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The purpose of this paper is to prove common fixed point theorems by using the c-Distance
in a cone metric space with different types of contractive conditions. Our theorem extends
the contractive condition from constant real numbers to some control functions.

1. INTRODUCTION

In 2007, Huang and Zhang [11] introduced the cone metric
space. Later, many authors proved several fixed and common
fixed point results in cone metric spaces (see [4, 6, 7, 8, 9, 10,
12, 17]). Recently, Wang and Guo [14] introduced the concept
of c-Distance in a cone metric spaces, which is a cone version
of w-Distance of Kada et al [13]. Afterward, large number of
fixed point theorems were considered by other authors (see [1,
2, 3,5, 15, 16, 17]). In this paper, we extend and generalize
the results of Kaewkhao et al. [5], Rahimi et al. [7] and Young
et al. [17]. Before presenting our theorems, we recall some
notations, definitions and examples needed in our subsequent
discussions.

Definition 1.1. [11] Let E be a real Banach space and P a
subset of E. Then P is called a cone if and only if

(a) P is closed, non-empty and P + {6};

(b)a,b €R,a,b =0,x,y €EP = ax+ by €P;

(c)if x€e P and —x € P,thenx = 6.

For any cone P <€ E, the partial ordering < with respect to
P isdefined by x < yifand only if y — x € P. The notation of
< stands for x <y but x #y. Also, we used x Ky to
indicate that y — x € int P, where int P denotes the interior of
P. A cone P is called normal if there exists a number K such
thatforallx,y € E, 0 <x<y impliesllxI<K Iyl

The least positive number satisfying the above inequality is
called the normal constant of P.

Definition 1.2. [11] Let X be a non-empty set and E be a
real Banach space equipped with

the partial ordering < with respect to the cone P C E.

Suppose that the mapping d: X x X - E satisfies the
following conditions:

(d1) 6 < d(x,y) for all x,y € X and d(x,y) =6 if and
onlyifx =y;

(d2) d(x,y) = d(y,x) forall x,y € X;

(d3)d(x,y) <d(x,z) + d(z,y) forallx,y,z € X.

Then d is called a cone metric on X and (X, d) is called a
cone metric space.

Definition 1.3. [11] Let (X, d) be a cone metric space, {x,}
a sequence in X and x € X. Then
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(1) {x, } converges to x if for every c € E with 8 < c there
exists an ny € N such

that d(x,,x) < ¢ for all n>n, We denote this by
lim, o d(x, ,x) = 0.

(2) {x, } is called a Cauchy sequence if for every ¢ € E with
6 < c there exists an

ny € N such that d(x,,x,) < c for all m,n > n, .We
denote this by lim;, ;00 d (X, , X ) = 6.

(3) If every Cauchy sequence in X is convergent, then X is
called a complete cone metric space.

Lemma 1.4. [11] Let (X, d) be a cone metric space and P
be a normal cone with constant K. Also, let {x,,} and {y,,} be
sequences in X and x,y € X. Then the following hold:

(1) {x,,} convergesto x ifand only if d(x,, ,x) > 8 asn -
oo,

(2) If {x,} converges to x and {x,,} converges to vy, then
X =Y.

(3) If {x,,} converges to x, then {x, } is a Cauchy sequence.

4) fx, »xand y, »y as - oo, then d(x,,y,) —
d(x,y)asn — oo.

(5) {x,,} is a Cauchy sequence if and only if d(x,,x,;,) =
fasn,m — oo,

Lemma 1.5. [10, 16] Let E be a real Banach space with a
cone P in E. Then, forall w,v, w,c € E, the following hold:

QD) fu<svandv K w,thenu K w.

(2)If0 S u K c foreachc € int P, thenu = 6.

() fu<Auwhereu e Pand0 <A< 1,thenu = 0.

(4) Letx, = 6 in E,6 < x, and 8 < c. Then there exists
positive integer n, such that x,, « ¢ for each n > n,.

(5) If 6 < u < vand k is a nonnegative real number, then
0 < ku<kv.

6) If 6<u,<v, for all neN and u, - u,v, -
vasn - o, thend < u < v.

Next, we give the notion of c-Distance on a cone metric
space (X,d) of Wang and Guo in [14], which is a
generalization of w-Distance of Kada et al. [13] and some
properties.
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Definition 1.6. [14] Let (X, d) be a cone metric space. Then
a function g: X x X —» E is called a c-Distance on X if the
following are satisfied:

(1) 0 < qlx,y)forallx,y € X;

(q2) q(x,2) < q(x,y) + q(y,2z) forall x,y,z € X;

(q3) foreachx € X andn > 1,if q(x,y,) < u for some
u = u, € P, then q(x,y) < u whenever {y,} is a sequence in
X converging to a point y € X;

(q4) forall c € E with 8 « c, there exists e € E with 6 <
e suchthat q(z,x) < e and q(z,y) < eimply d(x,y) «c.

Example 1.7.[14] Let E =R and P = {x € E: x = 0}. Let
X =[0,00) and define a mapping d:X X X - E by
d(x,y) =|x—y| for all x,y € X. Then (X,d) is a cone
metric space. Define a mapping q: X xX - E by q(x,y) =y
for all x,y € X. Then q is a c-Distance.

Remark 1.8. For c-Distance g, q(x,y) =6 is not
necessarily equivalent to x =y and q(x,y) = q(y, x) does
not necessarily hold for all x,y € X.

Lemma 1.9. [5, 14, 15] Let (X, d) be a cone metric space
and let g be a c-Distance on X. Also, let {x,,} and {y,} be
sequence in X and x,y,z € X. Suppose that {u,,} and {v,}
are two sequences in P converging to 8. Then the following
hold:

(qp,) If q(x,,y) <u, and q(x,,2) <v, for n€EN,
then y = z. Specifically, if

q(x,y) =0and q(x,z) =0 theny = z.

(qp2) 1f q(xn,yn) S uy and q(x,,2) S v, for neN,
then {y,, Jconverges to z.

(grs) If q(xn,xm) <u, for m>n, then {x,} is a
Cauchy sequence in X.

(qpr.) 1f q(y,x,) < u,, for n €N, then {x,} is a Cauchy
sequence in X.

2. MAIN RESULT

Theorem 2.1. Let (X,d) be a cone metric space, P be a
normal cone with constant K and g be a c-Distance. Also, let
f,g:X — X betwo mappings with f(X) € g(X) and let g(X)
be a complete subspace of X . Suppose that there exist
mappings k,l,7: X — [0,1) such that the following conditions
hold:

@) k(fx) < k(gx),l(fx) < 1(gx), r(fx) < r(gx)

all x € X;

(b) (k + 204+ 2r)(x) <1 forall x € X;

©  q(x fy) < k(gx)q(gx, gy) + l(gx)[q(gx, fy) +

q(gy, )] +r(gx)lq(gx, fx) + q(gy, fy)]forall x,y €

X;

d)  q(fy, fx) <k(gy)q(gy gx) + L(gy)[a(fy, gx) +

q(fx, gn] +r(gn)lq(fx, gx) + q(fy, gy)l forall x,y €

X

for

If f and g satisfy inf{ll q(fx,y) Il +1 q(gx,y) Il +Ii
q(gx, fx) l:xeX}>0forally e Xwithy # fyory #
gy, then f and g have a common fixed point in X.

Proof. Let x, be an arbitrary point in X. Since f(X) <
g(X) there exists a point x; € X such that fx, = gx;. By
induction we construct the sequence {x,} in X such that
fx, = gxpsq forn= 0,1,2,3, (2.1)

Now, set x = x,_, and y = x,, in (c). Thus, by (g, ), for
n=1,

we get q(gxn, 9Xn+1) = Q(f Xn-1, [ X5)
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q(fxn_1, fxn) < k(gxn_1)q(gxn_1, gxn) +
l(gxn—l)[q(gxn—l’ fxn) +

q(gxn, fxn_) 1+ 7(gxn_[q(gxn_1, fXn_1) +
Q(fxn’ gxn)]: k(fxn—z)q(gxn—D gxn) +
L(fxn-2)[q(g%n-1, 9Xn+1) + q(gxn, gxn)] +
r(fxn—z)[Q(gxn—li gxn) + q(gxn+1: gxn)] <
k(gxn-2)q(gxn-1, 9%3) + L(gxn_2)[q(gxn_1, gxn) +
q(gxn, 9xn+ )] + 1(gxn_2)[q(gxn-1, 9%) +

q(gxn, gxn+1)] < k(gx0)q(gxn_1, gxn) +
L(gxo)[q(gxn—1, 9%n) + q(gxn, gXpns1)]

+1(gx0)[a(gxn-1,9%n) + q(gxn, gXn+1)]. (2.2

Similarly, set x = x,_, and y = x,, in (d). Thus by (g5),
forn > 1, we get

Q(fxnl fxn—l) = Q(gxn+1' gxn)

< k(9x%,)q(g%n, gxn-1) + 1(gx)[q(fxp, gxn_1) +
Q(fxn—li gxn)]+ T(gxn)[Q(fxn—ll gxn—l) +
q(fxn, gx)1= k(f xp-1)q(gxn, gxn_1) +
L(fxn-1)[q(9Xns1, 9Xn-1) +

q(gxn, gXp )1+ 7(fxn-1)[q(gXn, gXn-1) +
q(gxn+1, 9xn)] < k(gxn-1)q(gxp, gXn_1) +
1(gxn-1)[q(gXn11, 9%n) + q(gxn, gXn-1)] +
r(9%n-1)[a(g%n, gXn-1) + 4(9xn41,9%0)] <
k(gx0)q(gxn, gxn—1) + 1(gx)[q(gxns1, 9%,) +
q(gxn, gxn-1)]

+ 1(g9x0)[q(gxn, gxn-1) + q(gXn11, 9xn)]- (2.3)

Adding up (2.2) and (2.3), we have

q(g%Xn, 9Xns1) + q(GXns1, gxn) < (k(gxo) + 1(gxo) +
r(gxo))[q(gxn-1,9xn) + q(gxn, gxn-1)] +{U(gxo)
+1(gxo))[q(gxn, 9Xn+1) + q(GXn41, 9X0)]- (2.4)

Now, set v, = q(gxp, 9Xn+1) + q(gXn4+1,9%,) in (2.4),

we have [ES (k(gxo) + 1(gx,) + r(gxo))vn_l +
(l(gxo) + T(gxo))vn-

S0, v, X Uv,_q for all n>1 with  u =
k(gxo)+1(gxo)+r(gxo)

<1
1-1(gx0)-1(gxo)
Since (k + 21+ 2r)(x) < 1 forall x € X.
Continuing this process, we get v, < u™v, forn = 0,1, 2.
Thus

q(gxn, 9Xn+1) < vy < p(q(gx0, 9x1) + q(gx1, gxo)) (2.5)

forall n = 0,1,2---. Now, for positive integer m and n with
m >n = 1, it follows from (2.5) and ¢ < 1, we have

q(gxn, 9Xm) < q(gXn, GXn11) + Q(GXns1, GXna2) + — —
+q(gxm-1,9%m) < (U +p" + — — i
—1" ) ((g%0, gx1) + 4(gx1, 9%0)) < 1= (4(g%0, 92:) +

q(gx1, 9%o)). (2.6)

From Lemma 1.9, we have {gx,} is a Cauchy sequence in
X. Since g(X) is a complete subspace of X, there exists a point
z € g(X) such that gx, - z asn — 0. By (2.6) and (g3 ) ,
we have q(gxn,2) < = (4(9%, g%1) + q(gx1, 9%0)). n =

0,1,2,....
Since P is a normal cone with normal constant K, we have



I q(g%n,2) 1< K= 1| q(g%0, 9%1) + q(g21, 9%0) . =
0,1,2, 2.7)

And

I q(g%n 92%m) IS K 1= 11 (g%, g21) + 4 (gx1, g%o) I
(2.8)

for all m>n>=1. If fz#2z orgz=+2z then by the
hypothesis (2.7) and (2.8) with
m =n+ 1, we have
0 <inf{ll q(fx,2) I +1 g(gx,2) | +1l q(gx, fx) l:x € X}
< inf{l q(fxp, 2) I| +1l (g%, 2) I +11 g(gXn, fx0) |
n 21} = inf{ll g(gXpn+1,2) I +11 q(gxn, 2) | +II

n+1
q(g%n 92ns1) Iim 2 13 < inf{K S— 1l q(gx0, 92,) +
q(gx1, 9%0) I +K 1= 11 q(gx0, gx1) + q(gx1, 9%0) |

+K1”_—# Il g(gxo, gx1) + q(gxy1, gxo) Il:n =1} =0,
which is a contradiction. Therefore, we can conclude that z
fz = gz. This completes the proof.

The following Corollary is obtained from Theorem 2.1.

Corollary 2.2. Let (X, d) be a cone metric space, P be a
normal cone with constant K and q be a c-Distance on X.
Suppose that the mappings f, g: X — X satisfy the following
two contractive conditions:

() q(fx, fy) < kq(gx, gy) + Uq(gx, fy) + q(gy, fx)] +

r[q(gx, fx)

+q(gy. fy)]forallx,y € X;

(i) q(fy, fx) < kq(gy, gx) + Uq(fy, gx) +

q(fx, gy] + rlq(fx, gx)

+q(fy, gy)lforallx,y € X;

k, 1, r are nonnegative constants such that k + 21 + 2r < 1.

If the range of g contains the range of f, g(X) is a complete
subspace of X, f and g satisfy
inf {Il g(fx,y) I +1l g(gx,y) I +1l g(gx, fx) l: x € X} > 0,

for ally € X withy # fy or y # gy, then f and g have a
common fixed pointin X.

Proof: We can prove this result by applying Theorem 2.1
with k(x) =k, I(x) =landr(x) =r.

In Theorem 2.1, if g = iy is the identity map on X, then we
get the Theorem 3.3 of Dubey

et al. [3] on c-Distance in a cone metric space.

Theorem 2.3. Let (X, d) be a complete cone metric space
and P be normal cone with constant K. Also let g be a c-
Distance and f:X — X be a mapping. Suppose that there exist
mappings k, [, r: X — [0,1) such that the following conditions
hold:

@) k(fx) < k(x), l(fx) <U(x), r(fx) <r(x)
x EX;

(b) (k +2l+2r)(x) < 1forallx €X;

(c) q(fx, fy) < k(x)q(x,y) + 1) [q(x, fy) +
qO, f0] + r@[q(x, f) + g, fy)lforall x,y € X;

(d) q(fy, fx) < k(y)qQy,x) + L [q(fy,x) +
q(Fx, ]+ rMa(fx,x) + q(fy, y)]

forall x,y € X.

If f satisfies inf {Il g(fx,y) I +1 qCe,y) Il +1l q(x, fx) |l
:x €X}>0,forally € X withy # fy, then f has a fixed
pointin X.

Corollary 2.4. Let (X, d) be a complete cone metric space,
P be a normal cone with constant K and q be a c-Distance on

for all
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X. Suppose that the mapping f: X — X satisfies the following
two contractive conditions:

(i) q(fx, fy) < kq(x,y) +Uq(x, fy) + q(y, fx)] +
rlq(x, fx) + q(, fy)]

forall x,y € X;

(i) q(fy, fx) < kq(y,x) + Uq(fy,x) + q(fx,y)] +
rla(fx,x) + q(fy,y)]

forall x,y € X;
where k,[,r are nonnegative constants such that k + 21 +
2r < 1.

If f satisfies inf{ll g(fx,y) Il +1 qCx,y) I +1 q(x, fx) II
XEX}>0

forall y € X with y # fy then f has a fixed point in X.

Proof. We can prove this result by applying Theorem 2.3
with k(x) =k, I(x) =land r(x) = .

Theorem 2.5. Let (X,d) be a cone metric space, P be a
normal cone with constant K and g be a c-Distance. Also, let
f,g:X - X be two mappings with f(X) € g(X) and let
g(X) be a complete subspace of X. Suppose that there exist
mappings k,l,r,t:X —[0,1) such that the following
conditions hold:

(a) k(fx) < k(gx), I(fx) < l(gx), r(fx) <
r(gx), t(fx) < t(gx) forall x €X;

O)k+1+7r+2t)(x) <1forall x €X;

©  a(fx fy) < k(gx)q(gx, gy) + l(gx)q(fy, gy) +
r(gx)q(fx, gx) + t(gx)[qa(fx,gy) +q(fy,gx)] for all
x,y €X;

) q(fy. fx) <k(gy)qa(gy gx) + l(gy)a(gy. fy) +
r(gy)a(gx, fx) + t(gy)la(gy, fx) +q(gx, fy)] for all
x,y €X.

If f and g satisfy inf{ll q(fx,y) Il +1 q(gx,y) Il +I
q(gx, fx)l:xeX}>0

for all x,y € X withy # fy ory # gy, then f and g have
a common fixed point in X.

Proof. Let x, be an arbitrary point in X. Since f(X) €
g(X), there exists a point x; € X such that fx, = gx,. By
induction we construct the sequence {x,} in X such that
fx, =gxp,,for n=10,1,2,..... (2.9)

Now, set x = x,,_; and y = x,, in (c). Thus, by (g, ), for
n > 1, we get

Q(gxn'gxrwl) = q(fxn—l' fxn) q(fxn—l' fxn)

< k(gxn-1)q(gxn_1, 9x)1(gxn-1)q(f xn, gx3)

+ 1(gxn-1)q(fxn_1, gGXn—1) + t(gxn_)[q(fXn_1, gxn)

+ Q(fxn: gxn—l)]: k (fxn—z)Q(gxn—p gxn) +

l(fxn—Z)Q(gerl: gxn) ++r(fxn—2)Q(gxn' gxn—l) +

t(fxn-2)[q(gxn, gxn) +

q(gXns1, 9%n-1)1k(gXn_2)q(gxn_1, gx) +

L(gxn-2)q(gXns1, 9%n) +

+1(9%n-2)q(g%n, Gxn-1) + t(gXn-2)[q(gXn+1, gxn)

+ q(gxn, gxn-1)] < k(gxo)q(gxn_1, gxn) +

1(9x0)q(gXn+1, 9Xn)

+1(9%0)q(gxn, gxn-1) + t(gx0)[q(gXn4+1, 9%2)

+q(gxn, gxn_1)]- (2.10)
Similarly, set x = x,,_; and y = x,, in (d). Thus by (g, ),

forn > 1, we get

q(gxXns1,9%n) = Q(f X, fXn-1) < k(gX0)q(gXn, gXn—_1) +
1(9%0)q(gXn, G2y 1)+ 7(g%0)q(gXn_1, g%n) +

t(gx0)[q(g%n, gXn+1) + (gXn-1, 9%2)]- (2.11)



Adding up (2.10) and (2.11), we have

q(g%ns 9Xn+1) + q(GXn+1, 9%n) (k(gxo) + 1(gxo) +
t(gxo))[q(gxn-1,9%,) + q(gxn, gxn_1)1+ (L(gx,) +
t(gxo))[(q(gxn+1, 9%n) + (g%, GXn41)]- (2.12)

Now, set v, = q(gxn, gxn+1) + q(gXn11, gxn) in (2.12),
we have

Uy S (k(gxo) +r(gxo) + t(gxo))vn—1 + (I(gxo)
+ t(gxo))vn-

SO v, S Uvy_q for all n>=1 with
k(gxo)+r(gxo)+t(gxo) 1

1-1(gxo)—t(gxo)

Since (k+1+7r+2t)(x) <1 forall x € X.

Continuing this process, we get v, < u"v, for n
0,1,2,.....

Rest of the proof of this theorem is similar as the Theorem
2.1.

Example 2.6. LetE = Rand P ={x € E:x = 0}. Let X =
[0,1] and define a mapping d:X xX - E by d(x,y) =
|x —y| for all x,y € X. Then (X,d) is a cone metric space.
Define a mapping q: X x X — E by q(x,y) = 2d(x, y) for all
x,y € X. Then q is a c-Distance. In fact, (q;) — (q3) are
immediate.

Let ce E with 0« c put e =§. If q(z,x) e and
q(z,y) < e, then we have d(x,y) < 2d(x,y) =2|x —y| <
2lx =z + 2|z—y| =q(z,x) + q(z,y) Ke+e=c.

This shows that (g, ) holds. Therefore q is a c-Distance.

Il:

Let f,g: X — X defined by g(x) = xand f(x) = gfor all
x € X.

Take mappings k, [, r,t: X - [0,1) by k(x) = — r(x) =
23 1(x) = 222 t( ) = —for all x € X. Observe that

(.) k(fx) = (R+ 1)/16 = i(EJ’ )<i@+)=
k(x) = k(gx). .

@r(fx) = QG +3)/16 =
3) =r() =r(gx)..

@NIfx) = 3G +2)/16 =
2) =10 = l(g).

(V)t(fx) = (—)/

(v) (k +l+r+2t)(x)

2() = (8x+6) < 1forallx € X.

(V|) forall x,y € X we have
2 —
9= 25| < B (52t
k(x)q(x y) = k(gx)q(gx, gy)

< k(gx)q(gx, 9y) + Ugx)q(fy, gy) + r(gx)q(fx, gx)

+t(g)[q(fx, gy) + q(fy, gx)].

Therefore, all the conditions of Theorem 2.5 are satisfied.
Hence f and g have acommon fixed point in X. This common
fixed pointis x = 0.

L(E43)<tcax+

i(—+2) —Gx+

=1(D) <L =) = t(gn).

e () ()

o |

3. CONCLUSION

In this paper we develop and generalize the common fixed
point theorems on c-Distance of Kaewkhao et al. [5], Rahimi
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etal. [7] and Young et al. [17]. One illustrative example is also
furnished to highlight the realized improvements.

ACKNOWLEDGMENT

The authors are thankful to the learned referee for his/her
deep observations and their suggestions which greatly helped
us to improve the paper significantly.

REFERENCES

[1] Dubey AK, Verma R, Dubey RP. (2015). Cone Metric
Spaces and Fixed Point Theorems of Contractive
Mapping for c-Distance. International Journal of
Mathematics and Its Applications 3(1); 83-88.
https://doi.org/10.1007/s10114-010-8019-5

Dubey AK, Mishra U. (2016). Some fixed point results
of single-valued mapping for c-distance in tvs-cone
metric  spaces.  Filomat  30(11): 2925-2934.
https://doi.org/10.2298/FIL1611925D

Dubey AK, Mishra U. (2017). Some fixed point results
for c-distance in cone metric spaces. Nonlinear
Functional Analysis and Application 22(2): 275-286.
Dubey AK, Verma R, Dubey RP. (2015). Coupled fixed
point results with c-distance in cone metric spaces. Asia
Pacific Journal of Mathematics 2(1): 20-40.

Kaewkhao A, Sintunavarat W, Kumam P. (2012).
Common fixed point theorems of c-distance on cone
metric spaces. Journal of Nonlinear Analysis and
Application 2012(jnaa-00137): 11.
https://doi.org/10.1186/1687-1812-2012-194

Jungck G, Radenovic S, Radojevic S, Rakocevic V.
(2009). Common fixed point theorems for weakly
compatible pairs on cone metric spaces. Fixed Point
Theory and Applications 2009(643840).
https://doi.org/10.1155/2009/643840

Rahimi H, Rad GS, Kumam P. (2015). A generalized
distance in a cone metric space and new common fixed
point results. U.B.P.Sci. Bull. Series A 77(2): 195-206.
Rahimi H, Rhoades BE, Radenovic S, Rad GS. (2013).
Fixed and periodic point theorems for T-contractions on
cone metric spaces. Filomat 27(5): 881-888.
https://doi.org/110.2298/FIL1305881R

Rahimi H, Soleimani Rad G. (2013). Note on “common
fixed point results for non commuting mappings without
continuity in cone metric spaces. Thai J. Math 11(3):
589-599.

Rahimi H. (2013). Some common fixed point results for
weakly compatible mappings in cone metric type space.
Miskolc ~ Mathematical Notes  14(1): 233-243.
https://doi.org/doi:10.1155/2013/939234

Huang LG, Zhang X. (2007). Cone metric spaces and
fixed point theorems of contractive mappings. J. Math.
Anal. Appl 332: 1467-1475.
https://doi.org/10.1016/j.jmaa.2005.03.087

Abbas M, Jungck G. (2008). Common fixed point results
for non commuting mappings without continuity in cone
metric spaces. J. Math. Anal. Appl. 341: 416-420.
https://doi.org/10.1016/j.amc.2009.04.085

Kada O, Suzuki T, Takahashi W. (1996). Nonconvex
minimization theorems and fixed point theorems in
complete metric spaces. Math. Japon 44: 381-391.

[2

(3]

[4]

[5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]



[14] Wang S, Guo B. (2011). Distance in cone metric spaces
and common fixed point theorems. Applied
Mathematical Letters 24: 1735-1739.
https://doi.org/10.1016/j.am1.2011.04.031

[15] Sintunavarat W, Cho YJ, Kumam P. (2011). Common
fixed point theorems for c-distance in ordered cone
metric spaces. Comput. Math. Appl 62: 1969-1978.

[16] Cho YJ, Saadati R, Wang SH. (2011). Common fixed
point theorems on generalized distance in ordered cone
metric spaces. Comput. Math. Appl 61: 1254-1260.
https://doi.org/10.1016/j.camwa.2011.01.004

[17] Yang YO, Choi HJ. (2018). Fixed point theorems on
cone metric spaces with c-distance. J. Computational
Analysis and Applications 24(5): 900-909.

200





