

Advances in Modelling and Analysis A

Vol. 55, No. 4, December, 2018, pp. 196-200

Journal homepage: http://iieta.org/Journals/AMA/AMA_A

Common fixed point theorems on cone metric spaces with c-Distance

Anil Kumar Dubey^{1*}, Mithilesh Deo Pandey¹, Ravi Prakash Dubey²

¹ Department of Applied Mathematics, Bhilai Institute of Technology, Bhilai House, Durg, Chhattisgarh 491001, India

Corresponding Author Email: anilkumardby70@gmail.com

https://doi.org/10.18280/ama_a.550403

03 ABSTRACT

Received: 18 May 2018 **Accepted:** 15 October 2018

The purpose of this paper is to prove common fixed point theorems by using the c-Distance in a cone metric space with different types of contractive conditions. Our theorem extends the contractive condition from constant real numbers to some control functions.

Keywords:

common fixed point, normal cone, c-Distance

1. INTRODUCTION

In 2007, Huang and Zhang [11] introduced the cone metric space. Later, many authors proved several fixed and common fixed point results in cone metric spaces (see [4, 6, 7, 8, 9, 10, 12, 17]). Recently, Wang and Guo [14] introduced the concept of c-Distance in a cone metric spaces, which is a cone version of w-Distance of Kada et al [13]. Afterward, large number of fixed point theorems were considered by other authors (see [1, 2, 3, 5, 15, 16, 17]). In this paper, we extend and generalize the results of Kaewkhao et al. [5], Rahimi et al. [7] and Young et al. [17]. Before presenting our theorems, we recall some notations, definitions and examples needed in our subsequent discussions.

Definition 1.1. [11] Let *E* be a real Banach space and *P* a subset of *E*. Then *P* is called a cone if and only if

- (a) P is closed, non-empty and $P \neq \{\theta\}$;
- (b) $a, b \in \mathbb{R}, a, b \ge 0, x, y \in P \Rightarrow ax + by \in P$;
- (c) if $x \in P$ and $-x \in P$, then $x = \theta$.

For any cone $P \subseteq E$, the partial ordering \leq with respect to P is defined by $x \leq y$ if and only if $y - x \in P$. The notation of \leq stands for $x \leq y$ but $x \neq y$. Also, we used $x \leq y$ to indicate that $y - x \in$ int P, where int P denotes the interior of P. A cone P is called normal if there exists a number K such that for all $x, y \in E$, $\theta \leq x \leq y$ implies $\|x\| \leq K \|y\|$.

The least positive number satisfying the above inequality is called the normal constant of P.

Definition 1.2. [11] Let X be a non-empty set and E be a real Banach space equipped with

the partial ordering \leq with respect to the cone $P \subseteq E$.

Suppose that the mapping $d: X \times X \to E$ satisfies the following conditions:

- (d1) $\theta \le d(x, y)$ for all $x, y \in X$ and $d(x, y) = \theta$ if and only if x = y;
 - (d2) d(x, y) = d(y, x) for all $x, y \in X$;
 - (d3) $d(x,y) \le d(x,z) + d(z,y)$ for all $x,y,z \in X$.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 1.3. [11] Let (X, d) be a cone metric space, $\{x_n\}$ a sequence in X and $x \in X$. Then

(1) $\{x_n\}$ converges to x if for every $c \in E$ with $\theta \ll c$ there exists an $n_0 \in \mathbb{N}$ such

that $d(x_n, x) \ll c$ for all $n > n_0$. We denote this by $\lim_{n \to \infty} d(x_n, x) = \theta$.

(2) $\{x_n\}$ is called a Cauchy sequence if for every $c \in E$ with $\theta \ll c$ there exists an

 $n_0 \in \mathbb{N}$ such that $d(x_n, x_m) \ll c$ for all $m, n > n_0$. We denote this by $\lim_{n,m\to\infty} d(x_n, x_m) = \theta$.

(3) If every Cauchy sequence in X is convergent, then X is called a complete cone metric space.

Lemma 1.4. [11] Let (X, d) be a cone metric space and P be a normal cone with constant K. Also, let $\{x_n\}$ and $\{y_n\}$ be sequences in X and $x, y \in X$. Then the following hold:

- (1) $\{x_n\}$ converges to x if and only if $d(x_n, x) \to \theta$ as $n \to \infty$.
- (2) If $\{x_n\}$ converges to x and $\{x_n\}$ converges to y, then x = y.
 - (3) If $\{x_n\}$ converges to x, then $\{x_n\}$ is a Cauchy sequence.
- (4) If $x_n \to x$ and $y_n \to y$ as $\to \infty$, then $d(x_n, y_n) \to d(x, y)$ as $n \to \infty$.
- (5) $\{x_n\}$ is a Cauchy sequence if and only if $d(x_n, x_m) \to \theta$ as $n, m \to \infty$.

Lemma 1.5. [10, 16] Let E be a real Banach space with a cone P in E. Then, for all $u, v, w, c \in E$, the following hold:

- (1) If $u \le v$ and $v \ll w$, then $u \ll w$.
- (2) If $\theta \le u \ll c$ for each $c \in int P$, then $u = \theta$.
- (3) If $u \le \lambda u$ where $u \in P$ and $0 < \lambda < 1$, then $u = \theta$.
- (4) Let $x_n \to \theta$ in E, $\theta \le x_n$ and $\theta \ll c$. Then there exists positive integer n_0 such that $x_n \ll c$ for each $n > n_0$.
- (5) If $\theta \le u \le v$ and k is a nonnegative real number, then $\theta \le ku \le kv$.
- (6) If $\theta \le u_n \le v_n$ for all $n \in \mathbb{N}$ and $u_n \to u, v_n \to v$ as $n \to \infty$, then $\theta \le u \le v$.

Next, we give the notion of c-Distance on a cone metric space (X,d) of Wang and Guo in [14], which is a generalization of w-Distance of Kada et al. [13] and some properties.

² Department of Mathematics, Dr. C. V. Raman University, Kota, Bilaspur, Chhattisgarh 495113, India

Definition 1.6. [14] Let (X, d) be a cone metric space. Then a function $q: X \times X \to E$ is called a c-Distance on X if the following are satisfied:

 $(q_1) \theta \leq q(x, y)$ for all $x, y \in X$;

 (q_2) $q(x,z) \le q(x,y) + q(y,z)$ for all $x,y,z \in X$;

 (q_3) for each $x \in X$ and $n \ge 1$, if $q(x, y_n) \le u$ for some $u = u_x \in P$, then $q(x, y) \le u$ whenever $\{y_n\}$ is a sequence in X converging to a point $y \in X$;

 (q_4) for all $c \in E$ with $\theta \ll c$, there exists $e \in E$ with $\theta \ll e$ such that $q(z, x) \ll e$ and $q(z, y) \ll e$ imply $d(x, y) \ll c$.

Example 1.7. [14] Let $E = \mathbb{R}$ and $P = \{x \in E : x \ge 0\}$. Let $X = [0, \infty)$ and define a mapping $d: X \times X \to E$ by d(x, y) = |x - y| for all $x, y \in X$. Then (X, d) is a cone metric space. Define a mapping $q: X \times X \to E$ by q(x, y) = y for all $x, y \in X$. Then q is a c-Distance.

Remark 1.8. For c-Distance q, $q(x,y) = \theta$ is not necessarily equivalent to x = y and q(x,y) = q(y,x) does not necessarily hold for all $x, y \in X$.

Lemma 1.9. [5, 14, 15] Let (X, d) be a cone metric space and let q be a c-Distance on X. Also, let $\{x_n\}$ and $\{y_n\}$ be sequence in X and $x, y, z \in X$. Suppose that $\{u_n\}$ and $\{v_n\}$ are two sequences in P converging to θ . Then the following hold:

 (qp_1) If $q(x_n,y) \le u_n$ and $q(x_n,z) \le v_n$ for $n \in \mathbb{N}$, then y=z. Specifically, if

 $q(x, y) = \theta$ and $q(x, z) = \theta$ then y = z.

 (qp_2) If $q(x_n, y_n) \le u_n$ and $q(x_n, z) \le v_n$ for $n \in \mathbb{N}$, then $\{y_n\}$ converges to z.

 (qp_3) If $q(x_n, x_m) \le u_n$ for m > n, then $\{x_n\}$ is a Cauchy sequence in X.

 (qp_4) If $q(y,x_n) \le u_n$ for $n \in \mathbb{N}$, then $\{x_n\}$ is a Cauchy sequence in X.

2. MAIN RESULT

Theorem 2.1. Let (X, d) be a cone metric space, P be a normal cone with constant K and q be a c-Distance. Also, let $f, g: X \to X$ be two mappings with $f(X) \subseteq g(X)$ and let g(X) be a complete subspace of X. Suppose that there exist mappings $k, l, r: X \to [0,1)$ such that the following conditions hold:

(a) $k(fx) \le k(gx), l(fx) \le l(gx), r(fx) \le r(gx)$ for all $x \in X$;

(b) (k + 2l + 2r)(x) < 1 for all $x \in X$;

(c) $q(fx, fy) \le k(gx)q(gx, gy) + l(gx)[q(gx, fy) + q(gy, fx)] + r(gx)[q(gx, fx) + q(gy, fy)]$ for all $x, y \in X$;

(d) $q(fy,fx) \le k(gy)q(gy,gx) + l(gy)[q(fy,gx) + q(fx,gy)] + r(gy)[q(fx,gx) + q(fy,gy)]$ for all $x,y \in X$.

If f and g satisfy $\inf\{\|q(fx,y)\| + \|q(gx,y)\| + \|q(gx,fx)\| : x \in X\} > 0$ for all $y \in X$ with $y \neq fy$ or $y \neq gy$, then f and g have a common fixed point in X.

Proof. Let x_0 be an arbitrary point in X. Since $f(X) \subseteq g(X)$ there exists a point $x_1 \in X$ such that $fx_0 = gx_1$. By induction we construct the sequence $\{x_n\}$ in X such that

$$fx_n = gx_{n+1} \text{ for } n = 0,1,2,3,$$
 (2.1)

Now, set $x = x_{n-1}$ and $y = x_n$ in (c). Thus, by (q_2) , for $n \ge 1$,

we get $q(gx_n, gx_{n+1}) = q(fx_{n-1}, fx_n)$

$$\begin{split} &q(fx_{n-1},fx_n) \leqslant k(gx_{n-1})q(gx_{n-1},gx_n) + \\ &l(gx_{n-1})[q(gx_{n-1},fx_n) + \\ &q(gx_n,fx_{n-1})] + r(gx_{n-1})[q(gx_{n-1},fx_{n-1}) + \\ &q(fx_n,gx_n)] = k(fx_{n-2})q(gx_{n-1},gx_n) + \\ &l(fx_{n-2})[q(gx_{n-1},gx_{n+1}) + q(gx_n,gx_n)] + \\ &r(fx_{n-2})[q(gx_{n-1},gx_n) + q(gx_{n+1},gx_n)] \leqslant \\ &k(gx_{n-2})q(gx_{n-1},gx_n) + l(gx_{n-2})[q(gx_{n-1},gx_n) + \\ &q(gx_n,gx_{n+1})] + r(gx_{n-2})[q(gx_{n-1},gx_n) + \\ &q(gx_n,gx_{n+1})] \leqslant k(gx_0)q(gx_{n-1},gx_n) + \\ &l(gx_0)[q(gx_{n-1},gx_n) + q(gx_n,gx_{n+1})] \\ &+ r(gx_0)[q(gx_{n-1},gx_n) + q(gx_n,gx_{n+1})]. \end{split}$$

Similarly, set $x = x_{n-1}$ and $y = x_n$ in (d). Thus by (q_2) , for $n \ge 1$, we get

$$\begin{split} &q(fx_{n},fx_{n-1}) = q(gx_{n+1},gx_{n}) \\ &\leqslant k(gx_{n})q(gx_{n},gx_{n-1}) + l(gx_{n})[q(fx_{n},gx_{n-1}) + q(fx_{n-1},gx_{n})] + r(gx_{n})[q(fx_{n-1},gx_{n-1}) + q(fx_{n},gx_{n})] + k(fx_{n-1})q(gx_{n},gx_{n-1}) + l(fx_{n-1})[q(gx_{n+1},gx_{n-1}) + l(fx_{n-1})[q(gx_{n+1},gx_{n-1}) + q(gx_{n},gx_{n})] + r(fx_{n-1})[q(gx_{n},gx_{n-1}) + q(gx_{n+1},gx_{n})] \leqslant k(gx_{n-1})q(gx_{n},gx_{n-1}) + l(gx_{n-1})[q(gx_{n},gx_{n-1}) + q(gx_{n+1},gx_{n})] \leqslant k(gx_{n})q(gx_{n},gx_{n-1}) + l(gx_{0})[q(gx_{n+1},gx_{n-1})] + r(gx_{0})[q(gx_{n},gx_{n-1}) + q(gx_{n+1},gx_{n})]. \end{split}$$

Adding up (2.2) and (2.3), we have

$$q(gx_n, gx_{n+1}) + q(gx_{n+1}, gx_n) \leq (k(gx_0) + l(gx_0) + r(gx_0))[q(gx_{n-1}, gx_n) + q(gx_n, gx_{n-1})] + (l(gx_0) + r(gx_0))[q(gx_n, gx_{n+1}) + q(gx_{n+1}, gx_n)].$$
(2.4)

Now, set $v_n = q(gx_n, gx_{n+1}) + q(gx_{n+1}, gx_n)$ in (2.4), we have $v_n \le (k(gx_0) + l(gx_0) + r(gx_0))v_{n-1} + (l(gx_0) + r(gx_0))v_n$.

So, $v_n \le \mu v_{n-1}$ for all $n \ge 1$ with $\mu = \frac{k(gx_0) + l(gx_0) + r(gx_0)}{1 - l(gx_0) - r(gx_0)} < 1$.

Since (k+2l+2r)(x) < 1 for all $x \in X$.

Continuing this process, we get $v_n \le \mu^n v_0$ for n = 0, 1, 2. Thus

$$q(gx_n, gx_{n+1}) \le v_n \le \mu^n(q(gx_0, gx_1) + q(gx_1, gx_0))$$
 (2.5)

for all n = 0,1,2---. Now, for positive integer m and n with $m > n \ge 1$, it follows from (2.5) and $\mu < 1$, we have

$$q(gx_{n}, gx_{m}) \leq q(gx_{n}, gx_{n+1}) + q(gx_{n+1}, gx_{n+2}) + - + q(gx_{m-1}, gx_{m}) \leq (\mu^{n} + \mu^{n+1} + - - - \mu^{m-1})(q(gx_{0}, gx_{1}) + q(gx_{1}, gx_{0})) \leq \frac{\mu^{n}}{1-\mu} (q(gx_{0}, gx_{1}) + q(gx_{1}, gx_{0})).$$

$$(2.6)$$

From Lemma 1.9, we have $\{gx_n\}$ is a Cauchy sequence in X. Since g(X) is a complete subspace of X, there exists a point $z \in g(X)$ such that $gx_n \to z$ as $n \to \infty$. By (2.6) and (q_3) , we have $q(gx_n, z) \leq \frac{\mu^n}{1-\mu}(q(gx_0, gx_1) + q(gx_1, gx_0)), n = 0, 1, 2, \dots$

Since P is a normal cone with normal constant K, we have

$$\| q(gx_n, z) \| \le K \frac{\mu^n}{1-\mu} \| q(gx_0, gx_1) + q(gx_1, gx_0) \|. n = 0, 1, 2,$$
 (2.7)

And

$$\parallel q(gx_n,gx_m) \parallel \leq K \frac{\mu^n}{1-\mu} \parallel q(gx_0,gx_1) + q(gx_1,gx_0) \parallel$$
 (2.8)

for all $m > n \ge 1$. If $fz \ne z$ or $gz \ne z$, then by the hypothesis (2.7) and (2.8) with

m = n + 1, we have

 $0 < \inf\{\| q(fx,z) \| + \| q(gx,z) \| + \| q(gx,fx) \| : x \in X\}$ $\leq \inf\{\| q(fx_n,z) \| + \| q(gx_n,z) \| + \| q(gx_n,fx_n) \|$ $: n \ge 1\} \qquad = \inf\{\| q(gx_{n+1},z) \| + \| q(gx_n,z) \| + \|$ $q(gx_n,gx_{n+1}) \| : n \ge 1\} \le \inf\{K\frac{\mu^{n+1}}{1-\mu} \| q(gx_0,gx_1) + \|$ $q(gx_n,gx_n) \| + K\frac{\mu^n}{1-\mu} \| q(gx_n,gx_n) + q(gx_n,gx_n) \|$

$$\begin{split} &q(gx_1,gx_0) \parallel + K\frac{\mu^n}{1-\mu} \parallel q(gx_0,gx_1) + q(gx_1,gx_0) \parallel \\ &+ K\frac{\mu^n}{1-\mu} \parallel q(gx_0,gx_1) + q(gx_1,gx_0) \parallel : n \geq 1 \} = 0, \end{split}$$

which is a contradiction. Therefore, we can conclude that z = fz = gz. This completes the proof.

The following Corollary is obtained from Theorem 2.1.

Corollary 2.2. Let (X,d) be a cone metric space, P be a normal cone with constant K and q be a c-Distance on X. Suppose that the mappings $f, g: X \to X$ satisfy the following two contractive conditions:

(i)
$$q(fx, fy) \le kq(gx, gy) + l[q(gx, fy) + q(gy, fx)] + r[q(gx, fx)]$$

+q(gy,fy)] for all $x,y\in X$;

(ii)
$$q(fy,fx) \le kq(gy,gx) + l[q(fy,gx) + q(fx,gy)] + r[q(fx,gx)]$$

+ q(fy, gy) for all $x, y \in X$;

k, l, r are nonnegative constants such that k + 2l + 2r < 1. If the range of g contains the range of f, g(X) is a complete subspace of X, f and g satisfy

inf $\{\|q(fx,y)\| + \|q(gx,y)\| + \|q(gx,fx)\| : x \in X\} > 0$, for all $y \in X$ with $y \neq fy$ or $y \neq gy$, then f and g have a common fixed point in X.

Proof: We can prove this result by applying Theorem 2.1 with k(x) = k, l(x) = l and r(x) = r.

In Theorem 2.1, if $g = i_X$ is the identity map on X, then we get the Theorem 3.3 of Dubey

et al. [3] on c-Distance in a cone metric space.

Theorem 2.3. Let (X, d) be a complete cone metric space and P be normal cone with constant K. Also let q be a c-Distance and $f: X \to X$ be a mapping. Suppose that there exist mappings $k, l, r: X \to [0,1)$ such that the following conditions hold:

(a) $k(fx) \le k(x)$, $l(fx) \le l(x)$, $r(fx) \le r(x)$ for all $x \in X$;

(b) (k + 2l + 2r)(x) < 1 for all $x \in X$;

(c) $q(fx, fy) \le k(x)q(x, y) + l(x)[q(x, fy) + q(y, fx)] + r(x)[q(x, fx) + q(y, fy)]$ for all $x, y \in X$;

(d) $q(fy,fx) \le k(y)q(y,x) + l(y)[q(fy,x) + q(fx,y)] + r(y)[q(fx,x) + q(fy,y)]$

for all x, $y \in X$.

If f satisfies $\inf \{ \| q(fx,y) \| + \| q(x,y) \| + \| q(x,fx) \| : x \in X \} > 0$, for all $y \in X$ with $y \neq fy$, then f has a fixed point in X.

Corollary 2.4. Let (X, d) be a complete cone metric space, P be a normal cone with constant K and q be a c-Distance on

X. Suppose that the mapping $f: X \to X$ satisfies the following two contractive conditions:

(i) $q(fx,fy) \leq kq(x,y) + l[q(x,fy) + q(y,fx)] + r[q(x,fx) + q(y,fy)]$

for all $x, y \in X$:

(ii) $q(fy,fx) \le kq(y,x) + l[q(fy,x) + q(fx,y)] + r[q(fx,x) + q(fy,y)]$

for all $x, y \in X$;

where k, l, r are nonnegative constants such that k + 2l + 2r < 1.

If f satisfies $\inf\{\|q(fx,y)\| + \|q(x,y)\| + \|q(x,fx)\| : x \in X\} > 0$

for all $y \in X$ with $y \neq fy$ then f has a fixed point in X.

Proof. We can prove this result by applying Theorem 2.3 with k(x) = k, l(x) = l and r(x) = r.

Theorem 2.5. Let (X,d) be a cone metric space, P be a normal cone with constant K and q be a c-Distance. Also, let $f,g:X \to X$ be two mappings with $f(X) \subseteq g(X)$ and let g(X) be a complete subspace of X. Suppose that there exist mappings $k, l, r, t: X \to [0,1)$ such that the following conditions hold:

(a) $k(fx) \le k(gx)$, $l(fx) \le l(gx)$, $r(fx) \le r(gx)$, $t(fx) \le t(gx)$ for all $x \in X$;

(b) (k + l + r + 2t)(x) < 1 for all $x \in X$;

(c) $q(fx, fy) \le k(gx)q(gx, gy) + l(gx)q(fy, gy) + r(gx)q(fx, gx) + t(gx)[q(fx, gy) + q(fy, gx)]$ for all $x, y \in X$;

(d) $q(fy,fx) \le k(gy)q(gy,gx) + l(gy)q(gy,fy) + r(gy)q(gx,fx) + t(gy)[q(gy,fx) + q(gx,fy)]$ for all $x,y \in X$.

If f and g satisfy $\inf\{\|q(fx,y)\| + \|q(gx,y)\| + \|q(gx,y)\| + \|q(gx,fx)\| : x \in X\} > 0$

for all $x, y \in X$ with $y \neq fy$ or $y \neq gy$, then f and g have a common fixed point in X.

Proof. Let x_0 be an arbitrary point in X. Since $f(X) \subseteq g(X)$, there exists a point $x_1 \in X$ such that $fx_0 = gx_1$. By induction we construct the sequence $\{x_n\}$ in X such that

$$fx_n = gx_{n+1}$$
 for $n = 0, 1, 2,$ (2.9)

Now, set $x = x_{n-1}$ and $y = x_n$ in (c). Thus, by (q_2) , for $n \ge 1$, we get

$$\begin{aligned} &q(gx_{n},gx_{n+1}) = q(fx_{n-1},fx_{n}) \ q(fx_{n-1},fx_{n}) \\ &\leqslant k(gx_{n-1})q(gx_{n-1},gx_{n})l(gx_{n-1})q(fx_{n},gx_{n}) \\ &+ r(gx_{n-1})q(fx_{n-1},gx_{n-1}) + t(gx_{n-1})[q(fx_{n-1},gx_{n}) \\ &+ q(fx_{n},gx_{n-1})] = k \ (fx_{n-2})q(gx_{n-1},gx_{n}) + \\ &l(fx_{n-2})q(gx_{n+1},gx_{n}) + + r(fx_{n-2})q(gx_{n},gx_{n-1}) + \\ &t(fx_{n-2})[q(gx_{n},gx_{n}) + \\ &q(gx_{n+1},gx_{n-1})]k(gx_{n-2})q(gx_{n-1},gx_{n}) + \\ &l(gx_{n-2})q(gx_{n},gx_{n-1}) + t(gx_{n-2})[q(gx_{n+1},gx_{n}) \\ &+ r(gx_{n-2})q(gx_{n},gx_{n-1}) + t(gx_{n-2})[q(gx_{n+1},gx_{n}) \\ &+ q(gx_{n},gx_{n-1})] \leqslant k(gx_{0})q(gx_{n-1},gx_{n}) + \\ &l(gx_{0})q(gx_{n+1},gx_{n}) \\ &+ r(gx_{0})q(gx_{n},gx_{n-1}) + t(gx_{0})[q(gx_{n+1},gx_{n}) \\ &+ q(gx_{n},gx_{n-1})]. \end{aligned} \tag{2.10}$$

Similarly, set $x=x_{n-1}$ and $y=x_n$ in (d). Thus by (q_2) , for $n\geq 1$, we get

$$q(gx_{n+1}, gx_n) = q(fx_n, fx_{n-1}) \le k(gx_0)q(gx_n, gx_{n-1}) + l(gx_0)q(gx_n, gx_{n+1}) + r(gx_0)q(gx_{n-1}, gx_n) + t(gx_0)[q(gx_n, gx_{n+1}) + q(gx_{n-1}, gx_n)].$$
(2.11)

Adding up (2.10) and (2.11), we have

$$q(gx_{n}, gx_{n+1}) + q(gx_{n+1}, gx_{n})(k(gx_{0}) + r(gx_{0}) + t(gx_{0}))[q(gx_{n-1}, gx_{n}) + q(gx_{n}, gx_{n-1})] + (l(gx_{0}) + t(gx_{0}))[(q(gx_{n+1}, gx_{n}) + q(gx_{n}, gx_{n+1})].$$
(2.12)

Now, set $v_n = q(gx_n, gx_{n+1}) + q(gx_{n+1}, gx_n)$ in (2.12),

$$v_n \le (k(gx_0) + r(gx_0) + t(gx_0))v_{n-1} + (l(gx_0) + t(gx_0))v_n.$$

$$\begin{array}{lll} \text{So} & v_n \leqslant \mu v_{n-1} & \text{for all} & n \geq 1 & \text{with} & \mu = \\ \frac{k(gx_0) + r(gx_0) + t(gx_0)}{1 - l(gx_0) - t(gx_0)} < 1. \end{array}$$

Since (k + l + r + 2t)(x) < 1 for all $x \in X$.

Continuing this process, we get $v_n \le \mu^n v_0$ for n =

Rest of the proof of this theorem is similar as the Theorem 2.1.

Example 2.6. Let $E = \mathbb{R}$ and $P = \{x \in E : x \ge 0\}$. Let $X = \mathbb{R}$ [0,1] and define a mapping $d: X \times X \to E$ by d(x,y) =|x-y| for all $x,y \in X$. Then (X,d) is a cone metric space. Define a mapping $q: X \times X \to E$ by q(x, y) = 2d(x, y) for all $x, y \in X$. Then q is a c-Distance. In fact, $(q_1) - (q_3)$ are immediate.

Let $c \in E$ with $0 \ll c$ put $e = \frac{c}{2}$. If $q(z, x) \ll e$ and $q(z,y) \ll e$, then we have $d(x,y) \le 2d(x,y) = 2|x-y| \le$ $2|x - z| + 2|z - y| = q(z, x) + q(z, y) \ll e + e = c.$

This shows that (q_4) holds. Therefore q is a c-Distance.

Let $f, g: X \to X$ defined by g(x) = x and $f(x) = \frac{x^2}{16}$ for all

Take mappings $k, l, r, t: X \to [0,1)$ by $k(x) = \frac{x+1}{16}, r(x) = \frac{2x+3}{16}, l(x) = \frac{3x+2}{16}, t(x) = \frac{x}{16}$ for all $x \in X$. Observe that

(i)
$$k(fx) = (\frac{x^2}{16} + 1)/16 = \frac{1}{16} (\frac{x^2}{16} + 1) \le \frac{1}{16} (x + 1) = k(x) = k(gx).$$

$$(ii)r(fx) = (2(\frac{x^2}{16}) + 3)/16 = \frac{1}{16}(\frac{2x^2}{16} + 3) \le \frac{1}{16}(2x + 3)$$

$$k(x) = k(gx).$$

$$(ii)r(fx) = (2(\frac{x^2}{16}) + 3)/16 = \frac{1}{16}(\frac{2x^2}{16} + 3) \le \frac{1}{16}(2x + 3) = r(x) = r(gx).$$

$$(iii)l(fx) = (3(\frac{x^2}{16}) + 2)/16 = \frac{1}{16}(\frac{3x^2}{16} + 2) \le \frac{1}{16}(3x + 3)$$

2) = l(x) = l(gx)

$$(iv)t(fx) = (\frac{x^2}{16})/16 = \frac{1}{16}(\frac{x^2}{16}) \le \frac{1}{16}(x) = t(x) = t(gx).$$

(iv)
$$t(fx) = (\frac{x^2}{16})/16 = \frac{1}{16}(\frac{x^2}{16}) \le \frac{1}{16}(x) = t(x) = t(gx).$$

(v) $(k+l+r+2t)(x) = (\frac{x+1}{16}) + (\frac{3x+2}{16}) + (\frac{2x+3}{16}) + (\frac{2x$

$$2(\frac{x}{16}) = \left(\frac{8x+6}{16}\right) < 1 \text{ for all } x \in X.$$
(vi) for all $x, y \in X$, we have
$$q(fx, fy) = 2 \left| \frac{x^2}{16} - \frac{y^2}{16} \right| \le \frac{2|x+y||x-y|}{16} = \left(\frac{x+y}{16}\right) 2|x-y|$$

$$\le k(x)q(x,y) = k(gx)q(gx,gy)$$

$$\le k(gx)q(gx,gy) + l(gx)q(fy,gy) + r(gx)q(fx,gx)$$

 $\leq k(gx)q(gx,gy) + l(gx)q(fy,gy) + r(gx)q(fx,gx)$ + t(gx)[q(fx,gy) + q(fy,gx)].

Therefore, all the conditions of Theorem 2.5 are satisfied. Hence f and g have a common fixed point in X. This common fixed point is x = 0.

3. CONCLUSION

In this paper we develop and generalize the common fixed point theorems on c-Distance of Kaewkhao et al. [5], Rahimi et al. [7] and Young et al. [17]. One illustrative example is also furnished to highlight the realized improvements.

ACKNOWLEDGMENT

The authors are thankful to the learned referee for his/her deep observations and their suggestions which greatly helped us to improve the paper significantly.

REFERENCES

- [1] Dubey AK, Verma R, Dubey RP. (2015). Cone Metric Spaces and Fixed Point Theorems of Contractive Mapping for c-Distance. International Journal of Mathematics and Its Applications 3(1): 83-88. https://doi.org/10.1007/s10114-010-8019-5
- [2] Dubey AK, Mishra U. (2016). Some fixed point results of single-valued mapping for c-distance in tvs-cone metric spaces. Filomat 30(11): 2925-2934. https://doi.org/10.2298/FIL1611925D
- Dubey AK, Mishra U. (2017). Some fixed point results for c-distance in cone metric spaces. Nonlinear Functional Analysis and Application 22(2): 275-286.
- Dubey AK, Verma R, Dubey RP. (2015). Coupled fixed point results with c-distance in cone metric spaces. Asia Pacific Journal of Mathematics 2(1): 20-40.
- Kaewkhao A, Sintunavarat W, Kumam P. (2012). Common fixed point theorems of c-distance on cone metric spaces. Journal of Nonlinear Analysis and Application 2012(jnaa-00137): https://doi.org/10.1186/1687-1812-2012-194
- Jungck G, Radenovic S, Radojevic S, Rakocevic V. (2009). Common fixed point theorems for weakly compatible pairs on cone metric spaces. Fixed Point Theory and **Applications** 2009(643840). https://doi.org/10.1155/2009/643840
- Rahimi H, Rad GS, Kumam P. (2015). A generalized distance in a cone metric space and new common fixed point results. U.B.P.Sci. Bull. Series A 77(2): 195-206.
- Rahimi H, Rhoades BE, Radenovic S, Rad GS. (2013). Fixed and periodic point theorems for T-contractions on metric spaces. Filomat 27(5): 881-888. https://doi.org/110.2298/FIL1305881R
- Rahimi H, Soleimani Rad G. (2013). Note on "common fixed point results for non commuting mappings without continuity in cone metric spaces. Thai J. Math 11(3): 589-599.
- [10] Rahimi H. (2013). Some common fixed point results for weakly compatible mappings in cone metric type space. Miskolc Mathematical Notes 14(1): 233-243. https://doi.org/doi:10.1155/2013/939234
- [11] Huang LG, Zhang X. (2007). Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl 332: 1467-1475. https://doi.org/10.1016/j.jmaa.2005.03.087
- [12] Abbas M, Jungck G. (2008). Common fixed point results for non commuting mappings without continuity in cone metric spaces. J. Math. Anal. Appl. 341: 416-420. https://doi.org/10.1016/j.amc.2009.04.085
- [13] Kada O, Suzuki T, Takahashi W. (1996). Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Japon 44: 381-391.

- [14] Wang S, Guo B. (2011). Distance in cone metric spaces and common fixed point theorems. Applied Mathematical Letters 24: 1735-1739. https://doi.org/10.1016/j.aml.2011.04.031
- [15] Sintunavarat W, Cho YJ, Kumam P. (2011). Common fixed point theorems for c-distance in ordered cone metric spaces. Comput. Math. Appl 62: 1969-1978.
- [16] Cho YJ, Saadati R, Wang SH. (2011). Common fixed point theorems on generalized distance in ordered cone metric spaces. Comput. Math. Appl 61: 1254-1260. https://doi.org/10.1016/j.camwa.2011.01.004
- [17] Yang YO, Choi HJ. (2018). Fixed point theorems on cone metric spaces with c-distance. J. Computational Analysis and Applications 24(5): 900-909.