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ABSTRACT
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We introduce the concept of the technique for order preference by similarity to ideal solution
(TOPSIS) to develop a methodology to find compromise solutions for the multi-level linear
multiple objective decision making (MLLMODM) problems of block angular structure with
stochastic parameters in the right hand side of the independent constraints (SMLLMODM)
of mixed (Maximize/Minimize)-type. We propose a modified formulas for the distance
function from the positive ideal solution (PIS) and the distance function from the negative
ideal solution (NIS). We present a new interactive hybrid algorithm based on the proposed
TOPSIS approach, the chance constrained programming method and the decomposition
method to generate a compromise solutions for these types of mathematical optimization
problems. Also, we give an illustrative numerical example to clarify the main results
developed in the paper. The solutions of the numerical example by the proposed interactive
hybrid algorithm is compared with the solutions of the ideal point (IP) method. In general,
the results show that, the proposed hybrid TOPSIS method is a good tool to generate
compromise solutions for the SMLLMODM problems of mixed type.

1. INTRODUCTION

Compromise programming (CP) assumes that any decision
maker (DM) seeks a solution as close as possible to the ideal
point, [1-2]. TOPSIS is based on the principle that the solution
should have the shortest distance from the (PIS) and the
farthest distance from the (NIS), [3-8].

The non-centralized planning searches for a simultaneous
compromise among the various objectives of the different
levels. Multi-level programming, a tool for modeling non-
centralized decisions, consists of the objective(s) of the
manager at its first level and that is of the followers at the other
levels. The decision-maker at each level seeks to optimize his
individual objective functions, which depends in part on the
variables controlled by the decision makers at the other levels
and their final decisions are executed sequentially where the
upper-level decision-maker makes his decision firstly, [9-10].

Caballero R. et al. [11], establish some relationships
between different concepts of efficient solutions to problems
of stochastic multiple objective programming.

BenAbdelaziz F., [12], presents a review for some methods
and applications of the multiple objective stochastic
programming models.

Masmoudi M. and BenAbdelaziz, F. [13], introduce a
review for deterministic and stochastic multiple objective
programming methods which can be used to solve portfolio
selection problem.

A review on theory, applications and softwares of bi-level,
multi-level multiple criteria decision making and TOPSIS
approach is presented in [5].
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An interactive decomposition algorithm for bi-level large
scale linear multi-objective optimization problems with
uncertain data using TOPSIS approach is given in [6].

In the following sections, the formulation of multi-level
linear multiple objective decision making (MLLMODM)
problems of block angular structure with stochastic parameters
in the right hand side of the independent constraints
(SMLLMODM) of mixed (Maximize/Minimize )-type is
given in section (2). In section (3), we propose a modified
formulas for the distance function from the positive ideal
solution (PIS) and the distance function from the negative
ideal solution (NIS) to modify the TOPSIS method to solve
the SMLLMODM problems. We use the modified TOPSIS
method, the chance constrained programming method, [14],
and the decomposition method, [15], to introduce a new
interactive hybrid algorithm to solve the SMLLMODM
problems. In section (4), we provide a numerical example for
the extended hybrid TOPSIS method. We compare the
solutions of the proposed hybrid algorithm with the solution of
ideal point (IP) method, [1-2]. In section (5), we present
conclusions and future works.

2. FORMULATION OF THE PROBLEM

Consider the following Multi-Level Linear Multiple
Objective Decision Making (MLLMODM) problem of block
angular structure with Stochastic parameters in the right hand
side of the independent constraints (SMLLMODM) of mixed
(Maximize/Minimize)-type:
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[Lom,]
Max/Min
Q11 (Xyps oo Xy )s vov s Quiey, (X1 s X1, )
X
1
where X, solvesthe 2™ evel
[Lom,]
Max/Min
XIZ (QZI(Xlll ..-;th), ey Q2k2 (le, ,th))
where X,, solves the 37 evel
[Lom,]
Max/Min
v (@K s Xy ) os Qaieg (X X0,))
I3

where X;, solves the 4" level

Max/Mi
a))c({' in (in(le. ,th), - Qiki(le' ""th))

where X, solves the (i + 1 level

whereX;, solvesthe httlevel

[LDMh]
Max/Min
XI (th(Xll’""th)'""Qhkh(XI1""’XIh))
h
subject to D
qa n
XeM= {ZZ AijngXijhy < dng »
j=1i=1
ho = 1,2,3,....,mg,
n
P {Z bijn;Xijn; < th] =y
i=1
h] = mj_l + 1, mj_l + 2, ....,mj,
xi]' = O,l € N,] = 1,2,...,q,q > 1}
where
a,b and d are constants,
Qi¢, :objective functions for Maximization, ¢; € K; C K,
i=1,2,...,h,
Qiv; :oObjective functions for Minimization, , v; € K; c K,
i=1,2,...,h,
h : the number of levels,
k  : the number of objective functions,
Lpw, : " level decision maker, i=1,2,...,h,
k;  :the number of objective functions of the Ly,
i=1,2,...,h,
n, the number of variables of the Lpm;»i=1,2,...h,
Q :the number of subproblems,
M : the number of constraints,
N : the numer of variables,

n;  :the number of variables of the j"subproblem,
j=1,2,...,q,

m, : the number of the common constraints represented by
q n

Z AijngXijhy < dn,

j=1i=1

m;  : the number of independent constraints of the j™

subproblem represented by
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n
Zbijhjxijhj S'Uhj,j = 1,2, - 4,9 > 1,

i=1

R : the set of all real numbers,

X 1 an n-dimensional column vector of variables,

X;; : anny, - dimensional column vector of variables of the

Lpu;» i=1,2,...h,
Ki = {1,2, ...,,ki}, i:1,2,...,h,
K ={12,..k=UL K,
N ={12,....,n}
H ={12,...h«
R" = {X=(X1, X2, ...,xn}" : Xi€R, ie N}.

If the objective functions are linear, then the objective
function can be written as follows:

q q
— jo_ J
Qio; = Z Qio; —Z Cio Xj»
j=1 j=1

i = 1,2, ...,h, Gi == 1,2, ""ki' (2)

where

Ci’éi: an nj-dimensional row vector for the j™ subproblem in
the i objective function,i = 1,2,...,h, 6; = 1,2, ..., k;,

Xj: an n; -dimensional column vector of variables for the j*"
subproblem, j=1,2,.....,q,

In addition, P means probability, ap; are a specified
probability  levels,
1,2,..,q, g > 1.

For the sake of simplicity, consider that the random
parameters, vy, are distributed normally and independently of
each other with known means E {vh].} and variances Var{vhl.}.

Using the chance constrained programming method [14], the
deterministic version of problem (1) can be written as follows:

h] = mj_l + 1,m]’_1 + 2, ,m},] =

[Lom,]
M Mi
a;)c({ in (Q11(X11, ,th), ) Qlkl(X,l, ""th))
1
where X;,solvesthe 2"%level
[Low,]
M Mi
a;)c({ Ln(Qz1(X11,...,X,h),...,QZkZ(X,l,...,X,h))
2
where X, solves the 3"level
[Lpws]
Max/Min
X, (Q31(X,1, wor X1 )s e Qar, (X1, ...,X,h))

where X;, solves the 4t [epel

Max/Min
x{. (Qua (X1 s X1 ) oo Quy (X1 - X1,)

where X, solves the (i + 1) level

whereX;, solvesthe httlevel
[LDMh]

Max/Min
subject to

(Qna X1y s X1 )s s Quiy (X X1
©))



n
X € M/ {ZZ aijhoxijho Sdho )

j=1i=1
hO = 1,2,3, e, My,

n
Z bijn;Xijn; < E{vp} + k“iwlvawhi’

=1
h] = mj_l + l,mj_l + 2, e, m

j;
x;j=0,i€N,j=12,..,q,9g>1}.

where kaj, j=1,2,....,q, is the standard normal value such that
O(kq;)=1- a;, j=1,....q,
distribution function of the standard normal distribution.

and @ represents the cumulative

3. OPSIS FOR (SMLLMODM) OF BLOCK ANGULAR
STRUCTURE

Thus, we present the following hybrid algorithm of TOPSIS
method to generate compromise solutions for MLLMODM
problem of block angular structure with Stochastic parameters
in the right hand side of the independent constraints
SMLLMODM of mixed (Maximize/Minimize)-type:

The hybrid algorithm:

Phase (0):

Step 1.

Use the chance constrained programming method to
transform problem (1) to the form of problem (3).
Step 2

Let i=1 and go to phase (1)

Phase (1):

Step 3.
Use the decomposition method to construct the positive ideal

solution (PIS) payoff table for the following problem:

(Lpm,]
Max/Min
XIl
subject
XeM

(@11 (X X1,)s s Quiey (X 0 X1,)

to

“

DM1 DM1

o Qi

L L L
and obtain Q5 " = (Qi;"", 01",
individual positive ideal solutions, [6].

Step 4.
Use the decomposition method to construct the negative ideal

solution (NIS) payoff table of problem (4) and obtain
L L L
o = (0™, 0™, Qi ™) the individual
negative ideal solutions, [6].
Step 5
L L
Construct the distance functions dj's PMt and dy's PM1 by

using the above steps (3 & 4) and the following equations:

) the

DM
Q1
Max (orM m)

X e M/

200 (orQi (0) e (andv)  (5)

Lpm,

Qr
Min(orM ax)

nlore DM1 X) <0rQ1t My (X)) vt, (andv,) 6)
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Lpm Lpm «LDM +LDM

* 1 1 1

where Q1 (Q11 Q2 Q1k1 ) and
_Lpm _Lpm _ _ T

Qf = ( oo le ,....,Qlk1 )are the individual

positive (negative) ideal solutions for the Lpy, .
Thus, we obtain the following distance functions, [4, 6]:

P
qPIstPML _ % wl <Q—1th1 _—QIDMI(X)>
P - t1€K1 Yty Lpm, Lpm4
Q1t1 Qltl
Y,
14 14
Qw DM (x)- QWDMl
Yo,ex, W, Lo, Tom, (7
1vq “f1vq
and
Lpm o, M (x0)-0y, Foma\P
1ty 1t
dﬁ’s b= ZtleKl Wt < R _L;M1 ) +
1tq —Y1tq
Y.
14 14
oM —ayPMi(x)
ZvleKl Wvl LpMm, Lpm, (8)
lel _Ql‘lil
where w;,i=12,....,k; , are the relative importance
(weights) of objectlves, andp=1,2,....,0
Step 6.
Ask the Lpy, to select p=p*€ {1,2, ..., ©},
Step 7.
Ask the Lppm, to select w; =w;"i= 12,..,k;, where
k
Zl 11 WL - 1a
Step 8.
L L
Use steps (5, 6 and7) to compute djj's PM1 and dy’s PM
Step 9.
Transform problem (4) to the following problem [4,6]:
L
Minimize d5'S *™ (X)
L
Maximize dy's PM )
subject to 9)
X em/

where p=1,2,....,0

Step 10.

Construct the payoff table of problem (9):

At p = 1, use the decomposition method.

At p > 2, use the generalized reduced gradient
method, [15, 16], and obtain:

d;LDMl _ ((dg’SLDMl)_,(dS”SLDMl)_),

d;‘,LDMl = ((dZIjISLDMl)* ' (déwsLDm)*).
where
(dPISLDMl)*
L
= Mm}/([\élnz;xdpls Lpm4 (X) and the solution isXP'S DMl’
Lpm

NIS“DM1

(aprstor)

= Max}{gl}\;’;dNIS DM (X) and the solution isXNISLDMl‘
P P

(dglsLDM1>_ _ ngSmel (XPISLDMl).

Step 11.

Construct the following model for problem (9), [4,17,18]:



Max loms,
subject to

1 (X) = phoma,
o (X) = prom,
ptoma € [0,1],
XeM,

(10)

by using the following membership functions [18- 20]:

ifdfis™ () < (dis™Y

L L *
dpis M (x) = (ags)

1:

mO =1 (agsn) — (ags)
if (ngSLDMl)_ > d;:ISLDMl X) = (ngSLDMl) )
0, ifdps M) > (a5
(11)
1, if s () > (ays)
(dNISLDMl)* _ gNistPM 0
14 14
U (X) =« (ngSLDMl)* - (dglsLDMl)_ ’
. Lpmy\ ™~ Lpm Lpme\™
if (a's™) < ay's ™ oo < (aps ™)
0 if s o0 < (as)
(12)
Step 12.

Solve problem (10) to obtain the satisfactory levelS *LDle

L
the compromise solution X* DMl, [1,2], (if exist). Otherwise,

go to step (37).

Step 13.

Ask the Lpy, to select the maximum negative and

positive  tolerance  values T Land ‘[ , =

1,2,..,m;, on the decision vector X oMy _
DM DM DM

(x,11 LXia ""'x11n111)' [6].

Step 14.

Let i=2 and go to phase (2).

Phase (2):

Step 15.

Use the decomposition algorithm to construct the PIS payoff
table for the following problem:

[(Lom,]
Max/Min
XIZ (Q21(X11, ...,th), ey QZkZ (Xll' e ;th))
subject to (13)
X eM/
L L L
and obtain Q% = (Q§1DM2,Q;2DM , szlz)Mz) the

individual positive ideal solutions.

Step16.
Use the decomposition algorithm to construct the NIS payoff

table  of (13) and  obtain Q5 °M?

problem
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L L
(Q21 oz , Q22 DMZ, Qz;czD Mz) the individual negative ideal
solutions.
Step 17.

Lpm Lpm
ngS 2 ngS 2 by

Construct the distance functions and
using the above steps (15 &1 6) and the following equations:

Q* DMZ —
3 =
Max(orMm) Lpm DM
o Q0 () (orQ; (0 ez (andvy)  (14)
Q_LDM2
5 =
Min(orMax) LDM2 DM1
a0 (or@32 (0 ) Ve(and v) - (15)
DM oMy Lpm «DM
where Q7 _(Q21 Q52 e Qo 2) and
L L L
Q; "M = ( a2 0571, ----'Qz_kz M2 )are the individual

positive (negative) ideal solutions for the Lpy, .

Thus, we obtain the following distance functions:

p
Lpm;  Lpm
pIs“PMz _ p Q% ~%e 'O
d =Y w, | —/———3—
P t1€K1 "ty DM, LDM1
Qltl Qltl
DM Lpmy
Ql,, L(X)-Qiv,
ZU1€K1W LDMl LDMl +
1vq 11}1
Lpm,  Lpm
Gy, —Q, 20
z:szKz Wtz “Ibm, _Lpm, LDMZ +
Q3t, —Qat,
DM Lpm,
Qz,, 2(X)-Q5y,
ZUZEKZ W LDMZ LbM, (16)
_QZVZ
and
Lpm, _Lpm\P
dNISLDMZ _ ¥ WP Qi  X)—Q1gy i
P tiek1 Wi,y LpM; _Lpm,
1tq —Y1tq
Lpm Lpm 14
Q1v, _Ql LX)
ZvleKl Wv1 _Lpm,y LDM1 +
1vq Q1V1
p
DM _Lpm,
taz 20031, "
thEKz W DM, _Lpm,
2t,  ~Q2t,
1
Lpm Lpm, p /v
Qzuz _Qz (X)
szeKZ Wl]z LDMZ LDM (17)
Q21;2 _QZVZ

where w;, i = 1,2,....,k; + k,, are the relative importance
(weights) of objectives, and p = 1,2, .....,®©
Step 18.
Ask the Lpy,to select p=p*€{l,2,...,
Step 19.
Ask the Lpy, to select w; = w;*, i
Tarew, =1
i=1 i >

Step 20.

pisipM
Use steps (17, 18 and19) to compute d,,
Step 21.
Transform problem (13) to the following problem:

Lo Lpm
Minimized]"s =% (X)

w}!

2,...,k; +k,, where

sLom,

“and dp’



. Lpm
Maximizedy'™ =2 (X)

subject to (18)
XeMm
wherep = 1,2, .....,©
Step 22
Construct the payoff table of problem (18):
At p = 1, use the decomposition method.
At p > 2, use the generalized reduced gradient
method and obtain:
_Lpm Lpmy\ ™~ Lpm,\ ™~ «LDM
dp = (@) () ).
- () (),
where
( qPIs"PM2 )*
Mm)/;:;’fdﬁ’s PM2(X) and the solution is XPISLDMZ,
Lpm
(7™ |
= Max){g;r}d"”s PMz2(x) and the solution is XNIS M2,
(5 =g a7
Lpm Lpm
anis M2 (XPIS 2)’
Step 23.
Construct the following model for problem (18), [6]:
MaximizeBPMz,
subject to (19)

1 (X) = plomz,
1o (X) = proMz,
ptoMz € [0,1],

X eM,

LDMy
(i)
——— 2P =12,..,m,

L
i)
191 — X1
> ploMz, i =12,..,n,

R
T

by using the following membership functions:

if g’ ™ () < (agis™7)
s () - (ag's'™e)
() ()
i (a57) 2 g 2 ()
0, FAES ™ () > (ags)
(20)
ifngSLDMZ x) > (d;\JIISLDMZ) ’
(ngSLDMZ)* B dgzsLDMz @
(ngSLDMz)* _ (ngSLDMZ)_ ’
if (@5) " < s () < (a2
if dys ™ (x) < (ais™™?)
(21)

1’

u(X) =<

1;

p(X) =

O;
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Step 24.

Solve problem (19) to obtaln the satlsfactory level B* “oM:

and

the compromise solution X - 2, (if exist). Otherwise, go to

step (37)

Step 25

Ask the Lpy, to select the maximum negative and
positive  tolerance  values tfand R, i =

.. +LDM
1,2,..,m;, on the decision vector X,
LDMZ *LDMZ Lpm,
(xlzl X2 ) [6].

x12n1
Step 26.
Let i=3 and go to phase (3).

Phase (h):
Step 27

Use the decomposition method to construct the PIS payoff
table for the following problem:

[Lpwm,]
Max/Min
subject to
XeM

(th(x,l, e X0 e Quie, (X1 ...,X,h))

(22)

DM,

» Qe

Lpm, Lpm,,

o " = (0

individual positive ideal solutions.

Step 28.

Use the decomposition algorithm to construct the NIS payoff
L

table of problem (22) P

L L L Qh_ -
DM DM DM . . . .
(Qh‘l " e, Qi h) the individual negative ideal

solutions.
Step 29.

L
Construct the distance functions dp’s M and
using the above steps (27 & 28) and the following equations:

DM},

and obtain

DM,
) ""Qhkh ) the
and obtain

ayis™ by

Qh =
Max(orM ln) Lpm, DM
¥eM/ Qpe, h(X)( th ”(X)) vt,(andvy) (23)
LDMh _
Mln(orMax) DMh DM,
¥em/ X)|o Tth X)), vt (andv,) (24)
DM, DM DM DM
whereQ; " = (th "0, h,....,Qhkh h)and
_Lom, _Lom;, __Lbm,, _Lpm,, e
Q = (th ) Q2 o Qi )are the individual

positive (negative) ideal solutions for the Ly, .
Thus, we obtain the following distance functions:
LDpMy  Lpm, P
Lpm Q1t -Q x)
PIS ho_ 1 1t
dp - z:C1EK1 Wt1< LpM, _1LDM1 > +
Q1 —Q1¢,

1t1

Lpmi\ P
Ql,, PML(0)-Qip,
z:171€K1 W - _Lpm, Lpm4

10 —Qiy
1 1

_l_

p
LpM, Lpm
Qt, —Q, 20
Lomy LDM2
Q 2ty

th €K, Wtz <
th

p
DM Lpm,
Qz,, 2(X)=Q3v,
szeKz W “Lom, _.LDM;

2vp —K2v;y

+



Lpm L
* h DM,
P thh _thh (X)
ZthEKh W, Lom, _Lpm,
htp, - htp,
1
p\ /p
M), Lomp,
Z » Q’”’h x)- th
vieKp Wop _Lpmy,  Lpmy
thh ~%hyy,
(25)
And
DM 1 _“DMq
L -
ays o _ (5, e (Seoe ™
P t1€EKq DM, _Lpm,
Qit;  —Q1tq
Lpm
v, 1—QlDM1(X)
ZvleKl Wvl LDM1 LDM1 +
Q1v, 11;1
DM
2(x0)- taz
theKz LDM2 DM2 +
2t2
Lpm, DM
Q2 _sz Z(X)
> 2 + ot
V2€K> 172 LDM2 Y DM,
- 2112
M;
5 thh ()~ th
th€Kn Wt;, ~Ibm, _Lbm,
hth _thh
Lpm
h Mp,
th th (X)
Z Wp “h Chvy, T 7
vi€Kp Yo LDMh DMy,
hvy, hvh
(26)

where w;,i =12, ...,
importance (weights) of objectives, and p = 1,2, .....,

Step 30.
Ask the Lpy,to select p=p*e {1,2, ...,

Step 31.
Ask the Lpy, to select w; = w;", i =
k;, where Zk1+k2+ oy, =1,
Step 32.

L
Use steps (17, 18 and19) to compute d,’ oM

Step 33.
Transform problem (22) to the following problem:

ki+ky,+--+k,, are the relative
oo,

w})

2, kg Fky 4t

L
h DM,
and d’ )

L Lpm
Minimizedh™ " (X)

L
Maximized}' P
subject to
XeMm

27

wherep = 1,2, .....,©

Step 34.

Construct the payoff table of problem (27):

At p = 1, use the decomposition method.

At p > 2, use the generalized reduced gradient
method and obtain:

ho_ dPISLDMh _’ dNISLDMh - ’d*LDM
(a5 )( )) "
= (") (4="") )

Lpm

dy

where
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Lpm,\*
( dP's h)
P

Lpm Lpm
= M’")/(Z;’fdms "(X) and the solution is XP'S ",

(dms DMh)*
D

vom Lpm
= Max){gl]\;r;dms "(X)and the solution is XV'S ",
(d$ISLDMh) = dglsLDMh (X N ’SLDM”) and (dglsLDMh)_
d;,‘”sLDMh (XPISLDMh).
Step 35.

Construct the following model for problem (27):

Maximize [z’LDMh,
subject to

(X)) = pLPM,
(X)) = BHPM,

(28)

L
gMn € [0,1],
XeM,
( R )
X[ i~ XI —T;
n-1 n-1i t LDM., :
I > pPMn i =1,2, S TN
T
n=2..... h,
Lpm
* n. R
<X1,,_1i +T )_xln_li Loy -
= 2P i=1.2,..,n,_,,

L

n=2..... ,h
by using the following membership functions:

i d5is ™M (x) < (s,
dglsLDMh(X) . (d{;ISLDMh)*
(™) - (=)

if (dI;ISLDMh)_ ) > (d;’SLDMh)* ’
ifdgs ™M o) > (s

1;

X)) =

Lpm,
> s

0,
(29)

s ) > (@Y
(ngSLDMh)* B ngSLDMh (X)
@ )
if (as™) " < agrs™ o) < (agrs™)

L L -
if s ™" () < (ays)
(30)

pa(X) =

0:

Step 36.

L
Solve problem (28) to obtain the satisfactory level S* M and

L
the compromise solution X* oM , (if exist). Otherwise, go to
step (37)

Step 37.

Stop.



4. ILLUSTRATIVE NUMERICAL EXAMPLE FOR THE
HYBRID ALGORITHM

Consider the following three-Level Linear Multiple
Objective Decision Making problem of block angular structure
with stochastic parameters in the right hand side of the
independent constraints of mixed (Maximize/Minimize)-type:

(Lo,
Maximize f11(X) = 6x; + 7x, + 3x3 + 5x4 + x5 + X4
Minimize £ ,(X) = 3%, + 4%, + 2x3 + 3%, + 2x5 + X4
wherex,andx,solvesthesecondlevel
(Lo,
Maximize f,1(X) = 13x; + 3x, + 5x3 + 2x4 + x5 + 2X
Minimize £ (X) = 10x;, + 7x, + 4x3 + 6x,4 + 2x5 + 3%,
wherexsandx,solvesthethirdlevel
[(Low, ]
Maximize f21(X) = 12x; + 5x, + 6x3 + 5x,4 + x5 + X4
Mininize £, (X) = 9x; + 4x, + 5x3 + 4x, + 3x5 + 2x4
subject to

X1+ Xy + X3+ %, + x5 + x5 <50, P{x; +x, < vy}

> 0.7257,

P{2x, < v;} =20.4013, P{5x3+x, <v,}=>0.5,

X5+ X =5, x5 + 5xg < 50, xq,%5,X3,%X4,X5,%g = 0

Suppose thatv;, i = 0,1,2 are linearly independent normal
distributed parameters with the following means and
variances: E(vy) =8, E(vy) =2, (vp) =7 , Var(vy) =
25,Var(vy) = 4,Var(v,) = 16.

Solution:

By using problem (3), we can have:

[Lom,]

Maxitmize £ | (X) = 6x1 + 725 + 3x3 + 5%, + x5 + X6
Minimize £ 0 (X) = 3xy + 4x, + 2x3 + 3%, + 2x5 + x4
where x,and x, solves the second level

[Lpwm,]

Maximize £, 1 (X) = 13x; + 3%, + 5x3 + 2x4 + x5 + 2%,
Minimize £ ,(X) = 10x; + 7x; + 4x3 + 6x4 + 2x5 + 3%,
where x5 and x, solves the third level

(Lpm,]

Maxfnize £ (X) = 12x; + 5x; + 6x3 + 5%, + x5 + X6
Minimize £, (X) = 9x; + 4x, + 5x3 + 4x, + 3x5 + 2x4
Subject to
Xy +x, X3+ x4+ x5+ x5 <50, X +x, <5,
2x, <25, 5x3+x, <7, x5+x4 =5,
X5 + 5x¢ < 50, X1, Xg, X3, X4, X5, Xg = 0

Obtain PIS and NIS payoff tables for the [Lpy,] of the
Problem, (See APPENDIX-Table (1): PIS payoff table for
Lpu, problem of the example & Table (2): NIS payoff table
for Lpy, problem of the example). Thus
PIS: £*"M1= (104.25, 5) & NIS: £~ "= (5, 113.25)

- Next, construct equation and obtain the following equations:

dPISLDMl _ [ p (104.25 _fll(X)>p
P - 1

104.25 -5
f200 = G\ 7
twy (113.25 - (5)) ]

228

1
dNISLDMl — Wp <f11(X) B s)p + Wp 113.25 _f12(x) e
P 1 \104.25 -5 2\ 113.25-(5)
Thus, problem is obtained. In order to get numerical solutions,
assume that w}’ =w3 =(0.5)? and p=2. (See APPENDIX- Table (3):
PIS payoff table for LDM1 problem (p=2)). Thus,

d; "M1=(0.2391691, 0.5), d; "™=(0.5, 0.468276168).
Now, it is easy to compute problem (15):
Maximize fPM1
Subject to
X1+ Xy + X3+ X, + X5 + X6 <50, x; +x, <11,
2x, < 2.5, 5x3 +x, <7, x5 +x¢ =5,
X5 + 5xg <50, Xxq,X,,X3,%X4,X5,X6 = 0

pIstDM1 _
(dz X 0.2391691) > ghowm,.

0.5-0.2391691

0.5 — d's M1 (x)
[;LDM
0.5 — 0.468276168 | ~ ’
ploms € [0,1] .

- The maximum “satisfactory level”
(B*rm1 =0.9865938) is achieved for the solution
Xl*LDM1 :zero,X;LDM1 :zero,X;LDM1 =zero, X;LDMl =z
ero, XS*LDM1 =5.890389, Xg‘LDM1 =zero. Let the Lpy,
decide X{‘LDMl =zero with positive tolerance 7R =

0.00001 and 7' = 0.00001 and X; °™* =zero with
positive tolerance t® = 0.00001and z'= 0.00001.
- =2,

Obtain PIS and NIS payoff tables for the Ly, Problem,
(Seee APPENDIX- Table (4): PIS payoff table for the
Lpm, problem & Table (5): NIS payoff table for the Lpy,
problem) Thus,

PIS: £7"M2= (120, 10) & NIS: £~ °M2= (5, 171)
- Next, compute and obtain the following equations:
dPISLDMZ _ p (10425 - fll(X))p
1 104.25 -5
f2(0) = )Y
+ W
113.25 — (5)
120 — fo; ()Y’
“ )
120 -5
P f2(X) = (10)”
171 — (10
dN,SLDM2 = |w? <f11(X) -5 113.25 — f12(x)
P 104.25 —5 11325 (5)
faa(X) — 5)
w < 1205

wP <171 B fzz(X)>p]1/p

171 — (10)
- Thus, problem is obtained. In order to get numerical
solutions, assume that wP=w5=w!=w}=(0.25)? and p=2,

(See APPENDIX- Table (6): PIS payoff table of Lpy,
®©=2). Thus, di M  =(0.1998565,

L
0.3482764), d5 DM2=(0.346033, 0.3119787975).
- Now, it is easy to compute:

problem



Maximize BPM2
Subject to
X1+ Xy + X3+ X4 + X5 + x5 <50, x; +x, <11,
2x, <25, Sxz3+x,<7,
X5+ Xg =5, x5+ 5x5 <50, X1,X3,X3,X4,X5,% =0

L
db1s M2 (x) — 0.1998565 L
> ﬁ DM, ,
0.346033 — 0.1998565
0.3482764 — dV'S M2 (x)

> ﬁLDMz
0.3482764 — 0.3119787975 | — ’

((0 +0.001)—x1) > [;LDMZ (xl—(0—0.001)) > ﬁLDMz
0.001 - ! 0.001 -

((0+0.001)—x2) > [;LDMZ , (xZ—(0—0.001)) > ﬁLDMz
0.001 0.001

stomz € [0,1] .

- The maximum “satisfactory level” (BLPMz =1) is
achieved for the  solution X;‘LDMZ =0,
x5 PM2 =0, x3 M2 =0.8042670, X; "M =2.978665,

DMy _ Lpm, _
Xz =1.234568,X =3.765432, Let the Lpy,

. <LDM DM, .
decide X3 =0.8042670, X =2.978665 with
positive tolerance 8 = 0.001 and 7!= 0.001 .

J=3,
Obtam PIS and NIS payoff tables for the Lp,, Problem,

(See APPENDIX- Table (7): PIS payoff table for the
Lpu, problem & Table (8): NIS payoff table for the Ly,
problem). Thus,

. p+lDM3 _ . p-lDM3 _
PIS: f =(133,10) & NIS: f = (5, 187)
- Next, compute and obtain the following equations:
dPISLDMg _ [Wf (104-25 - f11(X))p

104.25 -5
+W f12(x) - (5)
113.25 — (5) )
120 — f21(X))
120-5

+w? 133 - f31(X))p

133 -5
(00 — (10\P] 77
187 — (10) ) ]

+wd (S
(fzz(X) - (10>”
171 — (10)

(

ngSLDM3
p f11(X) =5 P p (113.25 — f12(x) ?
- [Wl (104.25 - 5) T < 113.25 — (5) )
1 (X) =5\
+ws (flz(o)—s )
(171 - fzz(X)>p o (fsl(X) — 5)”
+\"171 - (10) s\133-5

(223 = fa@\7] 7"
( 187 — (10) ) ]

Thus, problem is obtained. In order to get numerical
P — P — P —— P _

solutions, assume that w; = w, =w; = w, == w, =
wp =(1/6)%and p=2, (See APPENDIX- Table (9): PIS payoff

table of problem Lpy, (p=2). Thus, dj *"* = (0.1567556,
0.2858099), d; "= (0.05997669727, 0.06691515737).

229

- Now, it is easy to compute:
Maximize BPMs

Subject to
X1+ x; + X3+ x4 + x5+ x5 <50, x; +x, <11,
2x, <25  Sxz3+x,<7,
X5+ Xg =5, X5+ 5x6 <50, xq,X,X3,%4,X5,X6 =0

dB1S"™PM3 (x) — 01567556
ﬁLDM3
0.05997669727 — 0.1567556 | — ’
L
0.2858099 — al's "M3(x)
0.2858099 — 0.06691515737

((0+0.001)—x1) > ﬁLDMg . (xl—(o—o.oo1)) > ﬁLDM3

> ﬁLDMg‘

X 0.00)1 (%.001 3
0+0.001)—x; L x2-(0-0.001 L
( 0.001 )ZB oM (T)Z’B oM
((0.803845+0.001)—x3) > ploms
( 0.001 )_ '
£3-(0B03845 0001 & ooy
( D001 ) = poms
297634000054 oLy
: ( 0.0())1 ) = poM
x4—(2.9783-0.001 LoM. @PLDM
( 0.001 ) z provs, provs € [0,1]
- The “satisfactory level” ( B1PMs =0.5734662) is
L
achieved for the solution X;°"* =0,
L L L
x3 "M =0 ,x3 "™ =0.8038405, X; M =2.978238,
L
xz *M*=42.06675,

- Table 1 presents a comparison among the proposed
TOPSIS method, ideal point (IP) method and the
ideal objective vector (I0V). Bold numbers represent
better result. In general, the proposed TOPSIS
algorithm is a good method to generate compromise
solutions (at p=2).

Table 1. A comparison among the proposed TOPSIS
method, IP method and the IOV

Objective | Proposed TOPSIS 1P Ideal Objective
Method (p=2) Method Vector
PIS NIS
fi1 59.3694615 5 104.25 5
fiz 94.6775895 7010214 5 113.25
f1 52.0424285 7.989786 | 120 5
f22 105.21829 12.989786 10 171
fa1 61.780983 5 133 5
f32 142.1324045 12010214 10 187

5. CONCLUSIONS AND FUTURE WORKS

In this paper:

We extend TOPSIS approach to find compromise
solutions for the multi-level linear multiple objective
decision making (MLLMODM) problems of block angular
structure with stochastic parameters in the right hand side of
the independent constraints (SMLLMODM) of mixed
(Maximize/Minimize)-type.

We propose a modified formulas for the distance function
from the positive ideal solution (PIS) and the distance function
from the negative ideal solution (NIS).

We present a new interactive hybrid algorithm based on the
proposed TOPSIS approach, the chance constrained
programming method and the decomposition method to



generate a compromise solutions for these types of
mathematical optimization problems. Also, we give an
illustrative numerical example to clarify the main results
developed in the paper.

The solutions of the numerical example by the proposed
interactive hybrid algorithm is compared with the solutions of
the ideal point (IP) method. In general, the results show that,
the proposed hybrid TOPSIS method is a good tool to generate
compromise solutions for the SMLLMODM problems of
mixed type.

In the future:

The scientists and the engineers can apply the presented
hybrid algorithm to different practical SMLLMODM
problems to obtain numerical solutions.

Based on the introduced hybrid algorithm, a MATLAB code
can be built to solve SMLLMODM problems to obtain
numerical compromise solutions.
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Table 1. PIS payoff table for Ly, problem

fi1(X) | fiz(X) | x Xz | X3 | X4 | X5 | Xg
,ﬁfl,g;fn(x) 104.25 | 11325 | 3.75 1125 | O 7 138| 0
211 (X) 5 5 0 0 ol0|0]|S5

Table 2. NIS payoff table for Ly, problem

fi1X) | fioX) X1 X2 X3 | X4 | X5 | X6
211 (X) 5 10 0 0o |{0o[o0]|5]0
%?,gfflz(x) 10425 | 11325 | 375 | 125 | O 7 138| 0
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Table 3. PIS payoff table for Lp,, problem (p=2)

gprs™ M | st M (X)) | fra() | x| x| X5 x| X5 | X
dgls“"’”h 0.24 0.47 72.17 | 4317 | 3.75 | 1.25 5.92
dzzws"“DMLl 0.5 0.5 5 5 0 0 5
Table 4. PIS payoff table for the Ly, problem
1) | f5oX) | x5 | x5 | X3 | %4 | X5 | Xg
J"C”i‘,‘;‘zfm(X) 120 171 510107 (3] 3
Mine,(x) | 5 10 [ojofoflo|s5]o0
Table 5. NIS payoff table for the Lpy,, problem
1) | f5oX) | %y | x5 | x5 | %4 | X5 | X6
e x) | 5 10 [oJofoflo|s5]oO
J’Z‘f;‘zfzz X 120 171 510107 (3] 3
Table 6. PIS payoff table of Ly, problem (p=2)
ngSLDMZ dlz\”SLDM2 f21(X) fo2X) | %1 | %2 | x5 X4 | X5 | Xe
. L
Min.db'S LDMz 0.2 0.312 86.322385 | 93.075 | 5 05414320 5
Max. dys™ | 035 0.35 10 15 |0 I ERIERE
Table 7. PIS payoff table for the Ly, problem
f31X) | f32(X) | xq | x2 | X3 | X4 | X5 | X6
Max g (X) | 133 187 [5|0ofof7]38]0
Mg, x) | 5 10 [ofoflo]o][o]s
Table 8. NIS payoff table for the Ly, problem
f51X) | f52(X) | x5 | x5 | x5 | X4 | X5 | Xg
e (X0 5 15 [o[o]ofo]s5]o0
Maxg (X)| 133 | 187 [11[ 0 [24] 7 |38 0
Table 9. PIS payoff table of problem Ly, (p=2)
d‘;’s”’““ dQ”SLDM3 f510) | f32(X) | %1 | x2 X3 Xy | Xs | Xe
. L
Min.dE's LDMz 0.16 0.07 92.81 77.32 0.37852138 | 5.11 | O
Max. dy's™s | 0.0599 0.286 5 10 0 0o |o
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