broken rotor bars (BRB) fault of a squirrel-cage in order to improve its reliability and
availability. The adaptive fuzzy control is designed to compensate for the fault effect. The
proposed FTC is able to maintain acceptable performance in the event of BRB. The stability
of the closed-loop is verified by exploitation of Lyapunov theory. To proof the performance
and effectiveness of the proposed FTC, a comparative study within sliding mode control
(SMC) is carried out. Obtained results show that the proposed FTC has a better robustness
against the BRB fault.

1. INTRODUCTION

The double star induction machine (DSIM) belongs to the
category of multiphase induction machines (MIM). It has been
selected as the best choice because of its many advantages
over its three-phase counterpart. The DSIM has been proposed
for different fields of industry that need high power such as
electric hybrid vehicles, locomotive traction, ship propulsion
and many other applications where the safety condition is
required such as aerospace and offshore wind energy systems.
DISM not only guarantees a decrease of rotor harmonics
currents and torque pulsations but it also has many other
advantages such as: reliability, power segmentation and higher
efficiency. DSIM has a greater fault tolerance; it can continue
to operate and maintain rotating flux even with open-phase
faults thanks to the greater number of degrees of freedom that
it owns compared to the three-phase machines [1].

The motors installed in the industry are 85% of squirrel cage
motors [2]. Induction motors are subject to various faults;
about 40% to 50% are bearing faults, 5% to 10% are severe
rotor faults, and 30% to 40% are stator-related faults [3].
Broken bars fault has proved dangerous and may be the cause
of other faults in the stator and the rotor itself because a broken
rotor bar considerably increases the currents flowing in the
neighboring bars, which causes the increase of the mechanical
stresses (constraints) and consequently causes the rupture of
the corresponding bars [4]. BRB fault can be caused by
failures in the rotor fabrication process, overloads (mechanical
stress), mechanical cracks or thermal stress [5].

Compared to stator faults, detection of the broken rotor bar
especially at an early stage is quite difficult, the appearance of
this type of fault does not cause the machine to stop
immediately but reduces its performance, for this reason,
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many diagnoses in the literature are used to detect the broken
bar fault in squirrel cage rotors of induction motors [6], these
detection processes exploit the information provided by the
main signals of the machine such as: motor currents, torque,
instantaneous power (active and reactive), mechanical
vibrations and flux. Despite its drawbacks to the voltage
source in case of voltage harmonic distortion, the MCSA
method is widely used to detect a broken rotor bar [7]. The
MCSA is largely used as a test in the process of monitoring
induction machines, especially in the detection of electrical
and mechanical faults due to its simplicity and efficiency. The
MCSA does not need additional sensors; it is based solely on
the analysis of the reliable information provided by the stator
currents during start-up or in steady state [8].

Inspired by the research of Belhamdi, this paper proposes a
fuzzy type-2 adaptive control for DSIM with defective rotor in
order to compensate the fault effect after estimating
uncertainties. The modeling of the BRB fault in the (d-q)
reference frame with consideration of homopolar components
is carried out for the first time on this kind of multiphase
machine. The method of modeling faults in this paper allows
the development of other more innovative control techniques
in the future. The proposed FTC is tested in healthy and
defective conditions with other control methods applied
recently on a six-phase induction machine [9,10]. Performance
of these controllers is investigated and compared in terms of
tracking reference of rotor speed, electromagnetic torque and
rotor flux. This paper has made several contributions in
relation to the recent research concerning the FTC:

A novel adaptive fuzzy controller to master correctly the
torque, flux and speed tracking of a DSIM with BRB fault has
been proposed, in this contribution, the application of the
adaptive fuzzy control as FTC for DSIM in a faulty case is



performed for the first time.

Unlike, the adaptive control law has been implemented in
all steps, which increases the tolerance of the controller, in
addition, the proposed FTC treated a defective machine while
was treating a healthy doubly-fed induction motor (DFIM)
[11-12].

Compared to the work of Mekki, the proposed FTC does not
need an observer or internal model to compensate the fault
effect.

In Masumpoor [13], an adaptive sliding-mode type-2 neuro-
fuzzy control of an induction motor is proposed, in order to
compensate parametric uncertainties and disturbances, the
parameters of this fusion of control are adjusted thanks to an
online learning algorithm based on sliding-mode training
algorithm and type-2 fuzzy systems adaptive controller, the
simulation results provide a robust tracking of reference but
remain insufficient because the system global stability that is
needed to validate this control strategy is not discussed. In this
paper the stability analysis of the closed-loop system is strictly
proven.

Compared with Gonzalez-Prietol, and Mahmoud [14-15],
where authors present an FTC of six-phase induction motor
under open-circuit fault and an FTC of five-phase induction
machine under open gate transistor faults, respectively, the
degree of severity of the fault dealt with in this paper is more
important since open phase fault tolerance is a specific feature
of multiphase machines thanks to the high number of phases.

The remainder of this paper is organized as follows; the next
section describes the DSIM faulty model. The design of an
interval type-2 fuzzy logic adaptive controller for DSIM is
carried out in section 3. Simulation results and their
discussions are given in section 4. The last section is reserved
for conclusion.

2. DSIM FAULTY MODEL

In order to have a light model, we consider the rotor as a
balanced three-phase system. In Figure 1, the squirrel cage
rotor is replaced by an equivalent three phase windings (single
star winding) with equivalent resistance R, and leakage L.
When the rotor of the DSIM is broken, the rotor resistance is
different from the nominal value [16], therefore, to simulate a
BRB in the double star induction machine; we increase the
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resistance of a rotor phase by adding a defective resistance “e

rotor
end ring

=

Figure 1. Simulation of BRB in DSIM

The first-order differential equations of the rotor voltages in
the DSIM can be presented in the natural “abc” reference
frame as:

[G2Pe] = [R,1[17>]

d abc
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With:

R, 0 0
[R1=[0 R, O

0 0 R,
[d);zbc] = [(pra Prp ¢rc]T;
[I;lbc] =lira bp s
[V,«abc] = [vra Urb Urc]T.

where: [R,] is the matrix of resistances, [@3¢] is the flux
vector, [I8°€] is the currents vector and [V,%P¢] is the voltages
vector.

When BRB fault occurs, the resistances matrix becomes as
follow:

R, O 0
[RERE] =10 R, O
0 0 R +e

In this case, the voltage equation in (1) becomes:

[Vabc] — [RBRB][IabC] + [d)abc] (2)

By applying the park transformation that conserves energy
on (2), we obtain the voltages equations in the (d-q) reference
frame:

[4°] = [P (O)IRZ™1 [R-(0)] ™ [17%°] +
[B-(0)] SAIP- ()] 3]0 + =[] (3)

Where: [1,%°] = [Vra
[189°] = [irg firq iro]” is the currents vector and [

[¢ra  Prq Pro]T is the rotor flux vector.
[P-(6)] is the rotor winding transformation matrix, is given

by:

Vro]"is the voltages vector,
dqo] —

VUrq

[P-(8)] =
COS(G - 07‘) cos (95 - gr - Z?n) cos (95 - 9, + 2?7[)
f - Sm(e -6,) —sin(6,—6,-Z) —sin(6,-6,+Z)| (4
1 1
I 7 |
_dg
With: ‘;t .
(IJS = 595

Finally, The DSIM model in presence of BRB faults are
given by the following equations:

E-Q - [p Lin+Ly (pr(lsql + lsqz) pT, — Kf-Q] (5)
d -Ry

E‘pr =m<pr+L i (lsd1+lsd2)+r1 (6)
d . . .

Elsdl = Lisl{vsdl — Rg1isqq + ws(lelsql + Trﬁarwgl)} + 1 (7)
d . 1 . .

i lsg1 = Ls_l{vsql - Rsllsql - ws(l’sllsdl + QDT)} +1; (8)
d . 1 .

i lso1 = E (V501 — Rs1is01) ©
da . . .

Elsdz = i{vsdz — Rgplgqr + ws(Lszlqu + Trﬁarwgl)} +71, (10)
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da

. 1 . .
Elsqz = E{vsqz - Rszlsqz — ws(Lgpisqr + (pr)} +Iz  (11)

i
dt 502

(12)

1 .
=1 (Vso2 — Rszis02)
52

where I; i = 1,5 represent the fault terms due to broken bar
fault, they are given by:

Ly+Lm B(Ly+Lm) B

RyL . .
T ) (isq1 + lsdz);

Ly+Lm

L WsWqg|Pr
L= (_r _ T)_a
n Ls2
_ _ L .
[13 - - Lsz wswglqora
1 (Ly
,=— (— -T ) WswW ;
4 T S 1Pr
Lsz \ 1 9 ’
Ly
Iy = ———w;w
5 S 1Pr -
Ls2y g
With:
_ asa3-2azazastasad+a;ai-aiasae,
n —a%+aqag >
_ a6a%—2a2a3a5+a4a§+a1a§—a1a4a6.
B azaz—aias ’
_ az(agaz—2azas)+asald+a;(ad-asae).
aza¢—Aaz0s ’
aias azas
azt(az—— ) (as—— =)
a = @ _a3a5)_a1a4 5
6" ay az
_asasz
B as as(as ap )
- asasz\»
a i had 3
2 ay(as 5 )
Where:

ay =S+ 11— Scos(20, - 20,) - e sin(26, - 26,);
a,= gcos(ZBT — 26, + %);

az= —ge cos( 8, — 0, +§);

a, = g +rr+ %cos(ZBr —26,) + ?esin(ZQr — 26y);
as= —ge cos(8; — 6, +%);

e
ag =-+rr.
3

3. DESIGN OF AN INTERVAL TYPE-2 FUZZY LOGIC
ADAPTIVE CONTROLLER FOR DSIM

The objective is to design an adaptive fuzzy control scheme
for an uncertain DSIM model in the presence of BRB faults to
properly manage flux and speed tracking. The role of the type-
2 fuzzy systems is to approximate the local nonlinearities of
each subsystem, while the fuzzy parameters are adjusted in
real time by adaptive laws, respecting the stability and
convergence of the system according to the Lyapunov theory
until the desired tracking performance is reached. To easily
design the proposed controller, we operate with the DSIM
faulty model developed in (5)-(12), in the presence of BRB
faults, we have:

d , _p? Lm . .

E - TLm"'Lr (pr(lsql + lsqz) + fl
d LimR . .

E@r = ﬁ(lsdl + isq2) + f2

da . 1
—iggy = —Vsay +
dt sdl Lg1 sdl f3

d . 1

—1 = —7

at -sq1 Ls1 sql +f4
d . 1

—lgp1 = —Vso1 +
dt sol Ls1 sol fS
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d . 1
ac bsaz = 7 Vsaz + fe
d . 1
Zelsaz = Evsqz + f7
d . 1
—lg0p = — Vgpp T 13
dt S02 Lz so2 f8 ( )
where:

__7p Kr .

fl - __TL - _07
{2 J

— __r .
f2 - LT+Lm(pr + 1—'15

_ —Rsy . . WsTrPrwgl .
f3 - Lg1 Lsda1 + wslsql + Ls1 + [‘2:

—Rs1 . . WsPr

=2  — @legq — + I3;
f4 Lg1 sql stsdl Ls1 3

_ “Re1. |
fS - Lg1 lso1s

_ —Rsz . . WsTrPrwgl .
f6 L Lsdaz + wslsqz + L + E}s

52 52

—Rgo . . WP
f7 = Tzzlsqz — Wglggr — Lsszr + [‘5;
~Rsz ;

fs = TZZ lso2- o

The nonlinear functions /;(X;) i = 1,8 can be estimated by
the IT2FLS as follows:
hi(x) = 67 (%),i=1,...8 (14)
where: x; is the input vector, 8; is the adjusted vector
parameter and ;(%;) is the average of the basic functions
calculated using IT2FLS (each basic function is computed as
the average of the corresponding left and right basic functions).

Let us define:

The actual functions 4;(x;) are given by:
hi(xi) — gi*Ti(XL)i(xi) i= E (15)

The use of the optimal parameters 6; is only for analytical
purposes. For this reason, integrating the controller does not
require its value [11]. The parametric errors are given by:
0;=6;-6;,i=1,....8 (16)

@; (%;) are the approximation errors, such as: |@;(%;)| < @;

Where @; are the unknown positive parameters. In order to
achieve precise flux and speed tracking, some assumptions
have been put:

Assumptionl. The nonlinear functions f;(%;) i = 1,8 are
continuous nonlinear functions assumed to be unknown.

Assumption2. The reference signals 27, @7, i5g1, isq15 Lsa2s
Isq2» Uso1» sz and their first derivatives are bounded and
continuous.

Assumption3. Rotor and stator currents and rotor speed are
available for measurement. The tracking errors and their

filtered errors are given by:
For rotor speed

AW =0) -0, Sy = A1) + Ay [, A(1)dr with 2(0) =
0 (17)

For rotor flux

Gr() =0, — ;. Sy =5 () + A, [, §-(Ddr , with
@(0) =0 (18)
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For stator currents

lsa1> Sisar = Lsa @® + /1Lsd1f Isq1(7)d1,
(19)

lsdl(t) - Lsdl (t)
with 734, (0) = 0

= isdz (t) + ﬂ-isdz fot isdz (T)de
(20)

lsdz (t) - Lsdz (t)
with 7,4,(0) = 0

st s Sisdz

sql: Slsql - lsql (t) + Azsql f lsql (T)dT
1)

lsql(t) - lsql(t)
with T54,(0) = 0

qu: Slqu - lsqz (t) + Azsqz f lqu (T)dT
(22)

lsqz (t) - lsqz (t)
with T54,(0) = 0

For homopolar components

- ~ t.
I5015 Siso1 = Iso1(t) + Aisor fo I501(7)d7,
(23)

501 ®) = iso1 ) -
with 7,,,(0) =0

cx ~ t.
— 502> Sisoz = Ls02(t) + Aiso2 fO I502(T)dT,
(24)

T02(t) = i502(t)
Wlth ZSOZ (0) = 0

where: 4, A(pra Aisats Aisaz Aisqla Aisqz s Aisor and Ayg; are
strictly positive design parameters, and we admit that:

lsq1 + lsg2z = lsqr lsd1 + a2 = Isq
. % ok _ i;q % —_—i S — i;
lsql - lsqz - 7' lsa1r = lsaz =
i;ol = 0'

(25)

.
lso2 =0

The following adaptive fuzzy control laws are made in the
case where the dynamics of DSIM is uncertain:
< lsq))

(—6392(82) = kauSp, — koo tanh (322)) - (27)

isq = ](;ZL:LT) <_H1T1/)1 (%) — k11Sq — ki tanh
m

. Ly+Lm

lsa = LmRy

Vsar = Lgq (_93T¢3 (%3) — k31Sisa1 — ks tanh

Vsq1 = Lsy (‘911/)4(324) — k41Sisq1 — kap tanh z
iso1
2)

Vsaz = Lsz (—96T¢6(f6) — k¢1Sisaz — ke tanh (S )) (€29)

&j

Vso1 = =03 5 (Xs) — ks1Sis01 — ks tanh (

- Sis
Vsqz = Ly (‘9;1/’7(957) — k71Sisq1 — k72 tanh( qz)) (32)

€isq2

Vsoz = =05 P (Xg) — kg1Sisoz — K2 tanh( mz) (33)
lSO

Where: the design parameters k;; remain constants for i =

1'8- SL'Sq> Eisd > €isd1» sisqla Eiso1> €isd2» gisqz and Eisp2 aArc

absolutely positive design constants, usually are small. f (k)

is the abbreviation hyperbolic tangent function. The interval

type-2 fuzzy system has as inputs, the following vectors: x; =
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_ _ . . T _ . . T
[-Q*, ]T = [(P;, (pr]T X3 = [lsdl!lsql] X4 = [lsqlrlsdl] s

X5 = %6 = [isaz, lsqz] %7 = [isq2r lsdz] Xg =
[i2,2, is02]T. According to [11]: to estimate the unknown fuzzy
vectors (8;) and the unknown parameters (k;,) for i = 1,8, we
adopt the following adaptive laws:

liso1, lso1]

6, = —0p,¥6,61 + Vo,50%1(%;) (34
6, = —09,Y0,02 + V0,502 (%) (35)
6; = —09,Y0,93 t Vo, Sisa1¥3(%3) (36)
6, = —00,Y0,04 + V6,Sisq1¥a (£s) (37)
65 = —09.Y0505 + Vo, Siso1Ws (Xs) (33)
6 = —00,Y0,06 t Vo, Sisaz¥e(X6) (39
6; = —09,v0,07 + Vo, Sisq2¥7(%7) (40)
b = — 003V 6,08 + Yoy Siso2 s (Xs) (41)
klz = =0k, Vi, K12 + Vi, So tanh (elsq) (42)
k22 = =0k Yigka + 11, Sy tanh (22) (43)
kyy = —0k, Vi K32 + Viey Sisar tanh (Ei‘z) (44)
ks = =0y, Vi kaz + Vi, Sisqr tanh (:Zi) (45)
ks, = —0Ok YisKs2 + Vi Sisor tanh (‘Z:Zi) (46)
kez = =0k Vigkes + ViegSisaz tanh (‘ZEZE) 47)
lrs = =0, Vi ez + Vi Sisaz tan (222 (4)
kg, = —OkgVigKsz + VigSisoz tanh (zisoz) (49)

Where:  0g,, Yo, Vip Ok, >0 (for i=18 ); these

parameters are design constants.

Theorem 1

The following properties are valid for DSIM modeled by
(5)-(12) and controlled by the adaptive laws presented in (34)-
(49):

The signals delimitation is guaranteed in closed-loop.

The optimal choice of the setting parameters ensures the
exponential convergence of the errors variables 2(t), @, (t),
isdl (t), isql(t)s zsdz (t)’ zsqz (t), isol (t) and zsoz (t) to a ball
with an insignificant radius.

The proof of Theorem 1 is based on Lyapunov's theory of
stability. It is presented by a feedback structure with two
consecutive steps.

Step 1: The purpose of this step is to lead the speed to its
desired reference by an adequate speed controller. Using the
formula of the filtered rotor speed error defined in (17):



S =0 + 4, [, A(@)dr (50)

Using 13, the time derivative of S, is:

Sy = fz(t) + 00
. _p? . ~
So = 7 Lm+Ly qor(lsql + lsqz) +f1 i) +/1!2~Q
p? L -
512 - hl(xl) +7L +L, (prlsq (51)

where: h,(%;) = f1
of (isq1 + isqz) that regulates the rotor speed and ensures the

load disturbances rejection capability. The Lyapunov function
associated with the rotor speed error is presented by:

— 0" + 2,1 and I5q 1s the reference value

1
vV, =53 (52)
The time derivative of (52) is:

Vi = Sphy (%) +2

]L+L

Prisq (53)

The following adaptive fuzzy system is developed to
approximate the uncertain continuous function /4 (x;):

21(921) = 91T1/)1(321) (54)

hy (%) = ei‘fl/h(jl) + (%)
hy (%) = =67, (%)) + 01 (1) + @41(%) (55)

where: 0, =0, — 0; is the parameter error vector. By
replacing (55) in (53), we obtain:

V = —Sn07; (%)) + ST, (%) + Spdq (%) +

p L
7 T:_nLr(p‘r sq (56)

where: @, is an unknown constant such as |@;(%;)| < @;.
By choosing the expression of ig, presented in (26), we can
make the following inequality:

~ _ . s
Vi < =806 11 (%) + ki,|Sq| — k128, tank (ﬁ) — k1153
(57)
where: ki, = @.
Lemma 1 the set {g; > 0, x € R} check the following
inequality [11]:
0 < |x| — x tanh (g) <& =pg

(58)
p =e~(+P) ~ 02785

By exploiting (58), (57) becomes:

. ~ _ . = ~ S
7 < _51291T¢1 (x) + k125isq — kS, tanh (i) - k1155
] (59)
where k;, = ki, — ki, and &5 = 0.2785 g44.
The Lyapunov function linked to the adaptive laws that
estimate the unknown parameters 8, and k7, is defined by:

= L grg + L k2
Vo= Vit g 000, + 5 —ki; (60)

The dynamics of Lyapunov function verify the following
inequality:
. ~ _ . = ~ S
V, < =5 91T¢1 () + klzgisq — k125, tanh (i) -
1 ~ . 1 ~ .
k1183 +%91T91 +Y—k1k12k12 (61)
By substituting the values of 8; and k,, chosen in (34)-(41)

and (42)-(49), respectively, V, will be bounded by the
following expression:

Vz =< k;zéisq - kllsf% - 091§1T91 - Uk1E12k12 (62)
Property:
_070 < 1118117 + 110112
{~@ o <— @] +;lel 63)
O=0—-0"cR™

where: m is a positive integer number. By using (63), (62)
takes the following form:

. gg Ok
V, < —ky S5 ——+ ”91” — k12 +& (64)
With: & = kizisq + 22 16112 + 22 ki3
The stabilization of the filtered errors
S(p' Sisdat Sisqlt Siso1r Sisdzs Siqu , and Sg, will be
achieved in the next step.
Step 2: The aim of this step is to design the following
control laws: igg, Vsq1, Vsq1, Vso1r Vsazs Vsqz and Vgpz.
The Lyapunov function adapted to this step is given by:

V VZ + 52 + Slsdl + Slsql + SlSOl + stdz +
Slqu + SLSOZ (65)
The dynamics of the Lyapunov function verify the
following inequality:
V3 S _klls.{% - % ||él||2 O-kl k12 + 81 + S S +
Sisdlsisdl + SisqlSisql + Sisolslsol + SlSdZSlSdZ
SiquSiqu + SiSOZSiSOZ (66)
The derivatives of the filtered errors are obtained using (5)-
(12) and (17)-(24):

LRy

Sp = Lisq + fa+ ApPr — (67)
Sisa1 = ivsm + fs + Aisarlsar — lsan (68)
Sisat = - Vsar + fi + Aisqrlsqr — g (69)
Siso1 = ivsm + f5 + Aiso1lso1 — lso1 (70)
Sisaz = ivsdz + fo + Aisazlsaz — lsaz (71)
Siqu = ivsqz + f7 + Aisqzlsqz — isq2 (72)



. 1 . .
Siso2 = EUSOZ + fo + Aisozlsoz = i502 (73)

By replacing (67-73) in (66), we obtain:

_klls!% - Ui ||§1||2 - ﬁlzlzz + él + S (hz(.iz) +
LmeZ ;q) + Slsdl (h (XS) + 1]sdl) + Slsql (h4(x4) +
1'7sq1) + SLSOl (h (xS) + vsol) + Sisdz ( 6(x6) +

Usdz) + Sisq2 (h7(x7) +— 17sqz) + Sisoz (hs(js) +

1
Evsoz) (74)
With:

hz(fz) = f2 + A(p(ﬁr - (P;

h3(9?3) = f3 + Aisarlsar — Tsan

h4(x4) =fat Aisqllsql - l;ql

hs(’?s) = fs + diso1lso1 — Tso1

he@fe) = fo + Aisazlsaz — Tsaz

h7(x7) =f;+ Aisqzlsqz - l;qz

hs(fs) = fg + Aiso2lso2 — Lsoz (75)

h;(%;), i = 2,8 are continuous uncertainties functions, their
approximation is performed by the following adaptive fuzzy
system:

hi(x) = 07 (%) (76)
hi(%;) = 6; T (%) + @y(%;)
hi(%) = =07, (%) + 0Ty, (%) + @;(%)for i = 1,8

(77)

where: 6; = 0; — 0; expresses the error vector, ¥; is pre-
defined, @;(%;) is the fuzzy approximation error with
@;(%;) < @, V X; € Dy, @; is an unknown constant.

{67, ki}, i = 2,8 are unknown parameters,  their
estimation requires an adaptive law defined by the following
Lyapunov function:

V,=Vs + Lezéféz +—IE§2 +L§3T§3 + %312%2 +

— éz i+ — 1232 95T 65 + k52 ég 66 +

e, k62 to— 9 6, + mkn EH T0g + k82 (78)
The derivation of (78) gives (see Appendix B):

Vo< -V, +u (79)
With:

#=51+é2+é3+é4—+55+é6+£7+58
Nk = min{aklykl' Ok, Vkyr Ok3Vizr OkyYieyr Oks Vs Ok
Vie Ok, Viyr ngykg}
And
n =
min{2kyq, 2ky1, 2ksy, 2kyy, 2ksy, 2k, 271, 2kgy, g,
Y6,,96,Y6,,005Y65:00,Y6, T65Y05 06,V 641 T6,Y 06, 098}’98'771«}
If we multiply (79) by the exponential term e, we obtain

[11]:
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%(V4e"t) < pe™ (30)
The integration of (80) from O to t gives us:
[ — )t
o<V, <ty (v n) e (81)

where: 4 s a randomly selected parameter and 7 is chosen
according to the design parameters. According to [11]: the
bounded interval of V, presented by (81) reflects the
exponential convergence to an adaptable residual set for
tracking errors, filtered tracking errors and parameter
estimation errors, adding to that the delimitation of all closed-
loop signals. The global block diagram of the proposed FTC
is shown in Figure 2.
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Figure 2. lock diagram of the proposed FTC

4. SIMULATION RESULTS AND COMPARISONS
4.1 Fault diagnostic in open loop

The machine parameters used to simulate the DSIM faulty
model presented in section 2 are given in Appendix A. The
DSIM studied in this paper is powered by two three-phase
voltage source inverters (VSIs) using pulse width modulation
(PWM) control strategies. In steady-state conditions, the
DSIM operates with a fundamental frequency equal to 50 Hz
at 100% load. Figure 3 below shows the evolution in time of
the speed, the electromagnetic torque, the stator current and
the flux for DSIM operating in open loop with a healthy and
defective squirrel cage rotor.

The vectors %, = [0*, QT , % = [o;, @17 , %3 =
T T i,
[isdli isql] > X4 = [isqp isdl] » X5 = [i;olt isol]T > Xg =
[isdz' isqz] , Xy = [isq2: isdz]T and Xg = [i;oz' isoz]T
present the inputs of the type-2 fuzzy system 6] ; (&;) for i =
18.

For the @, 2%, o, ¢r) and
(isdl' isql’ lsaz, isqz’ i;oli lso1s i;oz' isoz) we define five
type-2 Gaussian membership functions uniformly distributed
over intervals [-30, 30] and [-3, 3] respectively.
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Figure 3. Evolution of the parameter curve, at startup, in load
and when breaking bars
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The startup is done empty under a nominal voltage with a
balanced sinusoidal power supply. The time response is
approximately equal to 1s. An external load torque of nominal
value equal to 15 N.m is applied at t=2sec, the speed then
drops to its nominal value of 286 rad/s. The electromagnetic
torque compensates the load torque and the friction losses. The
current increases and reaches its nominal value at time t=1s. A
broken bars fault is caused at t=3sec by increasing the
resistance of a rotor phase (e = 6 Q2) .The fault appears
instantaneously and the rotor circuit becomes asymmetrical
because the rotor creates in addition to the direct field (+sw,),
an inverse rotor field (—swyg), the interaction of these fields
with that resulting from the stator winding produces an
electromagnetic torque of pulsation [V,#P¢] = [RERB][18b¢] +

d .
-~ [@3P€], as a result, the value of the electromagnetic torque

will be equal to the sum of a constant component and a
sinusoidal inverse component, resulting in the reduction of the
average value of the electromagnetic torque and the
appearance of periodic oscillations in the speed signal and
torque, as shown in Figure 3.a and Figure 3.b respectively.
Figure 3.c presents the stator current in which a weak
modulation of the magnitude can be observed, the flux signal
is also affected by oscillations related to the BRB fault (see
Figure 3.d). Figure 3.e and Figure 3.f show that the stator

phase currents are always shifted by 2?” but ripples in their

amplitudes appear with the occurrence of BRB. All these
diagnoses prove the appearance of the BRB fault [17]. In the
unbalanced machine winding, harmonics causes sidebands at
specific frequencies around the supply frequency. In this study,
the fast Fourier transform (FFT) is used in order to distinguish
these frequency components from the stator current spectrum.
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Figure 4. Stator current spectral density

Figure 4 presents the spectral analysis of the stator current
in steady state using the FFT method when the DSIM operates
under nominal load for a slip s = 0.4%. When the DSIM
operates with BRB fault sidebands at (1 + 2s)f; appear
around the supply frequency. This result is a reliable signature
of the BRB fault. Moreover, the amplitude of this harmonics
is an indication of the degree of severity of the fault.

4.2 Healthy and defective states of DSIM in closed loop

The efficiency and robustness of the proposed control
compared to SMC proposed in Listwan and Fnaiech [9-10]
with different modes of operation, especially in post-fault
operation are shown through simulation results using
MATLAB/SIMULINK. The reference speed is set at 200 rd/s,
the BRB fault is introduced at t=2 sec. The simulations



presented in Figure 5 show the DSIM responses in healthy and
defective mode with SMC and proposed FTC. The results
showed the superior performance of the proposed FTC based
on IT2FLS.
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Figure 5. Pre-fault (t <2s) and post-fault (t >2s) performance
of SMC proposed in [9-10] and proposed FTC for DSIM
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The DSIM is starting with a balanced squirrel cage rotor
from zero to the nominal speed, at t=1s, DSIM is loaded by
T, = T,y = 15 N.m, a simulation of the BRB fault is caused
at t=2s. During the un-faulty mode, the speed follows its
reference value with a negligible overshoot and without
oscillations, but it is clearly shows that SMC has a faster
dynamic response than the proposed FTC by imposing a short
transient regime, the load torque is very well compensated by
the electromagnetic torque (before t=2s). It is clear that after
the fault occurrence, an abnormal behavior of the DSIM is
observed with SMC accompanied by closed-loop performance
degradation; velocity oscillations are visible through the zoom
presented in Figure 5.a and Figure 5.b. The stator phase current
is not sinusoidal, the distortion of the signal is caused by the
fault effect, the oscillations on this physical quantity are
visible in Figure 5.c and Figure 5.d, their amplitude can reach
up to 14 A greater than the nominal value of the current. The
flux trajectory is presented in Figure 5.e; SMC provides
ripples after the appearance of the BRB fault. High ripples in
the electromagnetic torque can be view in Figure 5.f, where
the maximum positive ripple reaches +55N.m and the
maximum negative ripple reaches -11 N.m. Regarding the
proposed FTC, oscillations in rotor speed are considerably
reduced as indicated by the Figure 5.a and Figure 5.b, the
proposed FTC guarantees a better speed response with precise
reference tracking and also provides better stability with the
smallest average static error. The tracking performance of the
stator current has a small change, the current signal is not
sinusoidal but does not exceed its nominal value, this
deformation represented in Figure 5.d expresses the
compensation of the BRB fault effect by the stators phases.
Figure 5.e proves that the proposed FTC is able to correctly
lead the flux with a fast dynamic to its desired reference (1Wb)
even under rotor fault. No ripple in the electromagnetic torque
signal during faulty operation as shown in Figure 5.f. Finally,
it can be seen from the simulations results that the BRB fault
does not affect the performance of the proposed FTC even in
the presence of load torque while SMC proposed in Listwan
and Fnaiech is unable to properly handle the machine with an
unbalanced rotor [9,10].

5. CONCLUSION

DSIM’s high-impact in the industry requires fault-tolerant
performance. This can be achieved by a fuzzy adaptive control
using the IT2FLS; the proposed FTC maintains maximum
performance of the double star induction machine even under
broken bars fault. The effectiveness of the proposed FTC is
validated using MATLAB/SIMULINK. The obtained results
show that the proposed fault-tolerant approach is able to
handle the post-fault operation and provides satisfactory
performance in terms of speed and torque responses even
under such abnormal conditions. In addition, the comparative
study performed with other work recently developed on a
multiphase machine has shown improved fault tolerant
performance. This adaptive fault-tolerant control could be a
realistic solution and a powerful alternative to the existing
FTC methods.
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APPENDIX A

Machine parameters

Rsi =R =3.72 Q Stator1, Stator2 resistance respectively.
L1 =L =0.022 H Statorl, Stator2 inductance respectively.
R:=2.12 Q Rotor resistance.

L,=0.006 H Rotor inductance.

Ln=0.3672 H Mutual inductance.

J=0. 0625 Kgm? Moment of inertia.

K¢=0.001 Nm. (rd/s)"! Viscous friction coefficient.

p =1 Number of pole pairs.

APPENDIX B

If we select the adaptive fuzzy controller components
proposed in (26)-(33) and the continuous uncertainties
functions 4;(%;) developed in (77), V5 will be bounded by the
following term:

0’91

~ 2 o ~ - ~ —
16" — 2 k2, + &1 — S, 079 (x,) +
s ~ ;
S(p| — k25, tanh (ﬁ) - k21S£ — Sisa1033(x%3) +
* Sis
k321Sisa1| — k32Sisar tanh( dl) — k31Shar —

€isd1
~ ) . S
Sisq194Tll)4(x4) + ki, Si5q1| = k42Sisq1 tanh( qul) a

€isq1
k415izsq1 — Sis0103 W5 (%s) + k23 |Siso1] —
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KsaSisor tanh (352) — kgy SZy = Sicaz081e(%e) +
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* Si
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(B.1)

where: k3, = @y, k3, = @3, ki, = @4, ks, = @5, kg, = @,
k;z = (1=)7 and kéz = (1=)8.
By exploiting (63), the inequality (B.1) becomes:

. ag ~ 12 Ok, 7 _ ~ _
Vs < —ky; S5 — —H||0u]]” = 1 kf, + & — S,672(%) +
S
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* = 7, S
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2l = * = I Sis,
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k415i25q1 - Sisoléglps(fs) + k;zéisol -
I Siso i} =
RsaSisor tanh (222) — kg SEy — SisazOLs (F6) +

€iso1
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Yvhere: ka2 = kzp - K3z, kaz = ks, - K3z kaz = kay __klz,
ksy = ks, __kgz s kez = kez — k_éz s k7o = ka5 — k7, ,_ksz =
kgy — kgy » Eisa = 0.2785¢54 , €isq1 = 0.2785¢&541 , Eisq1 =

0.27858,:5(11 5 éisol = 0.278581:501 N g-iSdZ = 0'2785£i5d2 N
éisqz = 0'278581:3(]2 and g-l:SOZ = 0.27858i502.
The derivation of V, gives:
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By using (63), we obtain:
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