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The natural convective flow of conducting viscous fluid between two coaxial vertical 

cylinders partially filled with a porous material has been studied. The flow field is 

subjected to externally applied magnetic field (control input) and stress jump condition 

at the interface of two regions. The surface of the inner cylinder is subject to the constant 

heat flux and outer cylinder is maintained at constant temperature. The Brinkman 

extended Darcy model has been applied to porous media flow. The analytical solutions 

of the physical model are carried out with the help of modified Bessel function and 

numerical solutions by Runge Kutta method associated with shooting technique. The 

important findings are: the permeability of the medium and interface condition play 

vital role for the output of the desired flow rate and consistency of flow, the squeezing 

of the annular gap produces a cooling effect on cylindrical surfaces, the noticeable 

momentum transport occurs in the region close to the interface of fluid and porous 

region, the adjustable magnetic field (force-act-at-a distance) and stress jump condition 

(act-at-the contact) are to be simulated for obtaining desired smooth flow pattern. 

Keywords: 

Brinkman extended Darcy model, free 

convection, heat flux, stress jump, magnetic 

field, composite medium 

1. INTRODUCTION

The severity of energy and ecology problems that confront 

us is a very good indicator for the interest in the buoyancy 

driven transport phenomena we call it natural or free 

convection. These flows arise simply because of the density 

variation caused by heat and mass transfer processes, in a body 

force field such as gravitational. Several processes of interest 

and importance such as nuclear reactor cooling system and 

underground energy transport are dominated by natural 

convective mechanisms. The classical problem of natural 

convective heat transfer from an isothermal heated vertical 

surface is assumed to be steady, laminar and the fluid 

properties, except density, are taken as constant. Based on 

Darcy’s law and boundary layer approximation, Cheng and 

Minkowyez [1] obtained similarity solutions for the problem. 

The fluid-flow and heat transfer in a composite system, 

partially filled with porous material, find numerous 

applications in thermal engineering pertaining to heat and 

mass transfer processes, oil extraction and heat exchangers etc. 

Many researchers such as Singh et al. [2], Ramanaiah et al. [3], 

Pop et al. [4] contributed to this field of research significantly 

using different fluid models. The flow was considered through 

porous media using Darcy / Brinkman models with different 

thermal conditions and geometrical configurations. Further, 

Paul and Singh [5] studied fully developed free convective 

flow between two coaxial vertical cylinders. Free convective 

flow for low-Prandtl-number fluid (0.2<Pr<1) in a horizontal 

annular region has been studied by Yoo [6]. The study leads to 

dual steady solutions when Rayleigh number exceeds a critical 

value. 

The experimental studies also support some of the 

theoretical predictions. For example, flow through vertical and 

inclined elliptical tubes with constant heat flux has been 

experimented by Elshazly [7]. Further, experimental studies 

carried out by Seghir-Quali et al. [8] on an axial air flow with 

convective heat transfer inside a rotating cylinder and 

convective flow in a vertical circular cylinder with constant 

heat flux share the theoretical support of Mohammed and 

Salman [9].  

A numerical study on buoyancy-driven unsteady natural 

convection boundary layer flow past a vertical cone embedded 

in a non-Darcian isotropic porous region with transverse 

magnetic field has been considered by Prakash et al. [10]. The 

transient fully developed free-convective flow of viscous 

incompressible fluid between two concentric vertical cylinders 

filled with porous material and saturated with the same fluid 

has been analysed by Jha et al. [11] when outer surface of inner 

cylinder is subject to isothermal or isoflux heating. Steady two 

dimensional MHD laminar free convective boundary layer 

flows of an electrically conducting Newtonian nanofluid over 

a solid stationary vertical plate in a quiescent fluid has been 

investigated numerically by Uddin et al. [12] with Newtonian 

heating at the bounding surface. 

A finite element study of combined heat and mass transfer 

flow through a porous medium in a circular cylindrical annulus 

with Soret and Dufour effects in the presence of heat sources 

has been analysed by Gnaneswar [13]. The Thermo-Diffusion 

(Soret) and Diffusion – Thermo (Dufour) effects have been 

analysed by Reddy et al. [14] in a flow through porous annular 

region. 

Further, The Darcy’s law may be used as a basic equation 

for flow through porous medium, but it does not include the 

convective acceleration of the fluid. Therefore, this law is 
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valid for low speed flow. The validity of law has been tested 

for wide domain of flows. For liquids, it is valid for small 

pressure differentials but in the case of liquids with high 

velocities or for gases at very low and at very high velocities, 

Darcy’s law becomes invalid. The Reynolds number is the 

ratio of inertial to viscous forces. The use of Darcy’s law 

assumes that the Reynolds number (based on pore size) is 

small for inertial effects to be unimportant. The Reynolds 

number for most ground water flows obey Darcy’s law but 

flow with large gradient and/or flow where solid particles are 

large (coarse sand), the path of the fluid flow is curvilinear and 

the curvature of the path gives rise to inertial acceleration.  

Thus, non-Darcy models incorporating the inertia due to 

high speed and the usual stress due to distortion velocity are 

proposed. In the present problem in Eq. (5), we have 

incorporated viscous resistances and inertia form to account 

for the non-Darcy factors. The Darcy flow model neglects the 

boundary and inertia effects on fluid saturated porous medium 

on the fluid flow and heat transfer. The simultaneous effects 

of fluid inertia force and boundary viscous resistance, upon 

flow and heat transfer with constant porosity in a porous 

medium, was studied by Vafai and Tien [15] for forced 

convection along a vertical plate in a fluid saturated porous 

medium. Both the boundary and inertia effects decrease the 

velocity and heat transfer rate in the boundary layer. The 

condition at the interface given in Eq. (5) takes care of both 

boundary viscous resistances as well as inertia effects on the 

flow of fluid. The speed of the fluid in the filter or the flow in 

the region where the velocity changes abruptly, are not always 

small and the convective force may be important. Brinkman 

[16] has proposed this convective force assuming that force on 

a particle situated in the cloud of particles could be calculated 

as if it were a solid particle embedded in a porous mass. 

Brinkman represented the porous mass by modifying Stokes 

equation adding Darcy resistance term to it so that the effect 

of all other particles is treated in an average basis and the 

resulting equation is a modification of Darcy’s equation. By 

comparing with the experimental data the success of 

Brinkman’s formula is indisputable. Tam [17] expressed 

Brinkman’s method in better theoretical shape. The resulting 

generalized laws are found to be useful in the study of flow of 

highly porous media/porous materials such as foam metals and 

fibrous media usually have high porosity. For these high 

porosity media the boundary and inertia effects are important.  

If the flow arises naturally, simply due to the density 

difference, resulting from a temperature difference, in a body 

force field, such as gravitational field, the process is known as 

natural convection. The density difference gives rise to 

buoyancy effects for which the flow is generated. That is what 

the theme of the present problem. Thus, a natural interaction 

is established between the velocity and temperature fields, 

resulting coupling of momentum and energy equations. For 

example, a heated body cooling in ambient air generates such 

a flow in the region surrounding it. 

In the free convection, the governing parameter is the 

Grashof number. This is a dimensionless number (ratio of 

buoyancy force and friction force). The Boussinesq 

approximation is related to the density difference, which 

causes the flow due to an interaction between the gravitational 

body force and the hydrostatic pressure gradient, can be 

expressed as a pure temperature effect as given by 

)( cf TTgB − in Eq. (1). 
fT   and 

cT   are fluid temperature and 

characteristic temperature or temperature of outer cylinder. 

In the present analysis, the axisymmetry flow in a vertical 

concentric annuli has been considered. The flow between the 

cylinders is buoyancy driven. Let the axes of the cylinder be 

along z-axis and r be the radial coordinate measured from the 

axis of the cylinder and r be the radial coordinate measured 

from the outwards from the axis. The velocity components in 

the radial and tangential directions are zero and the velocity 

along axial direction is denoted by u and is only dependent on 

r. The pressure is considered to be constant [18]. The 

governing equation of the present flow problem with 

convection mode of heat transfer (free convection) and body 

force terms are given by Eqns. (1-4). 

In the present flow model to account for the complicated 

processes, the non-Darcy Brinkman model [16] has been 

applied through which we have incorporated viscous 

resistances. Consequently stress due to distortion velocity in 

interface condition at r'=d'. We have restricted to low magnetic 

field consequently low magnetic Reynolds number, to neglect 

the induced magnetic field. The convective acceleration terms 

in the momentum equation have been neglected to do away 

with the non-linear terms. We have also used linear 

Boussinesq approximation. We have also assumed the 

medium is homogeneous and fully saturated. The flow is 

steady, laminar, incompressible and fully developed. 

The novelty of the present study rests upon the flow 

characteristics of electrically conducting fluid subject to an 

externally applied magnetic field producing a body force act-

at-a distance and a stress jump condition act at-the-contact of 

the interface of composite medium with a constant heat flux at 

the surface of the inner cylinder. Further, the flow through 

saturated porous medium with uniform permeability has also 

been analysed by applying Brinkman extended Darcy model. 

Many industrial fluids and biological fluids are electrically 

conducting in nature. Therefore, an electrically conducting 

laminar fluid flow subject to transverse magnetic field finds 

application in MHD electrical power generator, MHD pump, 

electromagnetic flow meter and in extrusion of plastics in the 

manufacture of rayon and nylon etc. The stress jump 

conditions are of frequent occurrence in normal / abnormal 

biological systems. 

The analytical solution by modified Bessel function has an 

edge over the error-bound numerical method. However, 

Runge-Kutta numerical method has also been applied to solve 

the equations for consistency and reliability of solutions. Both 

the methods applied in the analysis show a good agreement. 

 

 

2. FORMULATION OF THE PROBLEM 

 
Consider the problem of fully developed free convective 

flow in an annular region between two coaxial vertical 

cylinders in a composite medium i.e. clear fluid region and a 

saturated porous region. The flow is generated due to the 

difference in the temperature of the outer cylinder maintained 

at constant temperature and the inner one is subject to heat flux. 

In the present problem, the fluid is considered to be electrically 

conducting but the surfaces of the cylinders are non-

conducting. A radial magnetic field of uniform strength (0,0,B0) 

has been applied, which produce a Lorentz force

)( 2uBBEBJ −=  .  

But 2

0

2,0 BBE == , so )0,0,(
2

0BuBJ ff−= . Therefore, 

since velocity components u and zu are zero, the Lorentz 

force, a resistive force, having a single component acts 

perpendicular to the main direction of the flow. We assume 
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that magnetic Reynolds number is small so that the induced 

magnetic field can be neglected in comparison with the applied 

one. This set up has also been shown in Figure 1. 

 

 
 

Figure 1. Flow geometry 

 

Under the usual Boussinesq’s approximation, the governing 

equations following [5] are given by: 
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the Eqns. (1)-(4) become 
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The boundary and matching conditions in dimensionless 

form are: 

 

0,   1      at 1

0,   0            at 

,

 at 

,        

f

f

p p

p f

f p p

f p

f p

d
u r

dr

u r

du du
u u Rv u

dr dr Da
r d

d d

dr dr



 



 
 





= = − =



= = = 


 = − =  
= 


= =  

 (11) 

 

The solutions of Eqns. (7)-(10) with boundary conditions 

(11) are given by 
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log logf P r  = = −  (14) 

 

where, I0,K0,I1, and K1 are the modified Bessel functions of 

first kind and second kind of order zero and one respectively. 

478



 

Using Eqns. (12) and (13), the skin frictions on the walls at 

r=1 and λ are calculated as: 
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3. NUMERICAL INTEGRATION BY RUNGE-KUTTA 

METHOD 

 
For carrying out numerical integration, the Eqns. (7)-(10) 

are reduced to a set of first order differential equations. For 

this we make the following substitutions: 
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The reduced equations are 
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Corresponding boundary conditions are given by 
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To start the integration, the values of y2 and y3 at r=1 are 

provided as guess values and the step by step integration is 

carried out from r=1 to r=1.5 then r=1.5 to r=2 with step length 

0.01 using shooting technique with MATLAB code having 

error bound 10-6.  

 

 

4. RESULTS AND DISCUSSION 

 

The analytical and numerical solutions are obtained for the 

flow through a composite medium under the boundary and 

interface conditions and are presented through graphs and 

tables. The effect of applied transverse magnetic field 

producing a resistive force acting at a distance on the flow 

through an annular region is of special interest which has not 

been taken care of in the earlier studies. 

Figure 2 shows the velocity distribution across the annular 

region for different values of magnetic parameter (magnetic 

Reynolds number) which determines the diffusion of magnetic 

field along the stream lines analogous to the ordinary Reynolds 

number for the diffusion of vorticity along the stream line, is 

small compared to the unity. On the other hand, when it is very 

large the magnetic field moves with the flow and is called 

frozen-in. In engineering problems, it is rare to obtain 

magnetic Reynolds number is greater than unity because of the 

low electrical conductivity of the useful fluids. From the figure 

it is seen that due to resistive force, the fluid velocity reduces 

in both fluid and porous regions. In this figure, the position of 

the interface is at d = 1.5. In the porous region (d>1.5), the 

velocity falls rapidly to attend the prescribed value. The 

maximum value of the profile occurs in the fluid region just 

before the transition zone.  

Figure 3 shows the velocity profiles for different values of 

the Darcy number, characterizing the permeability of the 

porous medium. It is seen that as Da increases, the velocity of 

the fluid increases under the dominating influence of magnetic 

field parameter of porous region over fluid region (Mp=4 and 

Mf=2). On careful observation of curve I(Da=10-2), it is seen 

that at the interface, fluidity of flow is detracted. Such effect is 

also marked in small measure when Da=0.2 and Da=0.5. 

Therefore, it is concluded that for maintaining smooth-flow 

across the flow domain, the right choice of Darcy number is 

essential. 

 
 

Figure 2. Velocity profile for various values of Mf and Mp 
 

 
 

Figure 3. Velocity profile for various values of Da 
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Figure 4 depicts the velocity profile for various values of 

viscosity ratio Rv and it is observed that an increase in Rv, 

decreases the velocity throughout the flow domain. Thus, it is 

concluded that under the influence of dominating effect of 

viscosity in fluid layer, momentum transport decreases and the 

decrease is significant in the layers adjacent to the interface 

(d=1.5). The velocity becomes maximum when Rv=1, i.e. both 

the viscosities are of the same order of magnitude. Further it is 

seen that as γ increases, the velocity increases, whereas the 

effect of Rv is to decrease the velocity. The parameter γ 

represents the adjustable proportionality coefficient of stress 

jump at the interface. The higher the jump, the greater the 

deformation, consequently, the velocity increases. 

 
 

Figure 4. Velocity profile for various values of γ and Rv 

 
(a) 

 
(b) 

 

Figure 5. (a) Velocity in fluid region; (b) Velocity in 

porous region 

We have verified our results with earlier published works 

(Kumari and Jayanthi [19]) and noticed that the results are 

found to be in good agreement. They have observed that both 

boundary (viscous resistances) and inertia effects are found to 

decrease the velocity in boundary layer. In the present study, 

from Figure 4 it is observed that an increase in viscosity ratio 

parameter Rv reduce the fluid velocity. 

 
(a) 

 
 

Figure 6. (a) Temperature in fluid region; (b) Temperature in 

porous region 

 

Comparison between analytical solution and numerical 

solution when Rv=2, γ=0.5, Da=0.1, d=1.5, Mf=2.2, Mp=4, λ=2: 

Figure 5(a) and 5(b) show the velocity distributions in the fluid 

region 1≤ r ≤ 1.5 and in the porous region 1.5≤ r ≤ 2. Figure 

6(a) and 6(b) represent the temperature distribution 

counterpart. From the Figures, it is seen that both analytic and 

numerical methods are in good agreement. It further asserts 

that velocity distribution assumes a parabolic distribution in 

the fluid region and stiff fall in porous region. It is also 

observed that sharp fall in temperature distribution is marked 

in both the regions. Those distributions adhere to no slip 

conditions and free stream at the bounding surfaces. 

 

 

5. CONCLUSIONS 

 

The significant momentum transport occurs in the region 

close to the interface of two zones. 

The consistency of flow pattern depends on the permeability 

of porous region. 

The strength of the external applied magnetic field is to be 

regulated to obtain the desired flow rate. 
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The adjustable stress jump condition augments the velocity 

distribution. 

The temperature distribution is almost linear across the flow 

domain and it decreases with the increase in spatial distance of 

annular region. 
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NOMENCLATURE 

 

d’  radial distance of interface, m 

Da Darcy number 

d radial distance of interface in non- 

dimensional form, m 

g acceleration due to gravity, m.s-2  

pK 
 

Mf
 Mp
 

Q
 

R 
R*

 
Rv 

cT 
 

fT 
 

pT 
 

u’ 
U 
 

permeability of the porous medium 

 

magnetic parameter in fluid region 

magnetic parameter in porous layer 

rate of heat transfer 

radius of the inner cylinder  

radius of the outer cylinder  

viscosity ratio parameter 

characteristic temperature, K 

temperature of the fluid layer, K 

 

temperature of the porous layer, K  

 

velocity along the axis of cylinder, m.s-1 

velocity along the axis of cylinder in non-

dimensional form, m.s-1  
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Greek symbols 

α adjustable coefficient in the stress jump 

condition 

β 

γ 

μ

θ 

coefficient of thermal expansion, K-1 

ratio of dynamic viscosity 

dynamic viscosity, kg.m-1.s-1 

temperature in non-dimensional form, K 
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