
Unrestricted General Solution of 6DoF Inverse Dynamics Problem of a 3D Guided Glider

Abdallah M. Elsherbiny1*, Amgad M. Bayoumy2, Ahmed M. Elshabka3, Mohamed M. Abdelrahman4

1 EAF Research and Development Department, MTC, Cairo 11766, Egypt
2 Mechatronics Department, MSA University, Giza 12563, Egypt
3 Aeronautical Department, MTC, Cairo 11766, Egypt
4 Aeronautical Department, Cairo University, Cairo 12613, Egypt

Corresponding Author Email: ambayoumy@msa.eun.eg

https://doi.org/10.18280/mmep.070318 ABSTRACT

Received: 24 June 2020

Accepted: 30 August 2020

Although solving inverse dynamics problems is performed a lot in literature, none of

the previous references addressed the general unrestricted solution of three dimensional

(3D) trajectories of guided gliders. This glider could be any subsonic flying body such

as guided ammunitions. Inverse dynamics could be one of the key techniques of solving

similar problems. In this paper, 3D trajectory generation and following are performed.

The trajectory generation is divided into three phases: heading correction, glide and

terminal phases. The solution of the inverse problem is performed analytically, using

the Mu-Pad tool. Next, a special formulation of the general dynamics equations enables

the solution of such a problem and the calculation of the required deflection angles.

Finally, a six degrees of freedom (6DoF) direct simulation is performed using the

obtained deflection angles in order to compare its trajectory with the generated one.

This comparison yields fairly good results and validates the quality of the proposed

inverse dynamics solution.

Keywords:

inverse simulation, direct simulation, trajectory

generation, guided glider

1. INTRODUCTION

The trajectory generation and following are very critical for

most unmanned aerial vehicles and guided weapons which

mainly depend on GPS/INS systems for location detection.

The trajectory generation can be applied for different types of

flying vehicles such as unmanned combat air vehicles

(UCAV) [1], entry vehicles [2], UAVs with obstacle

avoidance mechanisms [3], missiles [4], guided projectiles [5],

and guided gliding vehicles [6, 7].

The guided gliders are discussed here because many types

of aerial vehicles could be considered as gliders in the case of

emergencies (such as when the engine is down).
Regarding the trajectory generation, the trajectory is divided

into gliding and terminal phases. There are many approaches

for obtaining the optimum gliding trajectories depending on

the mission requirements, such as maximum range [8, 9] or

maximum endurance [10]. These problems can be solved

using indirect and direct methods. The indirect methods

transform a control problem into a boundary value problem

which is very accurate but also very complicated [11]. Many

studies concerned with the indirect methods use the inverse

simulation problem to obtain the optimum trajectory [4, 12-

14]. On the other hand, studies using the direct methods obtain

the optimum trajectory through the nonlinear programming

problem (NLP) [15, 16].

For the terminal phase, the problem is to obtain the

maximum impact velocity and angle which can be solved

using the searching methods [17] or initial parameterization

problem methods. Furthermore, the initial parameterization

problem can be solved using indirect [18] or direct methods [5,

19, 20].

The inverse dynamics technique is performed to determine

the time history of the control inputs that enable a dynamic

system to follow a certain desired trajectory or behavior. The

inverse dynamics problem can be classified as three degrees of

freedom (3DoF) and six degrees of freedom (6DoF). For the

3DoF, a point mass aircraft model is applied to control the

longitudinal motion [21-23] or the roll motion [24].

Few studies introduce 6DoF inverse simulations. In 1994,

Abdelrahman and Al-Bahi [25] introduced a generalized

technique for the inverse simulation of aircraft motion along

predetermined trajectories. The inputs of the inverse

simulations are the three components of the trajectory, as well

as the bank angle command [x(t), y(t), z(t), ϕ(t)]. The

simulations applied in their work are divided into simulation

of vertical plane motion, horizontal loop maneuver and rolling

maneuver; separately. In each simulation, they made

assumptions to obtain the differential equations and the

solution procedures. In 2002, Blajer et al. [26] introduced an

inverse simulation study of an aircraft flight path

reconstruction. They also made two assumptions in their

trajectory that the altitude and velocity are constants, which

decreases the number of variables in the governing equations.

In 2016, Yang and Yan [27] introduced a “Neural Network

Approximation-based Nonsingular Terminal Sliding Mode

Control Approach” for solving the issues of the trajectory

following for robotic air vehicles. The inputs are six

components of the trajectory and attitudes as functions of time

[x(t), y(t), z(t), ϕ(t), θ(t), ψ(t)]. Accordingly, the attitudes must

be specified before applying this inverse simulation technique.

In 2019, Yang et al. introduce a dual quaternion approach

for solving the 6DoF inverse simulation of a parallel robots.

This approach decreases the computational cost and time

Mathematical Modelling of Engineering Problems
Vol. 7, No. 3, September, 2020, pp. 465-475

Journal homepage: http://iieta.org/journals/mmep

465

https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.070318&domain=pdf

besides avoiding the singularities. They avoid using the

Euler’s angle approach because of its interminable

trigonometric functions which leads to a higher computational

cost [28].

As concluded by the above survey, there is no general

unrestricted technique to solve the 6DoF, position and Euler

angles, inverse dynamics problem of a guided glider over a 3D

trajectory. In this paper, a new nonlinear 6DoF generalized

inverse simulation technique is proposed and applied on the

3D generated trajectory of a guided glider flying body.

To overcome the computational cost of multiple

trigonometric functions, pre-differntionation formulas of the

inverse dynamics equations of motion are derived

symbolically which can be solved as algebraic equations

where the cosines and sines of the Euler angles are calculated

once for each time step.

The inputs of this method are the trajectory and flight bank

angle as functions of trajectory length [x(s), y(s), z(s), μ(s)].

The outputs of this method are the velocity components, the

attitudes, the angular rates, and the three deflection angles [Vt,

α, β, ϕ, θ, ψ, P, Q, R, δp, δr, δy]. Furthermore, a validation of

the inverse simulation technique is applied by comparing its

response and trajectory with a developed 6DoF direct

simulation that uses the calculated control deflection angles [δp,

δr, δy] as inputs. The flying body dimensions and data are pre-

calculated using a hybrid optimization aerodynamic design

[29].

2. TRAJECTORY GENERATION

The trajectory of the flying body is planned depending on

the mission requirements. For the problem in hand, the mission

requires achieving maximum target destruction while

maintaining the distance between the release-point and the

target-location as large as possible. As a result, the trajectory’s

range, impact angle and speed should be maximized. When the

trajectory is generated with a maximum lift-to-drag ratio, it

will necessarily lead to a maximum glide range but will also

result in a minimum impact angle and speed (and vice-versa).

For this reason, the trajectory is divided into three phases.

Each of these phases uses the appropriate optimization

function that fulfills its specific requirements. The three phases

of the 3D trajectory generation are: the heading correction, the

direct glide, and the terminal phases. The idea of the 3D

trajectory optimization is to apply a nonlinear programing

method that depends on the harp angle (shown in Figure 1) as

a design parameter to transform the trajectory from the direct

glide phase into the terminal phase.

Figure 1. The line of sight and the harp angle [29]

The harp angle is the one whose tangent is equal to the

release altitude divided by the range [30]. In order to smooth

the transition in the 3D trajectory between phases, a Bézier

quadratic curve technique is applied.

2.1 Heading correction phase

The heading correction phase is needed when the flying

body is released with an offset heading angle to the target. This

happens when the vertical plane of the flying body does not

coincide with the line-of-sight’s vertical plane. The line of

sight's vertical plane is the plane formed by the range and the

slant range lines. In this case, the flying body will need to

perform a horizontal turn during the glide until it reaches the

vertical plane of the line-of-sight achieving a zero heading-

offset angle.

To achieve this horizontal turn, the flying body should

perform two turns. The first turn enables the flying body to

reach the target vertical plane quickly. To achieve that, this

turn is performed with minimum radius using Eqns. (1) and

(2). The second turn has a very large curvature since it is

concerned with enabling the flying body’s vertical plane to

coincide with the target vertical plane in a very smooth manner.

Figure 2 shows the horizontal and vertical projections of the

first turn of the heading correction phase.

𝑥𝑡𝑢𝑟𝑛 𝑔𝑙𝑖𝑑𝑒𝑖 =
𝐻𝑠𝑡𝑎𝑟𝑡 −𝐻𝑡𝑢𝑟𝑛 𝑔𝑙𝑖𝑑𝑒𝑖

tan 𝛾
 (1)

𝑦𝑡𝑢𝑟𝑛 𝑔𝑙𝑖𝑑𝑒𝑖 = −

(

2 𝑅𝑡𝑢𝑟𝑛 −√4 𝑅𝑡𝑢𝑟𝑛

2 + 4 𝑥𝑡𝑢𝑟𝑛 𝑔𝑙𝑖𝑑𝑒𝑖
2

2

)

 (2)

Figure 2. The heading correction turn dimensions

Figure 3. The heading correction phase

The smoothing turn is performed using a Bézier quadratic

interpolation given by Eq. (3) using three control points as

shown in Figure 3. The first point P1 is selected at the end of

the first turn’s curve. The second point P2 is selected to be the

intersection point of the tangent to the first turn’s curve and

the line of sight's vertical plane. Finally, the third point P3 is

466

selected as a point lying on the target vertical plane after the

double distance between the first and the second points to

ensure a smooth curve.

𝑃𝑖(𝑥, 𝑦, 𝑧) = (1 − 𝑡𝑑𝑖)
2 𝑃1(𝑥, 𝑦, 𝑧)

+ 2 𝑡𝑑𝑖 (1 − 𝑡𝑑𝑖) 𝑃2(𝑥, 𝑦, 𝑧)
+ (𝑡𝑑𝑖)

2 𝑃3(𝑥, 𝑦, 𝑧)
(3)

2.2 Glide phase

The glide phase trajectory is generated with a minimum

glide angle to ensure a maximum lift-to-drag ratio using Eqns.

(4), (5), and (6). The glide phase ends when the flying body

reaches the point (P4) at which the harp angle (qz) equals its

optimum value as given in Eq. (7) to match that of the terminal

phase.

𝑥𝑔𝑙𝑖𝑑𝑒 = (
𝐻𝑔𝑙𝑖𝑑𝑒 𝑠𝑡𝑎𝑟𝑡 − 𝐻𝑖

tan 𝛾
) ∗ cos𝜓𝑜𝑓𝑓𝑠𝑒𝑡 (4)

𝑦𝑔𝑙𝑖𝑑𝑒 = (
𝐻𝑔𝑙𝑖𝑑𝑒 𝑠𝑡𝑎𝑟𝑡 −𝐻𝑖

tan 𝛾
) ∗ sin𝜓𝑜𝑓𝑓𝑠𝑒𝑡 (5)

𝜓𝑜𝑓𝑓𝑠𝑒𝑡𝑖 = tan
−1
𝑦𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑦𝑖

𝑥𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑥𝑖
 (6)

𝑞𝑧 = tan
−1

(

 𝐻𝑖 − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡

√𝑥2𝑡𝑎𝑟𝑔𝑒𝑡 + 𝑦
2
𝑡𝑎𝑟𝑔𝑒𝑡

− √𝑥2𝑖 + 𝑦
2
𝑖
)

 (7)

The optimization problem is performed by minimizing the

flight path angle as an objective function. This optimization is

achieved through a 6DoF direct simulation.

The optimization problem can be described as:

()1

1

subject to
4 8

35

:

min

[]

z

f X

q

X







=

−  



=

2.3 Terminal phase

The starting point of the terminal phase is obtained using a

direct method as an initial parameterization problem solved by

nonlinear programming (NLP). The gradient-based

optimization method is used to solve the NLP problem with

the objective function being the impact velocity. The

constraints are the angle of attack and the impact angle, while

the design parameters are the harp angle and the flight path

angle at the impact point. This optimization problem can be

described as:

()2

2

subject to:
4 8

75 89

max
impact

impact

z impact

f X V

X q







=

−  

 

 =  

The harp angle and the flight path angle at the impact point

are found to be 35˚ and 78˚ respectively. The terminal phase

trajectory can be drawn in (x, y, z) coordinates using the Bézier

quadratic spline of three control points as shown in Figure 4.

The first point P4 is at the end of the glide phase; obtained

previously. The second point P5 is the intersection of the

impact angle and glide angle lines, and the third point P6 is the

given target position. Apparently, point P5 is the only unknown

point in these three points. Next, the second point coordinates

(xp5, yp5, zp5) could be obtained using the Eqns. (8) to (10). In

Eq. (8) and Eq. (9), γ is the flight path angle of the glide phase

which is known, γimpact is the flight path angle at the impact

point which is known from the optimization output. So, the

unknowns are (xp5, yp5, zp5).

In Eq. (10), ψoffset is the offset angle of the target from

release point which is known previously and yp5 can be

substituted as function of xp5 in Eqns. (8, 9). Consequently,

Eqns. (8, 9) can be solved to calculate [xp5, zp5,], then equation

(10) to calculate yp5.

𝑧𝑝4 − 𝑧𝑝5

√𝑥𝑝5
2 + 𝑦𝑝5

2 − √𝑥𝑝4
2 + 𝑦𝑝4

2
= tan 𝛾 (8)

𝑧𝑝5 − 𝑧𝑝6

√𝑥𝑝6
2 + 𝑦𝑝6

2 − √𝑥𝑝5
2 + 𝑦𝑝5

2
= tan 𝛾𝑖𝑚𝑝𝑎𝑐𝑡 (9)

𝑥𝑝𝑖 tan𝜓𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑦𝑝𝑖 , 𝑖 ∈ {4,5,6} (10)

The Bézier curve shown in Figure 4 is generated from one

hundred intermediate points in [x, y, z] coordinates that are

calculated using Eq. (3). The flight path angle during the

terminal phase can be calculated at each step using Eq. (11). It

is found that the optimum harp angle is equal to 35˚.

𝛾𝑑𝑖𝑣𝑖𝑛𝑔 𝑝ℎ𝑎𝑠𝑒 = tan
−1
−Δ𝑧

Δ𝑥𝑦
 (11)

Figure 4. Generated trajectory of terminal phase showing the

control points

2.4 Overall trajectory

The overall trajectory is obtained by combining the arbitrary

data points [x, y, z] of the three phases as shown in Figure 5.

First, the flying body is released in the airplane’s vertical plane.

It then performs a gliding turn to correct its heading and

continues gliding till the harp angle reaches its optimum value.

Finally, it performs a vertical turn to reach the target.

P4

P5

P6

467

Figure 5. Slant range, airplane, and overall trajectory

3. INVERSE SIMULATION

After generating the optimum trajectories, inverse

simulations are carried out to arrive at the control surface

deflection angles. The direct simulation model includes twelve

flying body equations of motion (Eqns. (12-23)). If the three

control surfaces' deflection angles U(t) and the initial values

of the state vector Xi are given, the twelve variables of the state

vector X(t), including the flight trajectory [x(t), y(t), z(t)] and

the flight attitudes [ϕ(t), θ(t), ψ(t))], can be obtained. However,

in the inverse dynamics problem if the state vector X(t) is used

as an input, there will be no solution. This is a result of having

twelve inputs (flying body states) and three outputs, [δp(t), δr(t),

δy(t)] [31]. Furthermore, if the inputs of the state vector are less

than three, there will be infinite solutions. Therefore, the

inverse simulation is performed by using only three inputs of

the state vector to obtain a single solution of the control vector

U(t). In this study, a guided glider flying body is considered.

Hence, the thrust is zero. In addition, the generated trajectories

are arbitrary points given in (x, y, z) coordinates as a function

of the flight path length (s). Additionally, new nonlinear

generalized 6DoF inverse simulations are performed using

both flight path and body equations of motion.

The general inverse simulation equations of motion of a

flying body can be presented in the flight path axes [32] as

follows:

�̇� = 𝑉 𝑐𝑜𝑠 𝛾 cos 𝜒 (12)

�̇� = 𝑉 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝜒 (13)

�̇� = − 𝑉 𝑠𝑖𝑛 𝛾 (14)

−𝐷 −𝑚𝑔 𝑠𝑖𝑛 𝛾 − 𝑚 �̇� = 0 (15)

−𝑌 +𝑚𝑔 𝑠𝑖𝑛 𝜇 𝑐𝑜𝑠 𝛾
+ 𝑚 𝑉 (−�̇� 𝑐𝑜𝑠 𝜇 𝑐𝑜𝑠 𝛾
+ �̇� 𝑠𝑖𝑛 𝜇) = 0

(16)

𝐿 −𝑚𝑔 𝑐𝑜𝑠 𝜇 𝑐𝑜𝑠 𝛾
− 𝑚 𝑉 (�̇� 𝑠𝑖𝑛 𝜇 𝑐𝑜𝑠 𝛾 + �̇� 𝑐𝑜𝑠 𝜇)
= 0

(17)

�̇� = 𝑃 + (𝑄 sin𝜙 + 𝑅 cos 𝜙) tan 𝜃 (18)

�̇� = 𝑄 cos 𝜙 − 𝑅 sin 𝜙 (19)

�̇� = (𝑄 sin 𝜙 + 𝑅 cos 𝜙) cos 𝜃⁄ (20)

�̇� = (𝐶1 𝑅 + 𝐶2 𝑃) 𝑄 + 𝐶3 �̅� + 𝐶4 𝑁 (21)

�̇� = 𝐶5 𝑃 𝑅 − 𝐶6 (𝑃
2 − 𝑅2) + 𝐶7 𝑀 (22)

�̇� = (𝐶8 𝑃 − 𝐶2 𝑅) 𝑄 + 𝐶4 �̅� + 𝐶9 𝑁 (23)

The general inverse simulation of a flying body has nine

equations (three kinematics equations and six dynamics

equations) with twelve unknowns. Hence, three constraint

equations must be added. The inputs are the arbitrary

trajectory data (x(s), y(s), z(s), μ(s)) that can be transformed

into the flight path angles (γ(s), χ(s), μ(s)). The outputs are the

control surfaces' deflections (δpitch, δyaw, δroll) that are

transformed into the fins' deflection angles (δ1, δ2, δ3, δ4).

The difficulty of formulating a general inverse simulation

problem lies in the determination of the first and second

derivatives of the three attitudes (�̇�, 𝜃,̇ �̇�, 𝜙,̈ 𝜃,̈ �̈�) without

any further restrictions. The body axes and flight path axes are

related by the angle of attack (α) and the sideslip angle (β) [31].

The rotation from the flight path axes to the body axes can be

performed using the following equations, (24) to (27).

𝑅 (𝜙, 𝜃, 𝜓) = 𝑅1 (−𝛽, 𝛼, 0). 𝑅2 (𝜇, 𝛾, 𝜒) (24)

𝑅1 (−𝛽, 𝛼, 0)

= [

cos𝛽 cos 𝛼 − sin 𝛽 cos 𝛼 − sin 𝛼
 sin 𝛽 cos 𝛽 0

cos 𝛽 sin 𝛼 − sin 𝛽 sin 𝛼 cos𝛼
]

(25)

𝑅2 (𝜇, 𝛾, 𝜒)

= [
cos𝜒 cos 𝛾 sin 𝜒 cos 𝛾 − sin 𝛾

cos𝜒 sin 𝛾 sin 𝜇 − sin 𝜒 cos 𝜇 sin 𝜒 sin 𝛾 sin 𝜇 + cos 𝜒 cos 𝜇 cos 𝛾 sin 𝜇
cos𝜒 sin 𝛾 cos 𝜇 + sin 𝜒 sin 𝜇 sin 𝜒 sin 𝛾 cos𝜇 − cos 𝜒 sin 𝜇 cos 𝛾 cos𝜇

] (26)

𝑅 (𝜙, 𝜃,𝜓)

= [
cos𝜓 cos𝜃 sin 𝜓 cos𝜃 −sin 𝜃

cos𝜓 sin 𝜃 sin𝜙 − sin 𝜓 cos𝜙 sin 𝜓 sin 𝜃 sin𝜙 + cos𝜓 cos𝜙 cos𝜃 sin 𝜙
cos𝜓 sin 𝜃 cos𝜙 + sin𝜓 sin𝜙 sin 𝜓 sin 𝜃 cos𝜙 − cos𝜓 sin 𝜙 cos𝜃 cos𝜙

] (27)

In order to formulate the pitch angle (θ), presented in Eq.

(28), the element R1,3 must be obtained from Eq. (27).

𝜃 = 𝑠𝑖𝑛−1[𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛾 + 𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 𝜇 𝑠𝑖𝑛 𝛼
+ 𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜇]

(28)

Similarly, the other Euler angles (ϕ, ψ) are calculated using

the elements R2,3 and R1,2 respectively and are shown in Eqns.

(29) and (30):

𝜙 = 𝑠𝑖𝑛−1[−(sin 𝛽 sin 𝛾 + cos𝛽 cos 𝛾 sin 𝜇) cos 𝜃⁄] (29)

𝜓 = 𝑠𝑖𝑛−1[(sin 𝛼 (cos 𝜒 sin 𝜇 − cos 𝜇 sin 𝛾 sin 𝜒)
− cos 𝛼 sin 𝛽 (cos 𝜒 cos 𝜇
+ sin 𝛾 sin 𝜒 sin 𝜇)
+ cos 𝛼 cos 𝛽 cos 𝛾 sin 𝜒)/ cos 𝜃]

(30)

Moreover, by substituting the value of (θ) from equation (28)

in Eqns. (29) and (30), the body attitudes (ϕ, θ, ψ) are obtained

as functions of the flight path angles (μ, γ, χ) and wind angles

(β, α) only. Consequently, the derivatives (�̇�. �̇�. �̇�. �̈�. �̈�. �̈�) can

be obtained by differentiating the body attitudes twice with

respect to time.

Differentiating the three trigonometric Eqns. (28), (29) and

(30) is greatly challenging owing to its complexity. For this

reason, previous studies usually avoid this method. However,

468

the methodology of differentiating the three equations plays a

vital role in ensuring the accuracy of the resulting equations.

As a result, a program is developed in the current study to

perform the symbolic differentiation of the three equations

using MuPAD/MATLAB and the resulting equations were

then imported into the main MATLAB program. The six

resulting equations of attitude derivatives are lengthy, hence

they are presented in Appendix A.

The following parameters are necessary to perform the

6DoF inverse simulation:

I. Attitudes and their derivatives up to the second

derivatives (Appendix A)

II. Flight path angles and their derivatives up to the third

derivatives (𝛾, 𝜒, 𝜇, �̇�, �̈�, 𝛾, �̇�, �̈�, 𝜒, �̇�, �̈�, 𝜇) (Eqns. (33)

to (43))

III. Velocity derivatives (�̇�, �̈�) (Eqns. (15) and (44)).

IV. Wind angles derivatives (�̇�, �̇�, �̈�, 𝛽)̈ (Eqns. (45) to

(48))

V. Angular rates derivatives (�̇�, �̇�, �̇�) (Eqns. (49) to

(51))

The equations from (33) to (51) represent the aerodynamic

forces and moments, and demonstrate the technique of

obtaining these required derivatives. They are also used to

obtain the control surface deflection angles starting from the

given trajectory data.

The simulation is performed using the Runge-Kutta-4th

order numerical integration method to obtain all variables of

the state vector, X=[x, y, z, α, β, V, ϕ, θ, ψ, P, Q, R] at each

time step.

𝐿 = 0.5 𝜌 𝑉𝑡
2 𝑆 [𝐶𝐿𝑜 + 𝐶𝐿𝛼𝛼 + 𝐶𝐿𝛿𝑝𝛿𝑝

+ 𝐶𝐿𝑞(𝑐 2𝑉𝑇⁄)𝑞 + 𝐶𝐿�̇�(𝑐 2𝑉𝑇⁄)�̇�]

𝐷 = 0.5𝜌𝑉𝑡
2𝑆[𝐶𝐷𝑜 + 𝑘𝐶𝐿

2]
𝑀 = 0.5𝜌𝑉𝑡

2𝑆𝑐𝑤[𝐶𝑚𝑜 + 𝐶𝑚𝛼𝛼 + 𝐶𝑚𝛿𝑝𝛿𝑝
+ 𝐶𝑚𝑞(𝑐 2𝑉𝑇⁄)𝑞 + 𝐶𝑚�̇�(𝑐 2𝑉𝑇⁄)�̇�]

(31)

𝑌 = 0.5 𝜌 𝑉𝑡
2 𝑆 [𝐶𝑌𝑜 + 𝐶𝑌𝛽𝛽 + 𝐶𝑌𝛿𝑟𝛿𝑟 + 𝐶𝑌𝛿𝑦𝛿𝑦

+ 𝐶𝑌𝑝(𝑏 2𝑉𝑇⁄)𝑝 + 𝐶𝑌𝑟(𝑏 2𝑉𝑇⁄)𝑟]

𝐿 = 0.5 𝜌 𝑉𝑡
2 𝑆 𝑏𝑤 [𝐶𝑙𝑜 + 𝐶𝑙𝛽𝛽 + 𝐶𝑙𝛿𝑟𝛿𝑟 + +𝐶𝑌𝛿𝑦𝛿𝑦

+ 𝐶𝑙𝑝(𝑏 2𝑉𝑇⁄)𝑝 + 𝐶𝑙𝑟(𝑏 2𝑉𝑇⁄)𝑟]

𝑁 = 0.5 𝜌 𝑉𝑡
2 𝑆 𝑏𝑤[𝐶𝑛𝑜 + 𝐶𝑛𝛽𝛽 + 𝐶𝑛𝛿𝑟𝛿𝑟 + 𝐶𝑌𝛿𝑦𝛿𝑦

+ 𝐶𝑛𝑝(𝑏 2𝑉𝑇⁄)𝑝 + 𝐶𝑛𝑟(𝑏 2𝑉𝑇⁄)𝑟]

(32)

3.1 Initial values calculation

1) Calculate 𝛾, 𝜒 (Eqns. (33) and (34))

2) Calculate �̇�, �̇�, �̇� (Eqns. (35), (38), and (41))

3) Calculate α, β ((16) and (17))

4) Calculate 𝜃, 𝜓,𝜙

5) Calculate �̇� (Eq. (15))

6) Calculate �̇�, �̇� (Eqns. (45) and (47))

7) Calculate �̇�, �̇�, �̇�

8) Calculate 𝑃, 𝑄, 𝑅 (Eqns. (18) to (20))

9) Calculate �̈� (Eq. (44))

10) Calculate �̈�, �̈�, �̈� (Eqns. (36), (39) and (42))

11) Calculate 𝛾, 𝜒, 𝜇 (Eqns. (37), (40) and (43))

12) Calculate �̈�, �̈� (Eqns. (46) and (48))

13) Calculate �̈�, �̈�, �̈�

14) Calculate �̇�, �̇�, �̇� (Eqns. (49) to (51))

15) Calculate 𝑀,𝑁, 𝐿 (Eqns. (21) to (23))

16) Calculate 𝛿𝑝𝑖𝑡𝑐ℎ, 𝛿𝑦𝑎𝑤, 𝛿𝑟𝑜𝑙𝑙 (Eqns. (30) and (31))

3.2 Numerical solution

Starting with the initial values calculated in the above steps,

the derivatives of all variables with respect to time are

calculated as follows:

1) Calculate �̇�, �̇�, �̇� (Eqns. (12) to (14))

2) Calculate �̇� (Eq. (15))

3) Calculate �̇�, �̇�, �̇� (Eqns. (35), (38) and (41))

4) Calculate �̇�, �̇� (Eqns. (45) and (47))

5) Calculate �̇�, �̇�, �̇�

6) Calculate �̈� (Eq. (44))

7) Calculate �̈�, �̈�, �̈� (Eqns. (36), (39) and (42))

8) Calculate 𝛾, 𝜒, 𝜇 (Eqns. (37), (40) and (43))

9) Calculate �̈�, �̈� (Eqns. (46) and (48))

10) Calculate �̈�, �̈�, �̈�

11) Calculate �̇�, �̇�, �̇� (Eqns. (49) to (51))

12) Calculate 𝑀,𝑁, 𝐿 (Eqns. (21) to (23))

13) Calculate 𝛿𝑝𝑖𝑡𝑐ℎ, 𝛿𝑦𝑎𝑤, 𝛿𝑟𝑜𝑙𝑙 (Eqns. (30) and (31)).

14) Transfer 𝛿𝑝𝑖𝑡𝑐ℎ, 𝛿𝑦𝑎𝑤, 𝛿𝑟𝑜𝑙𝑙 into 𝛿1, 𝛿2, 𝛿3, 𝛿4.

𝛾(𝑠) = − sin−1(𝑧′(𝑠)) (33)

𝜒(𝑠) = tan−1(𝑦′(𝑠) 𝑥′⁄ (𝑠)) (34)

�̇� =
𝑑𝛾

𝑑𝑡
=
𝑑𝛾

𝑑𝑠

𝑑𝑠

𝑑𝑡

�̇� = 𝛾′ 𝑉

(35)

�̈� =
𝑑�̇�

𝑑𝑡
=
𝑑

𝑑𝑡
[𝛾′ 𝑉] =

𝑑𝛾′

𝑑𝑡
 𝑉 +

𝑑𝑉

𝑑𝑡
 𝛾′

=
𝑑𝛾′

𝑑𝑠

𝑑𝑠

𝑑𝑡
 𝑉 +

𝑑𝑉

𝑑𝑡
 𝛾′

�̈� = 𝛾′′ 𝑉2 + 𝛾′ �̇�

(36)

�̈� = 𝛾′′ 𝑉2 + 𝛾′ �̇�

𝛾 = 𝛾′′′ 𝑉3 + 2 𝛾′′ 𝑉 �̇� + 𝛾′′ 𝑉 �̇� + 𝛾′ �̈�
(37)

Similarly, the derivatives (�̇�, �̈�, 𝜒, �̇�, �̈�, 𝜇) are obtained.

�̇� = 𝜒′ 𝑉 (38)

�̈� = 𝜒′′ 𝑉2 + 𝜒′ �̇� (39)

𝜒 = 𝜒′′′ 𝑉3 + 2 𝜒′′ 𝑉 �̇� + 𝜒′′ 𝑉 �̇� + 𝜒′ �̈� (40)

�̇� = 𝜇′ 𝑉 (41)

�̈� = 𝜇′′ 𝑉2 + 𝜇′ �̇� (42)

𝜇 = 𝜇′′′ 𝑉3 + 2 𝜇′′ 𝑉 �̇� + 𝜇′′ 𝑉 �̇� + 𝜇′ �̈� (43)

Differentiate Eq. (15) with respect to time to obtain �̈�.

�̈� = −[0.5 𝜌 𝑆 𝑉2 (𝐶𝐷𝛼 �̇� + 𝐶𝐷𝛽 �̇�) + 0.5 �̇� 𝑆 𝑉
2 𝐶𝐷

+ 𝜌 𝑆 𝑉 �̇� 𝐶𝐷 +𝑚𝑔 �̇� 𝑐𝑜𝑠 𝛾]/𝑚
(44)

Obtain �̇�, �̈� by differentiating Eq. (16) twice with respect to

time.

469

�̇� = [𝑚 𝑉 (�̈� sin 𝜇 − �̈� cos 𝛾 cos 𝜇 + �̇� �̇� cos 𝜇
+ �̇� �̇� cos 𝜇 sin 𝛾
+ �̇� �̇� cos 𝛾 sin 𝜇)

+ 𝑚 �̇� (−�̇� 𝑐𝑜𝑠 𝜇 𝑐𝑜𝑠 𝛾
+ �̇� 𝑠𝑖𝑛 𝜇) − 0.5 �̇� 𝑆 𝑉2 𝐶𝑌
− 𝜌 𝑆 𝑉 �̇� 𝐶𝑌
+𝑚𝑔 (�̇� cos 𝛾 cos 𝜇
− �̇� sin 𝛾 sin 𝜇)]
/(0.5 𝜌 𝑆 𝑉2 𝐶𝑌𝛽)

(45)

 �̈� = [𝑚 𝑉 (𝛾 sin 𝜇 − �̇� �̇�2 sin 𝜇 − 𝜒 cos 𝛾 cos 𝜇
+ �̇� �̈� cos 𝜇 + 2 �̇� �̈� cos 𝜇
+ �̇� �̇�2 cos 𝛾 cos 𝜇
+ �̇� �̇�2 cos 𝛾 cos 𝜇
+ 2 �̇� �̈� cos 𝜇 sin 𝛾 + �̇� �̈� cos 𝜇 sin 𝛾
+ �̇� �̈� cos 𝛾 sin 𝜇 + 2 �̇� �̈� cos 𝛾 sin 𝜇
− 2 �̇� �̇� �̇� sin 𝛾 sin 𝜇)

+𝑚 �̈�(−�̇� 𝑐𝑜𝑠 𝜇 𝑐𝑜𝑠 𝛾 + �̇� 𝑠𝑖𝑛 𝜇)

+ 2 𝑚 �̇� (�̈� sin 𝜇 − �̈� cos 𝛾 cos 𝜇
+ �̇� �̇� cos 𝜇 + �̇� �̇� cos 𝜇 sin 𝛾
+ �̇� �̇� cos 𝛾 sin 𝜇) − 𝜌 �̇�2 𝑆 𝐶𝑌
− 0.5 �̈� 𝑆 𝑉2 𝐶𝑌 − 𝜌 𝑆 𝑉 �̈� 𝐶𝑌
− 2 �̇� 𝑆 𝑉 �̇� 𝐶𝑌 − �̇� 𝑆 𝑉

2 �̇� 𝐶𝑌𝛽
− 2 𝜌 𝑆 𝑉 �̇� �̇� 𝐶𝑌𝛽
−𝑚𝑔 �̇�2 cos 𝛾 sin 𝜇
− 𝑚𝑔 �̇�2 cos 𝛾 sin 𝜇
+𝑚𝑔 �̈� cos 𝛾 cos 𝜇
−𝑚𝑔 �̈� sin 𝛾 sin 𝜇
− 2 𝑚𝑔 �̇� �̇� cos 𝜇 sin 𝛾]
/(0.5 𝜌 𝑆 𝑉2 𝐶𝑌𝛽)

(46)

Obtain �̇�, �̈� by differentiating Eq. (17) twice with respect to

time.

�̇� = [𝑚 𝑉 (�̈� 𝑐𝑜𝑠 𝜇 + �̈� 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝜇 − �̇� �̇� 𝑠𝑖𝑛 𝜇

+ �̇� �̇� 𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 𝜇
− �̇� �̇� 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 𝜇)

+ 𝑚 �̇�(�̇� 𝑠𝑖𝑛 𝜇 𝑐𝑜𝑠 𝛾 + �̇� 𝑐𝑜𝑠 𝜇)

− 0.5 𝜌 𝑆 𝑉2 �̇� 𝐶𝐿𝛽 − 0.5 �̇� 𝑆 𝑉
2 𝐶𝐿

− 𝜌 𝑆 𝑉 �̇� 𝐶𝐿
−𝑚𝑔 (�̇� 𝑐𝑜𝑠 𝜇 𝑠𝑖𝑛 𝛾
+ �̇� 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝜇)]/(0.5 𝜌 𝑆 𝑉2 𝐶𝐿𝛼)

(47)

�̈� = [−𝑚 𝑉 (−𝛾 cos 𝜇 + �̇� �̇�2 cos 𝜇 − 𝜒 cos 𝛾 sin 𝜇

+ �̇� �̈� sin 𝜇 + 2 �̇� �̈� sin 𝜇
+ �̇� �̇�2 cos 𝛾 sin 𝜇 + �̇� �̇�2 cos 𝛾 sin 𝜇
− �̇� �̈� cos 𝛾 cos 𝜇
− 2 �̈� �̇� cos 𝛾 cos 𝜇
+ 2 �̈� �̇� sin 𝛾 sin 𝜇 + �̈� �̇� sin 𝛾 sin 𝜇
+ 2 �̇� �̇� �̇� cos 𝜇 sin 𝛾)

+ 𝑚 �̈� (�̇� 𝑠𝑖𝑛 𝜇 𝑐𝑜𝑠 𝛾 + �̇� 𝑐𝑜𝑠 𝜇)

+ 2 𝑚 �̇� (�̈� cos 𝜇 + �̈� cos 𝛾 sin 𝜇
− �̇� �̇� sin 𝜇 + �̇� �̇� cos 𝛾 cos 𝜇

− �̇� �̇� sin 𝛾 sin 𝜇) − 0.5 𝜌 𝑆 𝑉2 𝐶𝐿𝛽 �̈�

− 0.5 �̈� 𝑆 𝑉2 𝐶𝐿 − 𝜌 𝑆 �̇�
2𝐶𝐿

− �̇� 𝑆 𝑉2 (𝐶𝐿𝛼�̇� + 𝐶𝐿𝛽�̇�)

− 2 �̇� 𝑆 𝑉 �̇� 𝐶𝐿
− 2 𝜌 𝑆 𝑉 �̇� (𝐶𝐿𝛼�̇� + 𝐶𝐿𝛽�̇�)

− 𝜌 𝑆 𝑉 �̈� 𝐶𝐿 −𝑚𝑔 �̇�
2 cos 𝛾 cos 𝜇

− 𝑚𝑔 �̇�2 cos 𝛾 cos 𝜇
− 𝑚𝑔 �̈� cos 𝜇 sin 𝛾
− 𝑚𝑔 �̈� cos 𝛾 sin 𝜇
+ 2 𝑚𝑔 �̇� �̇� sin 𝛾 sin 𝜇]
/(0.5 𝜌 𝑆 𝑉2 𝐶𝐿𝛼)

(48)

From the equations of motion, differentiate Eqns. (18), (19)

and (20) with respect to time to obtain �̇�, �̇�, �̇� as functions of

the attitudes angles and their derivatives.

�̈� − �̇� − tan 𝜃 (�̇� cos 𝜙 + �̇� sin𝜙 + 𝑄 �̇� cos 𝜙

− 𝑅 �̇� sin𝜙)

− �̇� (tan2 𝜃 + 1)(𝑄 sin 𝜙
+ 𝑅 cos𝜙) = 0

(49)

�̈� − �̇� cos 𝜙 + �̇� sin 𝜙 + 𝑅 �̇� cos𝜙 + 𝑄 �̇� sin 𝜙
= 0

(50)

�̈� cos 𝜃 − �̇� �̇� sin 𝜃

− (�̇� cos 𝜙 + �̇� sin 𝜙

+ 𝑄 �̇� cos 𝜙 − 𝑅 �̇� sin𝜙) = 0

(51)

4. RESULTS AND DISCUSSION

To perform inverse simulation, the overall generated

trajectory (Figure 7) is input to the inverse dynamics model.

The inverse simulation of the overall trajectory is performed

with a time step of five milliseconds. The inverse simulation

input is the gliding trajectory position vector X(t) shown in

Figure 9. The outputs are [δp, δr, δy], which are transformed

into the fins' deflection angles [δ1, δ2, δ3, δ4] that are within

limits as shown in Figure 8 and Figure 9 where the maximum

deflection angle of the third fin is 30˚.

Figure 6. Fourth derivatives of (x, y, z) with respect to

trajectory path

Figure 7. Input to inverse simulation (overall trajectory)

470

Figure 8. Results of inverse simulation

Figure 9. Control surface deflection of the four fins

Figure 10. Trajectory in vertical plane (comparison)

The direct simulation of a glide trajectory is performed with

a time step of ten milliseconds. A sudden raise in the fourth

derivative of the trajectory position vector after the turning

glide can be noticed (as shown in Figure 6). Therefore, the

overall trajectory has some imperfections at the connection

between the first two phases.

Figure 11. Trajectory in horizontal plane (comparison)

Figure 12. Angle of attack response

Figure 13. Sideslip response

Figure 14. Velocity response

471

Figure 15. Pitch angle response

Figure 16. Heading angle response

Figure 17. Bank angle response

Figure 18. Inverse and direct overall trajectories

(comparisons)

In order to validate the inverse simulation method, a direct

simulation technique is performed using the deflection angles

(similar to [29]) which are the output of the proposed method.

A comparison between both the direct and the inverse

simulations is then plotted (Figure 10 to Figure 18). The direct

and inverse trajectories responses are matched.

To demonstrate the accuracy of the method, the percentage

of difference at the trajectory end point is calculated. The error

in altitude, lateral displacement, angle of attack, sideslip angle,

pitch angle, heading angle, and bank angle are found to be

2.5%, 1%, 0.02%, 0.869%, 1.1%, 0.033%, 16.6%, and 16.6%,

respectively.

5. CONCLUSIONS

In this paper, a new three-dimensional path planning and

following tool for six degrees of freedom subsonic guided

gliders has been developed. This tool generates an optimal

trajectory depending on the required ground target impact

angle and velocity. Despite the sensitivity to the trajectory

generation imperfections, the proposed inverse simulation

method results fairly match those of the direct simulation.

These simulations involve the usage of Euler angles, which are

more conveniently used in aeronautics (in contrast with

quaternions). The proposed method involves pre-formulated

inverse dynamics equations of motion which decreases the

computational cost significantly.

As an extension to the current work, a dual quaternion

approach [28] could be used in order to increase the efficiency

of the inverse simulation besides the decrease in the

computational cost. The ongoing research includes the inverse

and direct simulations in a closed loop control with a position

feedback system, such as the GPS/INS system, to eliminate the

effect of disturbances e.g. random wind effect.

REFERENCES

[1] Wang, G.G., Chu, H.E., Mirjalili, S. (2016). Three-

dimensional path planning for UCAV using an improved

bat algorithm. Aerospace Science and Technology, 49:

231-238. https://doi.org/10.1016/j.ast.2015.11.040

[2] Zhang, Y.L., Chen, K.J., Liu, L.H., Tang, G.J., Bao,

W.M. (2016). Entry trajectory planning based on three-

dimensional acceleration profile guidance. Aerospace

Science and Technology, 48: 131-139.

https://doi.org/10.1016/j.ast.2015.11.009

[3] Yao, P., Wang, H., Su, Z. (2015). Real-time path

planning of unmanned aerial vehicle for target tracking

and obstacle avoidance in complex dynamic environment.

Aerospace Science and Technology, 47: 269-279.

https://doi.org/10.1016/j.ast.2015.09.037

[4] Ma, Y., Guo, J., Tang, S. (2015). High angle of attack

command generation technique and tracking control for

agile missiles. Aerospace Science and Technology, 45:

324-334. https://doi.org/10.1016/j.ast.2015.06.003

[5] Feng, B.M., Nie, W.S. (2013). A new method for initial

parameters optimization of guided projectiles. In

Advanced Materials Research, 791: 1100-1104.

https://doi.org/10.4028/www.scientific.net/AMR.791-

793.1100

[6] Yang, L., Chen, W., Liu, X., Zhou, H. (2016). Steady

glide dynamic modeling and trajectory optimization for

472

high lift-to-drag ratio reentry vehicle. International

Journal of Aerospace Engineering, 2016: 3527460.

https://doi.org/10.1155/2016/3527460

[7] Zhang, D.C., Xia, Q.L., Wen, Q.Q., Zhou, G.Q. (2015).

An approximate optimal maximum range guidance

scheme for subsonic unpowered gliding vehicles.

International Journal of Aerospace Engineering, 2015:

389751. https://doi.org/10.1155/2015/389751

[8] Kelley, H.J., Cliff, E.M., Lutze, F.H. (1982). Boost-glide

range-optimal guidance. Optimal Control Applications

and Methods, 3(3): 293-298.

https://doi.org/10.1002/oca.4660030307

[9] Austin, S. (1998). Investigation of range extension with

a genetic algorithm. In 7th AIAA/USAF/NASA/ISSMO

Symposium on Multidisciplinary Analysis and

Optimization, 1302-1310.

https://doi.org/10.2514/6.1998-4880

[10] Vinh, N.X., Yang, C.Y., Chern, J.S. (1984). Optimal

trajectories for maximum endurance gliding in a

horizontal plane. Journal of Guidance, Control, and

Dynamics, 7(2): 246-248. https://doi.org/10.2514/3.8575

[11] Lu, P. (2008). Entry trajectory optimization with

analytical feedback bank angle law. AIAA Paper, 7268:

1-18. https://doi.org/10.2514/6.2008-7268

[12] Drury, R.G. (2010). Trajectory generation for

autonomous unmanned aircraft using inverse dynamics.

http://dspace.lib.cranfield.ac.uk/handle/1826/5583

[13] Drury, R.G., Tsourdos, A., Cooke, A.K. (2011).

Negative-g trajectory generation using quaternion-based

inverse dynamics. Journal of Guidance, Control, and

Dynamics, 34(1): 283-287.

https://doi.org/10.2514/1.51486

[14] Rahman, T., Hao, Z., Wanchun, C. (2013). Bézier

approximation based inverse dynamic guidance for entry

glide trajectory. In 2013 9th Asian Control Conference

(ASCC), Istanbul, Turkey, pp. 1-6.

https://doi.org/10.1109/ASCC.2013.6606111

[15] Yu, W., Chen, W. (2011). Guidance scheme for glide

range maximization of a hypersonic vehicle. In AIAA

Guidance, Navigation, and Control Conference, 6714.

https://doi.org/10.2514/6.2011-6714

[16] Indig, N., Ben-Asher, J.Z., Farber, N. (2014). Near-

optimal spatial midcourse guidance law with an angular

constraint. Journal of Guidance, Control, and Dynamics,

37(1): 214-223. https://doi.org/10.2514/1.60356

[17] Huang, G.Q., Nan, Y., Chen, F., Wang, Y.T. (2009).

Optimal Release Conditions of No-Power Gliding Bomb.

Flight Dynamics, 27: 93-96.

[18] Hou, M.S. (2007). Optimal gliding guidance in vertical

plane for standoff released guided bomb unit. Journal of

China Ordnance, 5: 1-14.

[19] Darby, C., Rao, A. (2008). An initial examination of

using pseudospectral methods for timescale and

differential geometric analysis of nonlinear optimal

control problems. In AIAA/AAS Astrodynamics

Specialist Conference and Exhibit, 1-26.

https://doi.org/10.2514/6.2008-6449

[20] Jorris, T.R., Cobb, R.G. (2009). Three-dimensional

trajectory optimization satisfying waypoint and no-fly

zone constraints. Journal of Guidance, Control, and

Dynamics, 32(2): 551-572.

https://doi.org/10.2514/1.37030

[21] Lu, P. (1993). Inverse dynamics approach to trajectory

optimization for an aerospace plane. Journal of Guidance,

Control, and Dynamics, 16(4): 726-732.

https://doi.org/10.2514/3.21073

[22] Lou, K.Y., Bryson, A.E. (1996). Inverse and optimal

control for precision aerobatic maneuvers. Journal of

Guidance, Control, and Dynamics, 19(2): 483-488.

https://doi.org/10.2514/3.21643

[23] Elsherbiny, A.M., Aly, A.M., Elshabka, A.,

Abdelrahman, M. (2018). Inverse simulation of

symmetric flight of a guided gliding subsonic flying body.

In 2018 AIAA Modeling and Simulation Technologies

Conference, 0427. https://doi.org/10.2514/6.2018-0427

[24] Sentoh, E., Bryson, A.E. (1992). Inverse and optimal

control for desired outputs. Journal of Guidance, Control,

and Dynamics, 15(3): 687-691.

https://doi.org/10.2514/3.20892

[25] Abdelrahman, M., Al-Bahi, A. (1994). A generalized

technique for the inverse simulation of aircraft motion

along predetermined trajectories. In 19th Atmospheric

Flight Mechanics Conference, pp. 3523.

https://doi.org/10.2514/6.1994-3523

[26] Blajer, W., Goszczyński, J.A., Krawczyk, M. (2002).

The inverse simulation study of aircraft flight path

reconstruction. Transport, 17(3): 103-107.

https://doi.org/10.1080/16483840.2002.10414022

[27] Yang, Y., Yan, Y. (2016). Neural network

approximation-based nonsingular terminal sliding mode

control for trajectory tracking of robotic airships.

Aerospace Science and Technology, 54: 192-197.

https://doi.org/10.1016/j.ast.2016.04.021

[28] Yang, X., Wu, H., Li, Y., Kang, S., Chen, B. (2019).

Computationally efficient inverse dynamics of a class of

six-DOF parallel robots: Dual quaternion approach.

Journal of Intelligent & Robotic Systems, 94(1): 101-113.

https://doi.org/10.1007/s10846-018-0800-1

[29] Elsherbiny, A.M., Aly, A.M., Elshabka, A.,

Abdelrahman, M. (2018). Modeling, simulation and

hyprid optimization method as design tools for range

extension kit of a subsonic flying body. In 2018 AIAA

Modeling and Simulation Technologies Conference,

0429. https://doi.org/10.2514/6.2018-0429

[30] Siouris, G.M. (2004). Missile guidance and control

systems. Springer Science & Business Media.

[31] Kato, O., Sugiura, I. (1986). An interpretation of airplane

general motion and control as inverse problem. Journal

of Guidance, Control, and Dynamics, 9(2): 198-204.

https://doi.org/10.2514/3.20090

[32] Miele, A. (2016). Flight mechanics: theory of flight paths.

Courier Dover Publications.

NOMENCLATURE

CL, CD, Cm
Lift, drag, and pitching moment

coefficients.

𝐶𝑌, 𝐶𝑙 , 𝐶𝑛
Lateral force, rolling, and yawing

moment coefficients.

𝐶𝐿𝑜, 𝐶𝐷𝑜, 𝐶𝑚𝑜

Lift, drag, and pitching moment

coefficients at zero values of 𝛼, q, 𝛿,

and �̇�

𝐶𝑌𝑜, 𝐶𝑙𝑜 , 𝐶𝑛𝑜
Lateral force, rolling, and yawing

moment coefficients at zero values of

𝛽, p, r, and 𝛿.

𝐶𝐿𝛼 , 𝐶𝐿𝑞 , 𝐶𝐿𝛿𝑝 , 𝐶𝐿�̇�
Derivatives of lift coefficient with

respect to 𝛼, q, 𝛿𝑝, and �̇�.

473

𝐶𝑌𝛽 , 𝐶𝑌𝑝 , 𝐶𝑌𝑟 , 𝐶𝑌𝛿𝑟
Derivatives of lateral force coefficient

with respect to 𝛽, p, r, and 𝛿𝑟.

𝐶𝑚𝛼 , 𝐶𝑚𝑞 , 𝐶𝑚𝛿𝑝 , 𝐶𝑚�̇�
Derivatives of moment coefficient

with respect to 𝛼, q, 𝛿𝑝, and �̇�.

𝐶𝑙𝛽 , 𝐶𝑙𝑝, 𝐶𝑙𝑟 , 𝐶𝑙𝛿𝑟
Derivatives of rolling moment

coefficient with respect to 𝛽, p, r, and

𝛿𝑟.

𝐶𝑛𝛽 , 𝐶𝑛𝑝, 𝐶𝑛𝑟 , 𝐶𝑛𝛿𝑟
Derivatives of yawing moment

coefficient with respect to 𝛽, p, r, and

𝛿𝑟.

𝑝, 𝑞, 𝑟
Scalar components of angular velocity

in body axis [rad/sec].

𝑢, 𝑣, 𝑤
Scalar components of linear velocity

in body axis [m/s].

�⃗� 𝐵 Velocity vector in body frame [m/s].

𝑉𝑡 Total velocity [m/s].

𝑥, 𝑦, 𝑧 Position vector in NED frame [m].

𝛼, 𝛽 Wind angles [deg].

𝜌𝐻_𝑎𝑖𝑟 Air density at (H) altitude [kg/m3].

𝛿𝑟 , 𝛿𝑝 , 𝛿𝑦
Roll, pitch, and yaw fins deflection

angles [deg].

𝜙, 𝜃, 𝜓 Euler angles [deg].

�⃗⃗� 𝐵
Angular velocity vector in body axis

[rad/s].

APPENDIX

Equations of Attitudes Derivatives

theta_dot = -(calpha*cbeta*cgam*gam_dot ...

 + calpha*cgam*cmeu*alpha_dot -

cbeta*salpha*sgam*alpha_dot ...

 - calpha*sbeta*sgam*beta_dot -

cmeu*salpha*sgam*gam_dot ...

 - cgam*salpha*smeu*meu_dot +

calpha*cbeta*cgam*smeu*beta_dot ...

 + calpha*cgam*cmeu*sbeta*meu_dot -

cgam*salpha*sbeta*smeu*alpha_dot ...

 - calpha*sbeta*sgam*smeu*gam_dot)/cth;

phi_dot=-(cbeta*sgam*beta_dot +

cgam*sbeta*gam_dot ...

 - sphi*sth*theta_dot ...

 - cbeta*cgam*cmeu*meu_dot ...

 + cgam*sbeta*smeu*beta_dot +

cbeta*sgam*smeu*gam_dot)/(cphi*cth);

 psi_dot=-(salpha*(skai*smeu*kai_dot ...

 - ckai*cmeu*meu_dot - sgam*skai*smeu*meu_dot ...

 + cgam*cmeu*skai*gam_dot + ...

 ckai*cmeu*sgam*kai_dot) + ...

 calpha*sbeta*(cgam*skai*smeu*gam_dot ...

 - ckai*smeu*meu_dot - cmeu*skai*kai_dot ...

 + ckai*sgam*smeu*kai_dot +

cmeu*sgam*skai*meu_dot) ...

 - spsi*sth*theta_dot ...

 - calpha*(ckai*smeu - cmeu*sgam*skai)*alpha_dot ...

 + calpha*cbeta*(ckai*cmeu +

sgam*skai*smeu)*beta_dot ...

 - salpha*sbeta*(ckai*cmeu +

sgam*skai*smeu)*alpha_dot...

 - calpha*cbeta*cgam*ckai*kai_dot ...

 + cbeta*cgam*salpha*skai*alpha_dot ...

 + calpha*cgam*sbeta*skai*beta_dot...

 + calpha*cbeta*sgam*skai*gam_dot)/(cpsi*cth);

theta_2dot = -(- sth*theta_dot^2 ...

 - calpha*cbeta*sgam*alpha_dot^2 -

calpha*cbeta*sgam*beta_dot^2 ...

 - calpha*cbeta*sgam*gam_dot^2 +

calpha*cbeta*cgam*gam_2dot...

 - cgam*cmeu*salpha*alpha_dot^2 +

calpha*cgam*cmeu* alpha_2dot ...

 - cgam*cmeu*salpha* gam_dot^2 -

cgam*cmeu*salpha* meu_dot^2 ...

 - cbeta*salpha*sgam* alpha_2dot -

calpha*sbeta*sgam* beta_2dot ...

 - cmeu*salpha*sgam* gam_2dot - cgam*salpha*smeu*

meu_2dot ...

 - 2*cbeta*cgam*salpha* alpha_dot* gam_dot -

calpha*cgam*sbeta*smeu* alpha_dot^2 ...

 - 2*calpha*cgam*sbeta* gam_dot* beta_dot -

calpha*cgam*sbeta*smeu* beta_dot^2 ...

 + calpha*cbeta*cgam*smeu* beta_2dot -

calpha*cgam*sbeta*smeu* gam_dot^2 ...

 - 2*calpha*cmeu*sgam* alpha_dot* gam_dot -

calpha*cgam*sbeta*smeu* meu_dot^2 ...

 + calpha*cgam*cmeu*sbeta* meu_2dot -

2*calpha*cgam*smeu* alpha_dot* meu_dot ...

 + 2*salpha*sbeta*sgam* beta_dot* alpha_dot -

cgam*salpha*sbeta*smeu* alpha_2dot ...

 - calpha*sbeta*sgam*smeu* gam_2dot +

2*salpha*sgam*smeu* gam_dot* meu_dot ...

 + 2*calpha*cbeta*cgam*cmeu* beta_dot* meu_dot ...

 - 2*cbeta*cgam*salpha*smeu* beta_dot* alpha_dot ...

 - 2*calpha*cbeta*sgam*smeu* beta_dot* gam_dot ...

 - 2*cgam*cmeu*salpha*sbeta* alpha_dot* meu_dot ...

 - 2*calpha*cmeu*sbeta*sgam* gam_dot* meu_dot ...

 + 2*salpha*sbeta*sgam*smeu* alpha_dot*

gam_dot)/cth;

 phi_2dot =-(cbeta*sgam*beta_2dot ...

 - sbeta*sgam*beta_dot^2 - sbeta*sgam*gam_dot^2 ...

 + cgam*sbeta*gam_2dot - cth*sphi*phi_dot^2 ...

 - cth*sphi*theta_dot^2 ...

 - sphi*sth*theta_2dot +

2*cbeta*cgam*beta_dot*gam_dot ...

 + cbeta*cgam*smeu*beta_dot^2 +

cbeta*cgam*smeu*gam_dot^2 ...

 + cbeta*cgam*smeu*meu_dot^2 -

cbeta*cgam*cmeu*meu_2dot ...

 + cgam*sbeta*smeu*beta_2dot +

cbeta*sgam*smeu*gam_2dot ...

 - 2*cphi*sth*phi_dot*theta_dot +

2*cgam*cmeu*sbeta*meu_dot*beta_dot ...

 + 2*cbeta*cmeu*sgam*gam_dot*meu_dot ...

 - 2*sbeta*sgam*smeu*beta_dot*gam_dot)/(cphi*cth);

psi_2dot =-(salpha*(ckai*smeu*kai_dot^2 ...

 + ckai*smeu*meu_dot^2 - ckai*cmeu*meu_2dot ...

 + skai*smeu*kai_2dot - cmeu*sgam*skai*gam_dot^2 ...

 - cmeu*sgam*skai*kai_dot^2 +

cgam*cmeu*skai*gam_2dot ...

 - cmeu*sgam*skai*meu_dot^2 +

ckai*cmeu*sgam*kai_2dot ...

474

 + 2*cmeu*skai*meu_dot*kai_dot -

sgam*skai*smeu*meu_2dot ...

 + 2*cgam*ckai*cmeu*kai_dot*gam_dot ...

 - 2*cgam*skai*smeu*meu_dot*gam_dot ...

 - 2*ckai*sgam*smeu*meu_dot*kai_dot) ...

 - cth*spsi*theta_dot^2 - cth*spsi*psi_dot^2 ...

 - spsi*sth*theta_2dot + salpha*(ckai*smeu ...

 - cmeu*sgam*skai)*alpha_dot^2 - calpha*(ckai*smeu ...

 - cmeu*sgam*skai)*alpha_2dot -

calpha*sbeta*(ckai*cmeu*meu_dot^2 ...

 + cmeu*skai*kai_2dot + ckai*smeu*meu_2dot ...

 + ckai*cmeu*kai_dot^2 +

sgam*skai*smeu*gam_dot^2 ...

 + sgam*skai*smeu*kai_dot^2 -

cgam*skai*smeu*gam_2dot ...

 + sgam*skai*smeu*meu_dot^2 -

ckai*sgam*smeu*kai_2dot ...

 - cmeu*sgam*skai*meu_2dot -

2*skai*smeu*meu_dot*kai_dot ...

 - 2*cgam*ckai*smeu*gam_dot*kai_dot ...

 - 2*cgam*cmeu*skai*gam_dot*meu_dot ...

 - 2*ckai*cmeu*sgam*kai_dot*meu_dot) ...

 + 2*calpha*(skai*smeu*kai_dot ...

 - ckai*cmeu*meu_dot - sgam*skai*smeu*meu_dot ...

 + cgam*cmeu*skai*gam_dot +

ckai*cmeu*sgam*kai_dot)*alpha_dot ...

 + 2*calpha*cbeta*(cgam*skai*smeu*gam_dot -

ckai*smeu*meu_dot ...

 - cmeu*skai*kai_dot + ckai*sgam*smeu*kai_dot ...

 + cmeu*sgam*skai*meu_dot)*beta_dot ...

 - 2*salpha*sbeta*(cgam*skai*smeu*gam_dot ...

 - ckai*smeu*meu_dot - cmeu*skai*kai_dot ...

 + ckai*sgam*smeu*kai_dot +

cmeu*sgam*skai*meu_dot)*alpha_dot ...

 - calpha*sbeta*(ckai*cmeu +

sgam*skai*smeu)*alpha_dot^2 ...

 - calpha*sbeta*(ckai*cmeu +

sgam*skai*smeu)*beta_dot^2 ...

 + calpha*cbeta*(ckai*cmeu +

sgam*skai*smeu)*beta_2dot ...

 - 2*cpsi*sth*psi_dot*theta_dot -

salpha*sbeta*(ckai*cmeu ...

 + sgam*skai*smeu)*alpha_2dot +

calpha*cbeta*cgam*skai*alpha_dot^2 ...

 + calpha*cbeta*cgam*skai*beta_dot^2 ...

 + calpha*cbeta*cgam*skai*gam_dot^2 ...

 + calpha*cbeta*cgam*skai*kai_dot^2 ...

 - calpha*cbeta*cgam*ckai*kai_2dot ...

 + cbeta*cgam*salpha*skai*alpha_2dot ...

 + calpha*cgam*sbeta*skai*beta_2dot ...

 + calpha*cbeta*sgam*skai*gam_2dot ...

 - 2*cbeta*salpha*(ckai*cmeu +

sgam*skai*smeu)*alpha_dot*beta_dot ...

 + 2*cbeta*cgam*ckai*salpha*kai_dot*alpha_dot ...

 + 2*calpha*cgam*ckai*sbeta*kai_dot*beta_dot ...

 + 2*calpha*cbeta*ckai*sgam*gam_dot*kai_dot ...

 - 2*cgam*salpha*sbeta*skai*beta_dot*alpha_dot...

 - 2*cbeta*salpha*sgam*skai*gam_dot*alpha_dot ...

 -

2*calpha*sbeta*sgam*skai*beta_dot*gam_dot)/(cpsi*cth)

;

475

