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A general model based on SIR type has been developed and analyzed in this paper by 

incorporating a control variable function termed as media awareness. The study 

emphasizes that consciousness grows among general population due to media 

awareness which results in isolating a portion of susceptible population from the 

infected ones. The model exhibits two equilibrium points and the stability of these 

equilibrium points has been investigated. Numerical simulations have been carried out 

based on a specific set of parameters to study the effects of applied control. The findings 

of this analysis reveal that continuous publicity of awareness programs is very effective 

and significant in preventing the disease transmission whereas the news, collected by 

media during a disease period, also plays a compassionate role in reducing the size of 

infectious population. The results of the present analysis also expose that the 

reproduction number, epidemiologically a certain threshold, is influenced by the 

transmission and recovery rates. Our study suggests that in absence of effective 

antivirals or vaccines, media awareness may be one of the supportive interventions for 

mitigating and controlling the disease burden during any pandemic or epidemic 

situation.  
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1. INTRODUCTION

Infectious diseases, caused by microorganisms (viruses, 

fungi, bacteria, parasites and arthropods) which are pathogenic, 

are very detrimental and life threatening to human health since 

such diseases can spread indirectly or directly from individuals 

to individuals, may transmit from contaminated water and 

food or from animals (zoonotic) or insects [1]. Although the 

symptoms and signs of infectious diseases may vary or depend 

on specific types, general indications such as fever, coughing, 

muscle aches, runny nose, rashes, fatigue and diarrhea are very 

common for most of the diseases. Diagnosis of contagious 

diseases, that mainly identifies infectious agents, is done by 

microbial cultures, microscopy, PCR diagnostics, biochemical 

test, metagenomic sequence and symptomatic diagnostics [2]. 

Some of the common infectious diseases are AIDS, 

Tuberculosis, Hepatitis B, Measles, Chickenpox, Ebola, 

Influenza, Malaria, Dengue, Chikungunya, Nipah virus 

infection, MERS, SARS etc. [3]. Recently Coronavirus 

Disease (COVID-19), caused by a new virus: primarily named 

as 2019-nCoV; later known as SARS-CoV-2, has been 

declared as a worldwide pandemic which was initially 

identified at the city of Wuhan in China on December 31, 2019 

when severe pneumonia cases with unidentified explanations 

were confirmed among a group of individuals and within June 

23, 2020, around nine million infective cases with above 

469,587 deaths have been confirmed worldwide due to 

COVID-19 [4]. To slow down or prevent the spread of critical 

diseases, several characteristics related to the diseases are 

needed to be understood and recognized [5]. Mathematical 

modelling in this regard may help predict the forthcoming 

growth characteristics, project the progress of the disease and 

choose which interventions should be used as a trial or avoided. 

Models are typically formulated by considering simple 

assumptions with specific parameters which are meant for 

certain diseases and the theoretical methods are applied to 

understand the special effects of designed interventions, for 

example, vaccination program [6].  

A model on HIV epidemic presented the effects of timely 

treatment and predicted that early treatment is worthy enough 

to increase the immunity and considerably lessen new 

transmissions [7] whereas another work based on testing and 

treatment revealed that HIV new infections may be minimized 

to 69.1% within twenty years [8].  

A study showed that testing and treatment have the 

potentiality in minimizing the HIV prevalence to below 1% in 

next 50 years [9]. A paper focusing on the important issues 

regarding AIDS epidemic and MDG 2015 investigated that 

any effective vaccine is necessary since approximately 7400 

individuals become infected daily due to HIV. It also 

presented that the vaccine RV144 was 31% successful during 

2009 in preventing HIV infection [10].  

A model on tuberculosis established that the disease may be 

controlled when the efficacy of treatment and vaccination 

reaches to a convinced threshold [11] and this model was 

extended later with control schemes so that the intercession 

cost and the infection burden can be minimized [12]. Another 

study [13] presented that a particular vaccine which can 

function both as pre and post exposure is essential to attain the 

universal control over the deadly TB. 

A model representing the influence of reinfection and 

relapse for Ebola dynamics exposed that the new infective 

Mathematical Modelling of Engineering Problems 
Vol. 7, No. 3, September, 2020, pp. 368-376 

Journal homepage: http://iieta.org/journals/mmep 

368

https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.070306&domain=pdf


 

cases will decrease with high level control interventions [14] 

while another study emphasized that education, quarantine and 

tracing can significantly decrease the total dimension of Ebola 

epidemic [15]. 

An analysis highlighted that Nipah virus infection (NiV) is 

possible to reduce quickly if quarantined cases are maximized 

and safety hygiene is maintained [16]. Based on the 

propagation of NiV [17], it has been anticipated that social 

distancing and mass awareness may be effective in controlling 

the situation of NiV [18]. 

Some works on the dynamics of Dengue [19], Chikungunya 

[20], Influenza [21], Measles [22], Hepatitis B [23] etc. 

similarly represent the applications of modelling, from where 

important insights and strategies were seen to be developed 

which are sufficiently needed for controlling the spread. 

Media as a form of social communication facilitates people 

by not only sharing information but also providing data to the 

health administrators during any outbreak situation so that 

forecasting of the outbreaks can be made possible [24]. A 

study emphasized that education and media, in Bangladesh, 

have significance in preventing married people from the 

deadly HIV. The study also found that the couples who watch 

television regularly are nearly 8.6 times conscious about HIV 

than those of who do not watch television [25]. It has been 

understood that the effects of information transfer play an 

important role in minimizing the risk of infection [26] while 

the flow of awareness has the potentiality to decrease the 

percentage of diseased population [27]. The reports made by 

mass media for the general public during a pandemic or an 

epidemic deliver significant information which encourage 

people to practice healthy and positive behaviors such as 

maintaining social distance, hand washing etc. These positive 

practices can reduce the possibility of disease transmission 

[28]. Activities performed by the media have already shown 

the potentiality in predicting the evolution and development of 

infectious diseases. As a result, it is now possible to detect and 

easily analyze several disease behaviors [29]. Media coverage 

and its impact on contagious diseases have been explored and 

investigated through a model by using variable contact rate 

[30]. Another analysis based on SIS model (which actually 

motivated us to do this work) focused that awareness 

campaigns can effectively control the transmission of a 

spreadable disease but for continuous immigration, the disease 

may be endemic [31]. 

In this paper, we introduce a general model, which is based 

on SIR type [32], to study the possible control and preventive 

strategy, more specifically, the impact of media awareness 

programs during the period of any pandemic or epidemic from 

a common point of view. The purpose of this paper is to 

analyze the properties of the model, investigate the effects of 

the publicity rate of awareness programs and the news 

collection rate which function for making people conscious 

about the harmful consequences of short or long term 

infectious diseases.   

In Section 2, the framework of the model has been 

represented whereas the analytical part of the model has been 

discussed in Section 3. Numerical results are shown 

graphically in Section 4. Finally, the overall summary with 

findings is discussed in Section 5. 

 

 

2. MATHEMATICAL MODEL 

 

The common SIR model deals with three different 

compartments considering active population which vary in 

course of time: susceptible population S(t), infectious 

population I(t) and recovered population R(t). The population 

in S compartment are always at a high risk of infection, thus 

anytime they may reach to the infectious stage due to a certain 

disease by coming contact with the infective individuals. A 

number of infective individuals may die due to the severity of 

the disease whereas majority of the population become fully 

recovered in course of time owing to the immunity and 

treatment facilities. We consider the presence of influx rate of 

population and natural death rate to the SIR model which is 

governed as follows: 

 

SIb
dt

dS
)(  +−=  

IdSI
dt

dI
)( ++−=   

RI
dt

dR
 −=  

(1) 

 

with S(0)>0, I(0)≥0, R(0)≥0 and N(t)=S(t)+I(t)+R(t). 

In model (1), b indicates the influx rate, β denotes the 

disease transmission rate and 𝛾 represents the recovery rate. 

The constants d and μ represent disease induced death rate and 

natural death rate respectively. We now incorporate a 

nonnegative control variable compartment: media awareness 

or M(t) to the model (1) to study the impact of media 

awareness programs which are covered by media during the 

disease period. We assume that media generally focuses on 

several health issues such as washing hands frequently, 

wearing face mask with protective equipment, avoiding 

outside food, maintaining safety while travelling, staying 

home during illness etc. We also assume that media collects 

information from the infective population with a rate σ (news 

collection rate) and broadcast the effective programs timely so 

that the general population may become aware of the disease. 

Owing to this assumption, a large portion of susceptible 

population (S) may become conscious by the influence of 

media awareness (M) and reach to an isolation compartment 

C(t), termed as conscious population, with a constant rate m 

(rate of publicity of awareness programs) from where they 

never come back to the susceptible class. To make our model 

more realistic, we further assume that sometimes there may be 

limitation of resources for which exhaustion in M 

compartment may occur with a rate q. Considering the two 

new compartments: M(t) and C(t), the previous model (1) is 

modified (Figure 1) as follows: 

 

SmMIb
dt

dS
)(  ++−=  

IdSI
dt

dI
)( ++−=   

RI
dt

dR
 −=  

qMI
dt

dM
−=   

CmSM
dt

dC
−=  

(2) 

 

with S(0)>0, I(0)≥0, R(0)≥0, M(0)≥0, C(0)≥0 and 

N(t)=S(t)+I(t)+R(t)+C(t). 
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Figure 1. Compartmental diagram representing infectious 

disease dynamics with control policy 

 

 

3. MODEL ANALYSIS 

 

The analysis required for model (2) is discussed in this 

section. We need to observe the boundedness criterion of (2), 

determine its possible equilibria with basic reproduction 

number and prove the stability of equilibria. 

 

3.1 Boundedness  

 

Following [7], we obtain from model (2): 
𝑑𝑁

𝑑𝑡
≤ 𝑏 − 𝜇𝑁 

which implies that 𝑁(𝑡) ≤
𝑏

𝜇
+ (𝑁(0) −

𝑏

𝜇
) exp⁡(−𝜇𝑡). When 

t →∞, N(t) approaches to a certain threshold 
𝑏

𝜇
 which suggests 

that N(t) is actually bounded on [0, t), as a result S, I, R and C 

are also bounded. Therefore the biological feasible region of 

model (2) is: 

 









= +


b
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3.2 Equilibria 

 

Apparently, model (2) possesses two equilibrium points, a 

disease free equilibrium point (DFE): 𝜀1(𝑆
𝑜, 𝐼𝑜 , 𝑅𝑜, 𝑀𝑜, 𝐶𝑜) 

and an endemic equilibrium point (EE): 𝜀2(𝑆
∗, 𝐼∗, 𝑅∗, 𝑀∗, 𝐶∗).  

Clearly 𝜀1(𝑆
𝑜, 𝐼𝑜, 𝑅𝑜 , 𝑀𝑜, 𝐶𝑜) ≡ (

𝑏

𝜇
, 0,0,0,0).  

In order to determine EE which satisfies the equations:  

 

0,0,0,0,0 =====
dt

dC

dt

dM

dt

dR

dt

dI

dt

dS
 

 

i.e., 0)( =++− SmMIb  ,

0)( =++− IdSI  , 

0=− RI  , 0=−qMI and 0=− CmSM   

(3) 

 

we solve Eq. (3) and thus obtain 𝜀2(𝑆
∗, 𝐼∗, 𝑅∗, 𝑀∗, 𝐶∗) where, 
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3.3 Basic reproduction number (𝕽𝟎) 

 

A precise method termed as next generation matrix 

approach [33] is applied in this subsection to obtain the basic 

reproduction number ( 0 ) for model (2).  

In model (2), I(t) is the only infection component and 

therefore the new infection matrix is 11)( = oSF   and the 

transfer matrix is 11)( ++= dV . Consequently, the next 

generation matrix becomes 










++
=−




d
SFV o 1

)(1 . 

Hence, the spectral radius of 1−FV , i.e., )( 1−FV  is 

defined to be the basic reproduction number ( 0 ) which can 

be written as: 
( )







++
=

++
=

d

b

d

So

0 . 

 

3.4 Stability  

 

The Jacobian matrix (J) associated to the model (2) is 

essentially required to establish the stability [34] of DFE and 

EE and therefore is defined as follows: 
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(4) 

 

Theorem 1. The DFE: ⁡𝜀1(𝑆
𝑜, 𝐼𝑜 , 𝑅𝑜, 𝑀𝑜, 𝐶𝑜)  is 

asymptotically stable when ℜ0 < 1  and unstable when 

10  . 

Proof. At DFE: 𝜀1(𝑆
𝑜, 𝐼𝑜, 𝑅𝑜 , 𝑀𝑜, 𝐶𝑜) ≡ (

𝑏

𝜇
, 0,0,0,0), Eq. 

(4) becomes 
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Considering λ as the eigen value, the characteristic equation 

becomes 0)( 1 =− dIJ  , where Id is an identity matrix of 

order 5×5.  

Now by rearranging the characteristic equation, we obtain
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(5) 

 

From Eq. (5), we have  

 

0)()()()(
2

=

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








 −−−
−++++






db
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which implies that 𝜆 = −𝑞, 𝜆 = −𝜇, 𝜆 = −𝜇, 𝜆 = −𝜇,  and 

𝜆 =
𝑏𝛽−𝑑𝜇−𝛾𝜇−𝜇2

𝜇
. 

Clearly, all the eigen values, except 𝜆 =
𝑏𝛽−𝑑𝜇−𝛾𝜇−𝜇2

𝜇
, are 

negative.  

Now 𝜆 =
𝑏𝛽−𝜇(𝑑+𝛾+𝜇)

𝜇
 can be written as 𝜆 =

𝜇(𝑑+𝛾+𝜇)(
𝑏𝛽

𝜇(𝑑+𝛾+𝜇)
−1)

𝜇
=(𝑑 + 𝛾 + 𝜇)(ℜ0 − 1), which is negative 

when ℜ0 < 1. Therefore, Theorem 1 holds. 

Theorem 2. The EE: ⁡𝜀2(𝑆
∗, 𝐼∗, 𝑅∗, 𝑀∗, 𝐶∗)  is 

asymptotically stable when ℜ0 > 1  and unstable when 

10  . 

Proof is provided in Appendix A. 

 

 

4. NUMERICAL SIMULATIONS 

 

4.1 Parameters 

 

Since model (2), in general, is designed with a view to 

understanding the impact of media awareness programs for all 

infectious diseases (pandemic or epidemic), it will be wise to 

consider the ongoing fact, COVID-19 pandemic, for parameter 

collection. Model (2) has eight parameters in total and we have 

collected influx rate, natural death rate, transmission rate, 

disease induced death rate and recovery rate from recent 

studies [35, 36]. It has been observed that a patient who is 

infected by COVID-19 requires about 15 days on average for 

his or her complete recovery and therefore γ is set to 1/15 per 

day. The parameters σ, m and q related to the control function, 

media awareness, have been assumed for our simulations. The 

description of all parameters with respective values is 

provided in Table 1. 

 

Table 1. Description of parameters and respective values 

 
Parameters Description Values (per day) Source 

b rate of influx 271.23 [35] 

μ natural death rate 3.01×10-5 [35] 

β disease transmission rate 3.112×10-8 [36] 

d disease induced death rate 0.01 [35] 

γ recovery rate from disease 1/15 [35] 

σ rate of news collection from the infectives 0.0005 – 0.0050 Assumed 

m rate of publicity of awareness programs 0.0002 – 0.0006 Assumed 

q exhaustion rate of programs for limitation of resources 0.00015 Assumed 

 

 
 

Figure 2. Dynamics of all compartments for σ=0.0005 and m=0.0002 
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4.2 Results  

 

We use MATLAB, particularly ‘ode45’ solver, for 

performing the numerical simulations with the parameter 

values described in Table 1. Initially, we consider the total 

population N(0)=9003354 which is subdivided as: 

S(0)=9003322, I(0)=30, R(0)=2 and C(0)= 0. We set M(0)=0 

with σ = 0.0005 and m = 0.0002 as the standard values. With 

all the initial values of state variables and parameters, the code 

is run for 120 days. The simulation result is presented in Figure 

2 from where the dynamics of all compartments of our 

designed model is understood. The code is run again for m = 

0.0002, 0.0004 and 0.0006 to study the impact of media 

awareness programs and the results are shown in Figures 3-7. 

We have focused on the news collection rate (σ) keeping m 

fixed to 0.0002, increased the values of σ from 0.0005 to 

0.0025 and 0.0050 and studied its effects on the control 

function with infectious and conscious population which are 

displayed in Figures 8-10. We have also studied the effects of 

disease transmission rate β and recovery rate γ (Figures 11-13) 

to understand the variation of ℜ0 since it is responsible for the 

disease persistence. 

It is evident from Figure 2 that the number of susceptible 

individuals decreases with time. A portion of susceptible 

population become conscious owing to the media awareness 

programs and move to the isolation stage. Another portion of 

susceptible class become infected due to the severity of disease 

transmission or infection rate, as a result the infective class 

size reaches to a maximum peak point within 50 days. The 

total infectious population around 50 days is seen to be about 

1.77% of total population. For the immunity system of human 

body and proper treatment, infected people gradually recover 

from the disease or may die and within 120 days, 3.26% of 

total population become fully recovered of the disease. Due to 

the continuous growth of control variable, media awareness, 

the size of conscious population increases upto 96.22% of total 

population and reaches a threshold after 60 days which 

continues till the end.  
 

 
 

Figure 3. Susceptible population for m=0.0002, 0.0004 and 

0.0006 

 

From Figure 3, we see that susceptible population reduce 

gradually when the publicity rate of awareness programs (m) 

increases (i.e., m=0.0004 and 0.0006) from its standard value 

(m = 0.0002). Figure 4 represents the dynamics of infectious 

class for m=0.0002, 0.0004 and 0.0006. It is observed that 

infectious population decrease to 48.63% approximately for m 

= 0.0004 compared to the standard value (m=0.0002) whereas 

the population size decreases to 65.41% for m=0.0006. 

 
 

Figure 4. Infectious population for m=0.0002, 0.0004 and 

0.0006 

 

 
 

Figure 5. Recovered population for m=0.0002, 0.0004 and 

0.0006 

 

 
 

Figure 6. Dynamics of recovered population compared to the 

infectious population for m=0.0002, 0.0004 and 0.0006 

 

Figure 5 shows the dynamics of recovered population for m 

= 0.0002, 0.0004 and 0.0006. Apparently, it seems that the 

size of the recovered population reduces when the publicity 

rate of awareness programs is increased. This happens because 

a portion of susceptible population initially become conscious 

by virtue of media awareness programs which are 

implemented to bring consciousness. Thus a percentage of 

susceptible population isolate themselves from the infectives. 

The concept may clearly be understood from Figure 6 where 

both infected and recovered population are shown in order to 

realize the behaviors of these two compartments combinedly. 

From Figure 6, it is obvious that for m=0.0002, the total 
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number of recovered population is superior to that of infected 

population and this statement exactly holds also for m=0.0004 

and 0.0006. The dynamics of conscious population have been 

displayed in Figure 7 to study the effect of the publicity rate 

(m). We see that for m=0.0004 and 0.0006, the threshold of 

conscious class increases approximately to 1.91% and 2.56% 

respectively compared to the previous threshold. 

 

 
 

Figure 7. Conscious population for m=0.0002, 0.0004 and 

0.0006 

 

 
 

Figure 8. Control variable function for σ=0.0005, 0.0025 and 

0.0050 

 

 
 

Figure 9. Infectious population for σ=0.0005, 0.0025 and 

0.0050 

 

Figure 8 describes the control variable function (media 

awareness) for the news collection rate σ=0.0005, 0.0025 and 

0.0050. When σ=0.0005, the control function increases 

continuously and after 85 or 90 days time period, it reaches its 

maximum level. With the increase of σ, the function shows an 

enormous effect and reaches to the maximum level before 80 

days. It has been found that the control function increases 

about 4.29% for σ=0.0025 and 5.35% for σ=0.0050. From 

Figure 9, we understand that the reduction of infectious group 

is nearly about 79.04% to 89.39% due to the intensification of 

news collection rate. Figure 10 represents that conscious 

population change over time when σ increases. For σ=0.0005, 

it takes around 60 days to attain the threshold level whereas 

for 0.0025 and 0.0050, the maximum number of conscious 

population increases approximately to 3.10% within 55 days 

and 3.51% within 45 days respectively. 

 

 
 

Figure 10. Conscious population for σ=0.0005, 0.0025 and 

0.0050 

 

 
 

Figure 11. Effects of β and γ on ℜ0 

 

 
 

Figure 12. Change in ℜ0 for β 
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Figure 13. Change in ℜ0 for γ 

 

Figure 11 is the three dimensional representation of ℜ0 for 

β and γ whereas Figures 12 and 13 are representing the 

characteristics of ℜ0  for β and γ respectively. It has been 

observed that ℜ0  increases with the increase of disease 

transmission rate β whereas ℜ0  shows decreasing effects 

when the recovery rate γ is increased. This investigation 

suggests that besides publicity rate of awareness programs and 

news collection rate, recovery rate is also responsible for the 

reduction of infectious population size. 

 

 

5. CONCLUSIONS 

 

A general model on infectious disease dynamics has been 

developed in this paper where media awareness is considered 

as a control variable function. The model is formulated with a 

purpose to study the impact of media awareness with 

important factors and its efficacy during any pandemic or 

epidemic situation. Media generally collects information 

about the severity of the ongoing disease, emphasizes on 

several health issues, as a result of which, mass population 

may become conscious and form a separate isolation group so 

that they may avoid the contagion. Since increased 

transmission rate is one of the main reasons for the persistence 

of a disease, consciousness regarding safety issues and disease 

characteristics is significantly needed to lessen the adverse 

scenario. It is observed that continuous publicity of awareness 

programs brings a tremendous change in human behavior 

which is very effective and substantial in preventing the 

disease transmission. Moreover, the news and information 

collected by media, despite some exhaustion, always reveal a 

positive impact which works as a pre-recovery option for 

mitigating the virus transmission. The present work suggests 

that in order to productively control the disease burden, 

especially at that time when there is scarcity of effective 

vaccines or proper treatments, early and continuous 

implementation of awareness programs may be one of the 

supportive interventions for any countries to meet the critical 

challenges against the new emerging diseases. 
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APPENDIX A 

 

Proof of Theorem 2. We apply numerical technique to 

establish the theorem. 

At EE: 𝜀2(𝑆
∗, 𝐼∗, 𝑅∗, 𝑀∗, 𝐶∗), Eq. (4) becomes 
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Considering λ as the eigen value, the characteristic equation 

is: 
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where, Id is an identity matrix of order 5×5. 

Using the values of the parameters from Table 1, i.e., b = 

271.23, μ = 3.01×10-5, β = 3.112×10-8, d = 0.01, γ = 1/15, σ = 

0.0005, m = 0.0002 and q = 0.00015, we have 

S*=2.46455×106, I*=47.0922, 

R*=104302, M*=0.392435, 

Also from basic reproduction number, 

( )
13.65623 0 =

++
=





d

b
(A.3) 

Therefore, the simplified form of Eq. (A.2) is: 

065
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3
4
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1 =+++++ cccccc  (A.4) 

where, 

c1=1, c2=0.0601703, 

c3=0.000010335, c4=3.68385×10-7, 

c5=2.215525×10-11 and c6=3.33345×10-16 

Solving Eq. (A.4), we obtain 

λ =–0.0601, –0.00003, –0.00003, –0.0000049 –0.00247 i and 

– 0.0000049 + 0.00247 i

It is visible that the first three eigen values are negative 

whereas the fourth and fifth eigen values are complex 

conjugate with negative real parts and this occurs due to Eq. 

(A.3) (i.e., for ℜ0 > 1). It can be shown that for ℜ0 < 1, all

eigen values or real parts of complex eigen values will not be 

negative. 

Therefore, the EE: 𝜀2(𝑆
∗, 𝐼∗, 𝑅∗, 𝑀∗, 𝐶∗)  is asymptotically

stable when ℜ0 > 1 and unstable for ℜ0 < 1.
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