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The operation and maintenance (O&M) of intelligent building information model (IBIM), 

as an important aspect of modern building informatization, plays a critical role in the 

construction of smart cities and the renovation of modern buildings. Due to the complex 

structure and sheer size of IBIM data, the O&M system of IBIM faces a huge workload and 

a high cost. Based on cloud computing, this paper proposes an O&M strategy for IBIM data, 

which meets the needs for stable management of massive data, enables three-dimensional 

(3D) collaborative visualization of building information model (BIM), improves the 

efficiency of data storage, scheduling, and O&M. Firstly, the basic structure of IBIM data 

was standardized according to The Industry Foundation Classes (IFC) (ISO 16739-1:2018). 

Then, the features were sampled from the standardized IBIM cloud data. After that, the 

storage data were subject to routing, coding, matching feature compression, and adaptive 

attribute clustering. On this basis, an optimization model was established for the storage 

structure of IBIM cloud data. Finally, a batch feature extraction method was designed for 

3D structure distribution of job-based 3D cloud storage model. The proposed strategy was 

proved effective through experiments. The research results provide a reference for applying 

3D cloud storage model in other fields. 
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1. INTRODUCTION

Building information modeling is a technology that 

integrates various building-related information into an 

information database of three-dimensional (3D) models. The 

core of the technology is to provide a complete and realistic 

information library for virtual 3D models in constructional 

engineering [1-5]. The cloud data of intelligent building 

information model (IBIM) need to be operated and maintained 

to analyze the model features and reconstruct the model. The 

operation and maintenance (O&M) require the integration of 

advanced technologies into the lifecycle data of the building, 

including cloud computing, the Internet, and the Internet of 

things (IoT). The integrated strategy boasts great application 

potential in such fields as building structure drawing, 

intelligent building renovation and reuse, intelligent 

management of electrical equipment, and 3D collaborative 

visualization [6-10]. 

Fruitful results have been achieved on the storage design of 

3D cloud data. In general, the 3D cloud data are stored using 

artificial neural network (ANN), wavelet analysis, statistical 

feature analysis, and empirical mode decomposition (EMD) 

[11-14]. Wang et al. [15] expounded the principle and 

technical features of neural network (NN)-based feature 

extraction from 3D point cloud data collected by laser scans, 

and summarized its application advantages in the construction 

of smart cities. Anagnostopoulos et al. [16] sorts out and 

evaluates the fineness of the division of BIM cloud data for 

different purposes, optimized the evaluation indies and 

weights through wavelet analysis, and realized the intelligent 

analysis on the division scheme.  

The modelling of IBIM cloud data is the basis for 

optimizing the data collection and management of 3D models. 

The relevant research mainly focuses on the reverse 

engineering of BIM from point cloud, as well as the virtual 

reconstruction and simulation of existing buildings [17-20]. 

Based on point cloud technology, Ma et al. [21] developed an 

automatic O&M method for datacenters, which excels in anti-

interference and data storage. McNally et al. [22] detailed the 

processing steps and algorithms of point cloud data in 

reconstructing ancient building models, and imported the 

reverse engineered BIM into the web geographic information 

system (GIS) platform of ArcGIS, providing an effectively 

way to rendering largescale GIS data, while meeting the 

accuracy of building description.  

Apart from being massive and diverse, the IBIM cloud data 

are often disturbed by multidisciplinary O&M information 

during the collection and storage processes. As a result, it takes 

a long time to discover, judge, and handle the needs for storage 

and scheduling of these data, which reduces the O&M 

efficiency.  

To solve the problem, this paper proposes an O&M strategy 

for IBIM data based on cloud computing. Firstly, the basic 

structure of IBIM data was standardized according to The 

Industry Foundation Classes (IFC) (ISO 16739-1:2018), and 

the design and realization steps of standardization sub-models 

were explained. Next, the features were sampled from the 

standardized IBIM cloud data, and used to rationalize the 

storage method for the data. After that, the storage data were 

subject to routing, coding, matching feature compression, and 

adaptive attribute clustering, and an optimization model was 

established for the storage structure of IBIM cloud data. 
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Finally, a batch feature extraction method was designed for 3D 

structure distribution of job-based 3D cloud storage model, 

and a complete O&M strategy for IBIM data was presented 

under the MapReduce environment. The proposed strategy 

was proved effective through experiments. 

 

 

2. STANDARDIZATION OF BASIC STRUCTURE OF 

IBIM DATA 

 

With the advancement of centralized information 

processing, the O&M of BIM data in the environment of cloud 

computing has witnessed breakthroughs in various aspects, 

including but not limited to data collection, data labeling, data 

induction, data analysis, and data processing.  

Drawing on the Code for Design of Intelligent Buildings 

(GB50314-2015), the IBIM data can be operated and 

maintained in a scientific, precise, and efficient manner by 

introducing information technology to tasks like the 

simulation of data input and output and the calculation of 

evaluation indices.  

The data structure of BIM is highly scalable, because the 3D 

BIMs contain the lifecycle information of construction 

projects. To make digital evaluation of intelligent buildings, it 

is necessary to digitize the intelligent building information, 

and add the digitized information to the IFC framework. 

 

 
 

Figure 1. The standardization of IBIM data structure 

 

 
 

Figure 2. The workflow of intelligent building data exchange 

 

As shown in Figure 1, the IBIM data structure was 

standardized in four phases, namely, planning, design, 

construction, and operation of the intelligent building. In each 

phase, a standardization sub-model was constructed according 

to the specific application needs. Through the four phases, the 

BIM data were gradually standardized, producing a set of 

standardized IFC engineering information covering the 

lifecycle of the intelligent building. 

Each standardization sub-model was designed and 

implemented in three steps:  

Step 1. Define the basic BIM data corresponding to the basic 

types under the IFC, using the simple data type in C++. 

Step 2. Define the basic BIM data corresponding to the 

LIST of aggregated type under the IFC, using the Standard 

Template Library (STL) list of C++. 

Step 3. Directly use the basic BIM data corresponding to the 

user-defined type under the IFC. 

Taking Revit as an example, Figure 2 provides the 

intelligent building data exchange process for the data items to 

be standardized as per the Code for Design of Intelligent 

Buildings (GB50314-2015). It can be seen that the closed-loop 

exchange between BIM data and intelligent building 

simulation data can be realized by importing the input and 

output of the simulation data into the gbXML file. 

 

 

3. EXTRACTION AND ANALYSIS OF IBIM DATA 

FEATURES 

 

In the environment of cloud computing, it is a complex task 

to collect and store IBIM cloud data, which greatly affects the 

design of a rational O&M strategy. In this section, the features 

are sampled from the standardized IBIM cloud data, and used 
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to determine the suitable storage method for different types of 

standardized data. 

Firstly, the distributed IBIM cloud data in the feature space 

were described as a dataset U={u1, u2, …, uM}. Then, semantic 

ontology and directed graph were adopted to model the storage 

system of distributed IBIM cloud data, and collect the feature 

points of nodes A and B on the 3D platform, where the IBIM 

cloud data are distributed. Let relational models R(A) and R(B), 

(a, b) be a pair of named anchors of A and B. To create a 

rational IBIM cloud data collection model, the data 

transmission channel was expressed by the number of hops 

d×L, SN, and sink. 

Suppose the directed graph of the 3D platform satisfies edge 

(c, d)∈E, node A⊂U, B⊂U, and A∩B=φ. Then, the fuzzy 

point set was extracted from the 3D phase space of IBIM cloud 

data series. During the extraction, the data types were matched 

and the semantic orientation features were analyzed through 

cloud computing servers. Let Δt be the time interval of cloud 

data collection. Then, the time series of IBIM cloud data 

collection can be established as UT={u(t0), u(t0+Δt), …, 

u(t0+iΔt), …, u(t0+LΔt)}, where L is the vector length of cloud 

data information flow. Let ROL and N be the time window 

function and dimensionality of the 3D phase space, 

respectively. Based on the Takens’ Embedding theorem, the 

state vector of the output from the collection of IBIM cloud 

data can be expressed as: 
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The collection and analysis results of IBIM cloud data were 

imported to the cloud data storage model as the input 

information stream. Then, a suitable storage method was 

selected for the collected IBIM cloud data. In this paper, the 

storage structure of IBIM cloud data is constructed through 

nonlinear time series analysis. The collected IBIM cloud data 

can be described as the following information flow time series 

model: 
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where, Ve-mn(t) is the envelope function of the IBIM cloud data 

information flow; fd-mn(t) is the Doppler frequency shift of 

IBIM cloud data; ε(t) is a disturbance term. 

To adapt the IBIM cloud data storage medium to the wide 

and stable distribution of IFC standard data structure, the 

logical relationship between the storage nodes in the IBIM 

cloud data can be illustrated by the following multivariable 

autoregressive model: 

 

a b c dF B a B b B c B d= + + +  (3) 

 

where, Ba, Bb, Bc, and Bd are parameters whose sum equals 1; 

a is the storage quality coefficient of IBIM cloud data; b is the 

data security evaluation coefficient; c is the scheduling time 

for storage and access of IBIM cloud data; d is the storage cost 

of IBIM cloud data. 

 

 

4. STORAGE MODEL FOR IBIM CLOUD DATA 

 

4.1 Network coding of storage data 

 

To ensure the network throughput, robustness, and security 

of data transmission, the IBIM cloud data must be subject to 

information exchange (i.e. routing and coding) before being 

uploaded to the storage nodes. 

Firstly, the IBIM cloud data were preprocessed through 

linear coding. The original dataset U={u1, u2, …, uM} in the 

feature space was decomposed into V data blocks, namely, 

Ui=[ui1, ui2, …, uiV]. The vectors of the data blocks can be 

expressed as: 
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It is assumed that the encoded data packets can be 

represented by a matrix O: 
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where, W is the number of encoded data packets. During the 

U→O coding, the coding coefficient matrix defined by the 

user Tcus and that generated randomly by the system Tran can 

be respectively expressed as: 
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After coding, the original dataset was transformed into W 

coded data packets containing WM data blocks. Figure 3 

presents the 3D cloud storage model for IBIM cloud data. The 

model was constructed in the following steps: 

Step 1. Select the reference surface S1 of the 3D IBIM 

platform; randomly choose WM/2 data blocks, and store them 

on the s nodes of S1 in the form of vectors (each node is 

allocated WM/2s data blocks). 

Step 2. Build a 3D cloud storage model for the BIM of an 

intelligent building as shown in Figure 3; store the remaining 
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WM/2 data blocks as vectors on the s nodes of S2, the plane 

opposite to S1. 

Step 3. Randomly select two sets of WM/4 data blocks from 

the WM/2 data blocks stored on S1 and S2, respectively, and 

store them on the s nodes of S3; store the remaining two sets 

on the s nodes of S4. 

Step 4. Randomly select two sets of WM/4 data blocks from 

the data blocks stored on S1 and S3, respectively, and store 

them on the s nodes of S5; Randomly select two sets of WM/4 

data blocks from the data blocks stored on S2 and S4, 

respectively, and store them on the s nodes of S6. 

 

 
 

Figure 3. The 3D cloud storage model of IBIM cloud data 

 

4.2 Storage structure optimization model 

 

To minimize the storage cost and improve storage security, 

the IBIM cloud data need to be reorganized and matched. In 

this paper, the data are subject to matching feature 

compression and adaptive attribute clustering, during the data 

block generation of the 3D cloud storage model. The 

information flow (2) of IBIM cloud data was mapped to the 

3D cloud storage model, via phase space reconstruction. Let h 

be the spectral feature of the 3D cloud storage model. Then, 

the reconstructed phase space can be described as: 
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where, λ is the characteristic scale of the data stored in the 3D 

cloud storage model; h is the Doppler spectral feature; g is the 

frequency-domain orthogonal function of the fractional 

Fourier transform. After the removal of redundant data and 

filtering, the cloud data can go through the matching feature 

compression: 
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where, δ(t-iΔt) is the impulse response function; Aij is the 

volume of data packet(s). The data features were matched 

through the optimization of the target basis function, according 

to the criteria for removing redundant data in matching feature 

compression. Let fd-sk be the k-th reference surface in the 3D 

cloud storage model, and tcen be the time interval of storing the 

data on the reference surface. Then, the compressed data 

packet can be expressed as: 
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To realize IFC standardization of the storage data, fuzzy C-

means (FCM) algorithm was employed to cluster the cloud 

data under the IFC, after the completion of matching feature 

compression. Through the clustering, four clusters Φa, Φb, Φc, 

and Φd were created for the IBIM cloud data, reflecting the 

clustering attributes of storage quality, security, scheduling 

time, and storage cost, respectively. The output function of the 

FCM algorithm can be defined as:  
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where, ωa, ωb, ωc, and ωd are the weight coefficients of storage 

quality, security, scheduling time, and storage cost, 

respectively. Feature attribute clustering was performed after 

the features Vl of clustering attributes had been generated from 

the data block(s). The set of clusters for the data stored in the 

3D cloud storage model can be expressed as: 

 

},,{ 21 kcccC =
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5. O&M STRATEGY FOR IBIM DATA IN 

MAPREDUCE ENVIRONMENT  

 

The MapReduce procedure needs to be updated based on 

the features of the standardized model structure, before 

mapping the operations of the 3D cloud storage model for 

IBIM data to MapReduce. MapReduce generally implements 

disordered and uniform batch processing of data blocks 

through five steps: FileSplit, Map, Partition, Combine and 

Reduce. However, the Map operation will break the fixed 

position of data blocks, whose formats are obj., off., etc., in the 

3D cloud storage model. In such data blocks, the vertex 

position index indicates that the position of the data block 

cannot be changed. 

To overcome the problem, this paper proposes a batch 

feature extraction method based on the 3D structure 

distribution of the job-based 3D cloud storage model. Firstly, 

all data blocks of the model were standardized and randomly 

sampled. Then, the spacing between the sampling points was 

calculated. Further, the statistics on the 3D structure 

distribution of the sampling points were fitted into the 

eigenvectors belonging to the 3D cloud storage model. 

In addition, the structure of the 3D cloud storage model 

should be complete in the MapReduce environment, such that 

the data blocks of the same model, which has been disrupted 

by the Map operation, could be processed in the same Reduce 

operation. For this purpose, a triple (w, RS, D) was designed 

based on data packet(s) for the model, plus the corresponding 

completeness preservation function H(w, RS, D), where w is 

the serial number of data packet; RS is the serial number of 

reference surface; D is the distance from the center of the 

reference surface to the starting position. 

 

5.1 Job 1: Standardization of model data 

 

In the Hadoop environment, the IBIM data in the 3D cloud 

storage model can be standardized in three steps: 

Step 1. In the Map operation, read all the data blocks of the 

3D cloud storage model, and output the triples corresponding 

to these data blocks. 

Step 2. Construct the model completeness preservation 

function, allocate the data blocks with the same start into the 

same group, and rank the data blocks processed in the same 
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Reduce operation by the triple. 

Step 3. In the Reduce operation, obtain the reference surface 

from the triplet, derive the center coordinates of the 3D cloud 

storage model from those of the reference surface, and 

normalize the data packets in each group, that is, normalize the 

data of the 3D cloud storage model to the unit circle; Finally, 

output the normalized data. 

 

5.2 Job 2: Random sampling of model data 

 

In the Hadoop environment, the IBIM data in the 3D cloud 

storage model can be randomly sampled in three steps: 

Step 1. In the Map operation, create Double variables for 

the simple data type, aggregated data type, and user-defined 

type under the IFC standard, and output them with the triples.  

Step 2. Group the data blocks with the same start, using the 

model completeness preservation function, and rank the data 

blocks processed in the same Reduce operation by the triple. 

Step 3. In the Reduce operation, obtain the total data size of 

the 3D cloud storage model from the triples, conduct area-

weighted random sampling of the data stored on reference 

surfaces, and output the sampled data. 

 

5.3 Job 3: Eigenvector extraction from model data 

 

In the Hadoop environment, the eigenvectors can be 

extracted from the IBIM data in the 3D cloud storage model in 

two steps: 

Step 1. In the Map operation, read the output data of Job 1 

and convert them into Text type variables, and process the 

sampling points of the same mode in the same Reduce 

operation. 

Step 2. In the Reduce operation, calculate the Euclidean 

distance between sampling points, generate a distance 

histogram based on the statistics of the Euclidean distances, fit 

the statistical results, extract the eigenvectors of dim number, 

and output them as the eigenvectors of the model. 

 

 

6. EXPERIMENTS AND RESULTS ANALYSIS 

 

Several experiments were carried out to test the storage 

performance of the proposed 3D cloud storage model for IBIM 

cloud data in the Hadoop environment. 

The 73MB IBIM cloud dataset was taken from the test set 

as the object of the experiments. The simple type, aggregated 

type, and user-defined type of the IFC standard were 

separately used as the input format of MapReduce. Each type 

of data was segmented by the corresponding method, before 

being used to test the effects of the data type on the job of batch 

feature extraction in Map operation. 

As shown in Figure 4, with the growing number of Map 

operations, the job durations of simple data and user-defined 

data both surged up, while the job duration of aggregated data 

did not increase substantially. The reason is that the Hadoop 

distributed file system (HDFS) frequently reads and writes 

numerous small data packets, extending the job duration. For 

the aggregated data, the FCM clustering greatly shortens the 

start time of task. The time-saving effect of the FCM offsets 

the time extension induced by the growing number of Map 

operations.  

Figure 5 shows the variation in memory usage of storage 

nodes with the expansion of the test set. It can be seen that, 

with the increase of storage capacity, the heap memory 

capacity gradually increased, while the non-heap memory 

capacity fluctuated less significantly. 

 

 
 

Figure 4. The influence of the number of Map operations on 

the job of batch feature extraction 

 

 
 

Figure 5. The variation in memory usage of storage nodes 

with the expansion of the test set 

 

 
 

Figure 6. The memory usages of storage nodes with and 

without matching feature compression 

 

To disclose the effects of network coding and matching 

feature compression on memory usage, the storage nodes in 

3D cloud storage model were compared in terms of the 

compression degree. Figure 6 compares the memory usages of 

storage nodes with and without matching feature compression 

during the data block generation. Obviously, the matching 

feature compression reduced the information scale of the 

metadata in data packets, thereby lowering the memory usage 

of storage nodes. 

To verify the effectiveness of the job-based batch feature 

extraction for IBIM data, twenty 3D cloud storage models with 

different data volumes were selected from the test set, creating 

a sub-test set. The corresponding MapReduce program was 
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developed to process the sub-test set. The job durations of each 

model were recorded and plotted into curves (Figure 7). It can 

be seen that the job duration decreased with the data volume, 

and increased significantly with the rise of data volume. 

 

 
 

Figure 7. The job durations of each 3D cloud storage model 

 

 

7. CONCLUSIONS 

 

This paper designs an O&M strategy for IBIM data based 

on cloud computing. Firstly, the basic structure of IBIM data 

was standardized under the IFC, and the design and 

implementation of standardization sub-models were illustrated 

in details. The IFC standardization was proved effective 

through experiments on how the number of Map operations 

affect the job of batch feature extraction, in which the 

MapReduce inputs are in the formats of simple data, 

aggregated data, and user-defined data, respectively.  

Next, the features were sampled from the standardized 

IBIM cloud data, and the storage method of the data was 

rationally selected. After that, the storage data were subject to 

routing, coding, matching feature compression, and adaptive 

attribute clustering. On this basis, an optimization model was 

established for the storage structure of IBIM cloud data. To 

disclose the effects of network coding and matching feature 

compression on memory usage, the storage nodes in 3D cloud 

storage model were compared in terms of the compression 

degree. The results demonstrate that the network coding and 

matching feature compression can lower the memory usage. 

Finally, a batch feature extraction method was designed for 

3D structure distribution of job-based 3D cloud storage model, 

and a complete O&M strategy was developed for the IBIM 

data in the MapReduce environment. The proposed strategy 

was proved effective through experiments on job durations. 
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