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Although solving inverse dynamics problems is performed a lot in literature, none of 

the previous references addressed the general unrestricted solution of three dimensional 

(3D) trajectories of guided gliders. This glider could be any subsonic flying body such 

as guided ammunitions. Inverse dynamics could be one of the key techniques of solving 

similar problems. In this paper, 3D trajectory generation and following are performed. 

The trajectory generation is divided into three phases: heading correction, glide and 

terminal phases. The solution of the inverse problem is performed analytically, using 

the Mu-Pad tool. Next, a special formulation of the general dynamics equations enables 

the solution of such a problem and the calculation of the required deflection angles. 

Finally, a six degrees of freedom (6DoF) direct simulation is performed using the 

obtained deflection angles in order to compare its trajectory with the generated one. 

This comparison yields fairly good results and validates the quality of the proposed 

inverse dynamics solution. 
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1. INTRODUCTION

The trajectory generation and following are very critical for 

most unmanned aerial vehicles and guided weapons which 

mainly depend on GPS/INS systems for location detection. 

The trajectory generation can be applied for different types of 

flying vehicles such as unmanned combat air vehicles 

(UCAV) [1], entry vehicles [2], UAVs with obstacle 

avoidance mechanisms [3], missiles [4], guided projectiles [5], 

and guided gliding vehicles [6, 7]. 

The guided gliders are discussed here because many types 

of aerial vehicles could be considered as gliders in the case of 

emergencies (such as when the engine is down). 
Regarding the trajectory generation, the trajectory is divided 

into gliding and terminal phases. There are many approaches 

for obtaining the optimum gliding trajectories depending on 

the mission requirements, such as maximum range [8, 9] or 

maximum endurance [10]. These problems can be solved 

using indirect and direct methods. The indirect methods 

transform a control problem into a boundary value problem 

which is very accurate but also very complicated [11]. Many 

studies concerned with the indirect methods use the inverse 

simulation problem to obtain the optimum trajectory [4, 12-

14]. On the other hand, studies using the direct methods obtain 

the optimum trajectory through the nonlinear programming 

problem (NLP) [15, 16]. 

For the terminal phase, the problem is to obtain the 

maximum impact velocity and angle which can be solved 

using the searching methods [17] or initial parameterization 

problem methods. Furthermore, the initial parameterization 

problem can be solved using indirect [18] or direct methods [5, 

19, 20]. 

The inverse dynamics technique is performed to determine 

the time history of the control inputs that enable a dynamic 

system to follow a certain desired trajectory or behavior. The 

inverse dynamics problem can be classified as three degrees of 

freedom (3DoF) and six degrees of freedom (6DoF). For the 

3DoF, a point mass aircraft model is applied to control the 

longitudinal motion [21-23] or the roll motion [24].  

Few studies introduce 6DoF inverse simulations. In 1994, 

Abdelrahman and Al-Bahi [25] introduced a generalized 

technique for the inverse simulation of aircraft motion along 

predetermined trajectories. The inputs of the inverse 

simulations are the three components of the trajectory, as well 

as the bank angle command [x(t), y(t), z(t), ϕ(t)]. The 

simulations applied in their work are divided into simulation 

of vertical plane motion, horizontal loop maneuver and rolling 

maneuver; separately. In each simulation, they made 

assumptions to obtain the differential equations and the 

solution procedures. In 2002, Blajer et al. [26] introduced an 

inverse simulation study of an aircraft flight path 

reconstruction. They also made two assumptions in their 

trajectory that the altitude and velocity are constants, which 

decreases the number of variables in the governing equations. 

In 2016, Yang and Yan [27] introduced a “Neural Network 

Approximation-based Nonsingular Terminal Sliding Mode 

Control Approach” for solving the issues of the trajectory 

following for robotic air vehicles. The inputs are six 

components of the trajectory and attitudes as functions of time 

[x(t), y(t), z(t), ϕ(t), θ(t), ψ(t)]. Accordingly, the attitudes must 

be specified before applying this inverse simulation technique. 

In 2019, Yang et al. introduce a dual quaternion approach 

for solving the 6DoF inverse simulation of a parallel robots. 

This approach decreases the computational cost and time 
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besides avoiding the singularities. They avoid using the 

Euler’s angle approach because of its interminable 

trigonometric functions which leads to a higher computational 

cost [28]. 

As concluded by the above survey, there is no general 

unrestricted technique to solve the 6DoF, position and Euler 

angles, inverse dynamics problem of a guided glider over a 3D 

trajectory. In this paper, a new nonlinear 6DoF generalized 

inverse simulation technique is proposed and applied on the 

3D generated trajectory of a guided glider flying body.  

To overcome the computational cost of multiple 

trigonometric functions, pre-differntionation formulas of the 

inverse dynamics equations of motion are derived 

symbolically which can be solved as algebraic equations 

where the cosines and sines of the Euler angles are calculated 

once for each time step.  

The inputs of this method are the trajectory and flight bank 

angle as functions of trajectory length [x(s), y(s), z(s), μ(s)]. 

The outputs of this method are the velocity components, the 

attitudes, the angular rates, and the three deflection angles [Vt, 

α, β, ϕ, θ, ψ, P, Q, R, δp, δr, δy]. Furthermore, a validation of 

the inverse simulation technique is applied by comparing its 

response and trajectory with a developed 6DoF direct 

simulation that uses the calculated control deflection angles [δp, 

δr, δy] as inputs. The flying body dimensions and data are pre-

calculated using a hybrid optimization aerodynamic design 

[29]. 

 

 

2. TRAJECTORY GENERATION 
 

The trajectory of the flying body is planned depending on 

the mission requirements. For the problem in hand, the mission 

requires achieving maximum target destruction while 

maintaining the distance between the release-point and the 

target-location as large as possible. As a result, the trajectory’s 

range, impact angle and speed should be maximized. When the 

trajectory is generated with a maximum lift-to-drag ratio, it 

will necessarily lead to a maximum glide range but will also 

result in a minimum impact angle and speed (and vice-versa). 

For this reason, the trajectory is divided into three phases. 

Each of these phases uses the appropriate optimization 

function that fulfills its specific requirements. The three phases 

of the 3D trajectory generation are: the heading correction, the 

direct glide, and the terminal phases. The idea of the 3D 

trajectory optimization is to apply a nonlinear programing 

method that depends on the harp angle (shown in Figure 1) as 

a design parameter to transform the trajectory from the direct 

glide phase into the terminal phase. 

 

 
 

Figure 1. The line of sight and the harp angle [29] 

 

The harp angle is the one whose tangent is equal to the 

release altitude divided by the range [30]. In order to smooth 

the transition in the 3D trajectory between phases, a Bézier 

quadratic curve technique is applied. 

 

2.1 Heading correction phase 

 

The heading correction phase is needed when the flying 

body is released with an offset heading angle to the target. This 

happens when the vertical plane of the flying body does not 

coincide with the line-of-sight’s vertical plane. The line of 

sight's vertical plane is the plane formed by the range and the 

slant range lines.  In this case, the flying body will need to 

perform a horizontal turn during the glide until it reaches the 

vertical plane of the line-of-sight achieving a zero heading-

offset angle.  

To achieve this horizontal turn, the flying body should 

perform two turns. The first turn enables the flying body to 

reach the target vertical plane quickly. To achieve that, this 

turn is performed with minimum radius using Eqns. (1) and 

(2). The second turn has a very large curvature since it is 

concerned with enabling the flying body’s vertical plane to 

coincide with the target vertical plane in a very smooth manner. 

Figure 2 shows the horizontal and vertical projections of the 

first turn of the heading correction phase. 
 

𝑥𝑡𝑢𝑟𝑛 𝑔𝑙𝑖𝑑𝑒𝑖 =
𝐻𝑠𝑡𝑎𝑟𝑡 −𝐻𝑡𝑢𝑟𝑛 𝑔𝑙𝑖𝑑𝑒𝑖

tan 𝛾
 (1) 

 

𝑦𝑡𝑢𝑟𝑛 𝑔𝑙𝑖𝑑𝑒𝑖 = −

(

 
2 𝑅𝑡𝑢𝑟𝑛 −√4 𝑅𝑡𝑢𝑟𝑛

2 + 4 𝑥𝑡𝑢𝑟𝑛 𝑔𝑙𝑖𝑑𝑒𝑖
2

2

)

  (2) 

 

 
 

Figure 2. The heading correction turn dimensions 

 

 
 

Figure 3. The heading correction phase 

 

The smoothing turn is performed using a Bézier quadratic 

interpolation given by Eq. (3) using three control points as 

shown in Figure 3. The first point P1 is selected at the end of 

the first turn’s curve. The second point P2 is selected to be the 

intersection point of the tangent to the first turn’s curve and 

the line of sight's vertical plane. Finally, the third point P3 is 
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selected as a point lying on the target vertical plane after the 

double distance between the first and the second points to 

ensure a smooth curve. 

 

𝑃𝑖(𝑥, 𝑦, 𝑧) = (1 − 𝑡𝑑𝑖)
2 𝑃1(𝑥, 𝑦, 𝑧)

+ 2 𝑡𝑑𝑖  (1 − 𝑡𝑑𝑖) 𝑃2(𝑥, 𝑦, 𝑧)
+ (𝑡𝑑𝑖)

2 𝑃3(𝑥, 𝑦, 𝑧) 
(3) 

 

2.2 Glide phase 

 

The glide phase trajectory is generated with a minimum 

glide angle to ensure a maximum lift-to-drag ratio using Eqns. 

(4), (5), and (6). The glide phase ends when the flying body 

reaches the point (P4) at which the harp angle (qz) equals its 

optimum value as given in Eq. (7) to match that of the terminal 

phase. 

 

𝑥𝑔𝑙𝑖𝑑𝑒 = (
𝐻𝑔𝑙𝑖𝑑𝑒 𝑠𝑡𝑎𝑟𝑡 − 𝐻𝑖

tan 𝛾
) ∗  cos𝜓𝑜𝑓𝑓𝑠𝑒𝑡 (4) 

 

𝑦𝑔𝑙𝑖𝑑𝑒 = (
𝐻𝑔𝑙𝑖𝑑𝑒 𝑠𝑡𝑎𝑟𝑡 −𝐻𝑖

tan 𝛾
) ∗  sin𝜓𝑜𝑓𝑓𝑠𝑒𝑡  (5) 

 

𝜓𝑜𝑓𝑓𝑠𝑒𝑡𝑖 = tan
−1
𝑦𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑦𝑖

𝑥𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑥𝑖
 (6) 

 

𝑞𝑧 = tan
−1

(

 
 𝐻𝑖 − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡

√𝑥2𝑡𝑎𝑟𝑔𝑒𝑡 + 𝑦
2
𝑡𝑎𝑟𝑔𝑒𝑡

− √𝑥2𝑖 + 𝑦
2
𝑖
)

 
 

 (7) 

 

The optimization problem is performed by minimizing the 

flight path angle as an objective function. This optimization is 

achieved through a 6DoF direct simulation.  

The optimization problem can be described as: 

 

( )1

1

subject to
4 8

 
35

:
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[ ]

z

f X

q

X







=
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

=

 

 

2.3 Terminal phase 

 

The starting point of the terminal phase is obtained using a 

direct method as an initial parameterization problem solved by 

nonlinear programming (NLP). The gradient-based 

optimization method is used to solve the NLP problem with 

the objective function being the impact velocity. The 

constraints are the angle of attack and the impact angle, while 

the design parameters are the harp angle and the flight path 

angle at the impact point. This optimization problem can be 

described as: 

 

( )2

2

subject to: 
4 8

75 89

max
impact

impact

z impact

f X V

X q







=

−  

 

 =  

 

 

The harp angle and the flight path angle at the impact point 

are found to be 35˚ and 78˚ respectively. The terminal phase 

trajectory can be drawn in (x, y, z) coordinates using the Bézier 

quadratic spline of three control points as shown in Figure 4. 

The first point P4 is at the end of the glide phase; obtained 

previously. The second point P5 is the intersection of the 

impact angle and glide angle lines, and the third point P6 is the 

given target position. Apparently, point P5 is the only unknown 

point in these three points. Next, the second point coordinates 

(xp5, yp5, zp5) could be obtained using the Eqns. (8) to (10). In 

Eq. (8) and Eq. (9), γ is the flight path angle of the glide phase 

which is known, γimpact is the flight path angle at the impact 

point which is known from the optimization output. So, the 

unknowns are (xp5, yp5, zp5).  

In Eq. (10), ψoffset is the offset angle of the target from 

release point which is known previously and yp5 can be 

substituted as function of xp5 in Eqns. (8, 9). Consequently, 

Eqns. (8, 9) can be solved to calculate [xp5, zp5,], then equation 

(10) to calculate yp5. 

 
𝑧𝑝4 − 𝑧𝑝5

√𝑥𝑝5
2 + 𝑦𝑝5

2 − √𝑥𝑝4
2 + 𝑦𝑝4

2
= tan 𝛾 (8) 

 
𝑧𝑝5 − 𝑧𝑝6

√𝑥𝑝6
2 + 𝑦𝑝6

2 − √𝑥𝑝5
2 + 𝑦𝑝5

2
= tan 𝛾𝑖𝑚𝑝𝑎𝑐𝑡  (9) 

 

𝑥𝑝𝑖 tan𝜓𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑦𝑝𝑖 , 𝑖 ∈ {4,5,6} (10) 

 

The Bézier curve shown in Figure 4 is generated from one 

hundred intermediate points in [x, y, z] coordinates that are 

calculated using Eq. (3). The flight path angle during the 

terminal phase can be calculated at each step using Eq. (11). It 

is found that the optimum harp angle is equal to 35˚. 

 

𝛾𝑑𝑖𝑣𝑖𝑛𝑔 𝑝ℎ𝑎𝑠𝑒 = tan
−1
−Δ𝑧

Δ𝑥𝑦
 (11) 

 

 
 

Figure 4. Generated trajectory of terminal phase showing the 

control points 

 

2.4 Overall trajectory 

 

The overall trajectory is obtained by combining the arbitrary 

data points [x, y, z] of the three phases as shown in Figure 5. 

First, the flying body is released in the airplane’s vertical plane. 

It then performs a gliding turn to correct its heading and 

continues gliding till the harp angle reaches its optimum value. 

Finally, it performs a vertical turn to reach the target.  

P4

P5

P6
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Figure 5. Slant range, airplane, and overall trajectory 

 

 

3. INVERSE SIMULATION 

 

After generating the optimum trajectories, inverse 

simulations are carried out to arrive at the control surface 

deflection angles. The direct simulation model includes twelve 

flying body equations of motion (Eqns. (12-23)). If the three 

control surfaces' deflection angles U(t) and the initial values 

of the state vector Xi are given, the twelve variables of the state 

vector X(t), including the flight trajectory [x(t), y(t), z(t)] and 

the flight attitudes [ϕ(t), θ(t), ψ(t))], can be obtained. However, 

in the inverse dynamics problem if the state vector X(t) is used 

as an input, there will be no solution. This is a result of having 

twelve inputs (flying body states) and three outputs, [δp(t), δr(t), 

δy(t)] [31]. Furthermore, if the inputs of the state vector are less 

than three, there will be infinite solutions. Therefore, the 

inverse simulation is performed by using only three inputs of 

the state vector to obtain a single solution of the control vector 

U(t). In this study, a guided glider flying body is considered. 

Hence, the thrust is zero. In addition, the generated trajectories 

are arbitrary points given in (x, y, z) coordinates as a function 

of the flight path length (s). Additionally, new nonlinear 

generalized 6DoF inverse simulations are performed using 

both flight path and body equations of motion. 

The general inverse simulation equations of motion of a 

flying body can be presented in the flight path axes [32] as 

follows:  

 

�̇� = 𝑉 𝑐𝑜𝑠 𝛾  cos 𝜒 (12) 

 

�̇� = 𝑉 𝑐𝑜𝑠 𝛾  𝑠𝑖𝑛 𝜒 (13) 

 

�̇� = − 𝑉  𝑠𝑖𝑛 𝛾 (14) 

 

−𝐷 −𝑚𝑔 𝑠𝑖𝑛 𝛾 − 𝑚 �̇� = 0 (15) 

 

−𝑌 +𝑚𝑔 𝑠𝑖𝑛 𝜇  𝑐𝑜𝑠 𝛾
+ 𝑚 𝑉 (−�̇�  𝑐𝑜𝑠 𝜇  𝑐𝑜𝑠 𝛾
+ �̇�  𝑠𝑖𝑛 𝜇) = 0 

(16) 

 

𝐿 −𝑚𝑔 𝑐𝑜𝑠 𝜇 𝑐𝑜𝑠 𝛾
− 𝑚 𝑉 (�̇�  𝑠𝑖𝑛 𝜇 𝑐𝑜𝑠 𝛾 + �̇�  𝑐𝑜𝑠 𝜇)
= 0 

(17) 

 

�̇� = 𝑃 + (𝑄 sin𝜙 + 𝑅 cos 𝜙) tan 𝜃 (18) 

 

�̇� = 𝑄 cos 𝜙 − 𝑅 sin 𝜙 (19) 

 

�̇� = (𝑄 sin 𝜙 + 𝑅 cos 𝜙) cos 𝜃⁄  (20) 

 

�̇� = (𝐶1 𝑅 + 𝐶2 𝑃) 𝑄 + 𝐶3 �̅� + 𝐶4 𝑁 (21) 

 

�̇� = 𝐶5 𝑃 𝑅 − 𝐶6 (𝑃
2 − 𝑅2) + 𝐶7 𝑀 (22) 

 

�̇� = (𝐶8 𝑃 − 𝐶2 𝑅) 𝑄 + 𝐶4 �̅� + 𝐶9 𝑁 (23) 

 

The general inverse simulation of a flying body has nine 

equations (three kinematics equations and six dynamics 

equations) with twelve unknowns. Hence, three constraint 

equations must be added. The inputs are the arbitrary 

trajectory data (x(s), y(s), z(s), μ(s)) that can be transformed 

into the flight path angles (γ(s), χ(s), μ(s)). The outputs are the 

control surfaces' deflections (δpitch, δyaw, δroll) that are 

transformed into the fins' deflection angles (δ1, δ2, δ3, δ4). 

The difficulty of formulating a general inverse simulation 

problem lies in the determination of the first and second 

derivatives of the three attitudes (�̇�, 𝜃,̇  �̇�, 𝜙,̈  𝜃,̈  �̈�) without 

any further restrictions. The body axes and flight path axes are 

related by the angle of attack (α) and the sideslip angle (β) [31]. 

The rotation from the flight path axes to the body axes can be 

performed using the following equations, (24) to (27). 

 

𝑅 (𝜙, 𝜃, 𝜓) = 𝑅1 (−𝛽, 𝛼, 0). 𝑅2 (𝜇, 𝛾, 𝜒) (24) 

 

𝑅1 (−𝛽, 𝛼, 0)

= [

cos𝛽  cos 𝛼 − sin 𝛽  cos 𝛼 − sin 𝛼
 sin 𝛽 cos 𝛽 0

cos 𝛽  sin 𝛼 − sin 𝛽  sin 𝛼 cos𝛼
] 

(25) 

 
𝑅2 (𝜇, 𝛾, 𝜒)

= [
cos𝜒 cos 𝛾 sin 𝜒 cos 𝛾 − sin 𝛾

cos𝜒 sin 𝛾 sin 𝜇 − sin 𝜒 cos 𝜇 sin 𝜒 sin 𝛾  sin 𝜇 + cos 𝜒 cos 𝜇 cos 𝛾 sin 𝜇
cos𝜒 sin 𝛾 cos 𝜇 + sin 𝜒 sin 𝜇 sin 𝜒 sin 𝛾 cos𝜇 − cos 𝜒 sin 𝜇 cos 𝛾 cos𝜇

] (26) 

 
𝑅 (𝜙, 𝜃,𝜓)

= [
cos𝜓 cos𝜃 sin 𝜓 cos𝜃 −sin 𝜃

cos𝜓 sin 𝜃 sin𝜙 − sin 𝜓 cos𝜙 sin 𝜓 sin 𝜃  sin𝜙 + cos𝜓 cos𝜙 cos𝜃  sin 𝜙
cos𝜓 sin 𝜃 cos𝜙 + sin𝜓 sin𝜙 sin 𝜓 sin 𝜃 cos𝜙 − cos𝜓 sin 𝜙 cos𝜃  cos𝜙

] (27) 

 

In order to formulate the pitch angle (θ), presented in Eq. 

(28), the element R1,3 must be obtained from Eq. (27). 

 

𝜃 = 𝑠𝑖𝑛−1[𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛾 + 𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 𝜇 𝑠𝑖𝑛 𝛼
+ 𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜇] 

(28) 

 

Similarly, the other Euler angles (ϕ, ψ) are calculated using 

the elements R2,3 and R1,2 respectively and are shown in Eqns. 

(29) and (30): 

 
𝜙 = 𝑠𝑖𝑛−1[−(sin 𝛽 sin 𝛾 + cos𝛽 cos 𝛾 sin 𝜇) cos 𝜃⁄ ] (29) 

 

𝜓 = 𝑠𝑖𝑛−1[(sin 𝛼 (cos 𝜒 sin 𝜇 − cos 𝜇 sin 𝛾 sin 𝜒)
− cos 𝛼 sin 𝛽 (cos 𝜒 cos 𝜇
+ sin 𝛾 sin 𝜒 sin 𝜇)
+ cos 𝛼 cos 𝛽 cos 𝛾 sin 𝜒)/ cos 𝜃] 

(30) 

 

Moreover, by substituting the value of (θ) from equation (28) 

in Eqns. (29) and (30), the body attitudes (ϕ, θ, ψ) are obtained 

as functions of the flight path angles (μ, γ, χ) and wind angles 

(β, α) only. Consequently, the derivatives (�̇�. �̇�. �̇�. �̈�. �̈�. �̈�) can 

be obtained by differentiating the body attitudes twice with 

respect to time.  

Differentiating the three trigonometric Eqns. (28), (29) and 

(30) is greatly challenging owing to its complexity. For this 

reason, previous studies usually avoid this method. However, 
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the methodology of differentiating the three equations plays a 

vital role in ensuring the accuracy of the resulting equations. 

As a result, a program is developed in the current study to 

perform the symbolic differentiation of the three equations 

using MuPAD/MATLAB and the resulting equations were 

then imported into the main MATLAB program. The six 

resulting equations of attitude derivatives are lengthy, hence 

they are presented in Appendix A. 

The following parameters are necessary to perform the 

6DoF inverse simulation: 

I. Attitudes and their derivatives up to the second 

derivatives (Appendix A) 

II. Flight path angles and their derivatives up to the third 

derivatives (𝛾, 𝜒, 𝜇, �̇�, �̈�, 𝛾, �̇�, �̈�, 𝜒, �̇�, �̈�, 𝜇) (Eqns. (33) 

to (43) ) 

III. Velocity derivatives (�̇�, �̈�) (Eqns. (15) and (44)).  

IV. Wind angles derivatives (�̇�, �̇�, �̈�, 𝛽)̈  (Eqns. (45) to 

(48)) 

V. Angular rates derivatives (�̇�, �̇�, �̇�)  (Eqns. (49) to 

(51)) 

The equations from (33) to (51) represent the aerodynamic 

forces and moments, and demonstrate the technique of 

obtaining these required derivatives. They are also used to 

obtain the control surface deflection angles starting from the 

given trajectory data.  

The simulation is performed using the Runge-Kutta-4th 

order numerical integration method to obtain all variables of 

the state vector, X=[x, y, z, α, β, V, ϕ, θ, ψ, P, Q, R] at each 

time step.  

 

𝐿 = 0.5 𝜌 𝑉𝑡
2 𝑆 [𝐶𝐿𝑜 + 𝐶𝐿𝛼𝛼 + 𝐶𝐿𝛿𝑝𝛿𝑝

+ 𝐶𝐿𝑞(𝑐 2𝑉𝑇⁄ )𝑞 + 𝐶𝐿�̇�(𝑐 2𝑉𝑇⁄ )�̇�] 

𝐷 = 0.5𝜌𝑉𝑡
2𝑆[𝐶𝐷𝑜 + 𝑘𝐶𝐿

2] 
𝑀 = 0.5𝜌𝑉𝑡

2𝑆𝑐𝑤[𝐶𝑚𝑜 + 𝐶𝑚𝛼𝛼 + 𝐶𝑚𝛿𝑝𝛿𝑝
+ 𝐶𝑚𝑞(𝑐 2𝑉𝑇⁄ )𝑞 + 𝐶𝑚�̇�(𝑐 2𝑉𝑇⁄ )�̇�] 

(31) 

 

𝑌 = 0.5 𝜌 𝑉𝑡
2 𝑆 [𝐶𝑌𝑜 + 𝐶𝑌𝛽𝛽 + 𝐶𝑌𝛿𝑟𝛿𝑟 + 𝐶𝑌𝛿𝑦𝛿𝑦

+ 𝐶𝑌𝑝(𝑏 2𝑉𝑇⁄ )𝑝 + 𝐶𝑌𝑟(𝑏 2𝑉𝑇⁄ )𝑟] 

𝐿 = 0.5 𝜌 𝑉𝑡
2 𝑆 𝑏𝑤 [𝐶𝑙𝑜 + 𝐶𝑙𝛽𝛽 + 𝐶𝑙𝛿𝑟𝛿𝑟 + +𝐶𝑌𝛿𝑦𝛿𝑦

+ 𝐶𝑙𝑝(𝑏 2𝑉𝑇⁄ )𝑝 + 𝐶𝑙𝑟(𝑏 2𝑉𝑇⁄ )𝑟] 

𝑁 = 0.5 𝜌 𝑉𝑡
2 𝑆 𝑏𝑤[𝐶𝑛𝑜 + 𝐶𝑛𝛽𝛽 + 𝐶𝑛𝛿𝑟𝛿𝑟 + 𝐶𝑌𝛿𝑦𝛿𝑦

+ 𝐶𝑛𝑝(𝑏 2𝑉𝑇⁄ )𝑝 + 𝐶𝑛𝑟(𝑏 2𝑉𝑇⁄ )𝑟] 

(32) 

 

3.1 Initial values calculation 

 

1) Calculate 𝛾, 𝜒 (Eqns. (33) and (34)) 

2) Calculate �̇�, �̇�, �̇� (Eqns. (35), (38), and (41)) 

3) Calculate α, β ((16) and (17)) 

4) Calculate 𝜃, 𝜓,𝜙 

5) Calculate �̇� (Eq. (15)) 

6) Calculate �̇�, �̇� (Eqns. (45) and (47)) 

7) Calculate �̇�, �̇�, �̇� 

8) Calculate 𝑃, 𝑄, 𝑅 (Eqns. (18) to (20)) 

9) Calculate  �̈� (Eq. (44)) 

10) Calculate �̈�, �̈�, �̈� (Eqns. (36), (39) and (42)) 

11) Calculate 𝛾, 𝜒, 𝜇 (Eqns. (37), (40) and (43)) 

12) Calculate �̈�, �̈� (Eqns. (46) and (48)) 

13) Calculate �̈�, �̈�, �̈� 

14) Calculate �̇�, �̇�, �̇� (Eqns. (49) to (51)) 

15) Calculate 𝑀,𝑁, 𝐿 (Eqns. (21) to (23)) 

16) Calculate 𝛿𝑝𝑖𝑡𝑐ℎ, 𝛿𝑦𝑎𝑤, 𝛿𝑟𝑜𝑙𝑙 (Eqns. (30) and (31)) 

 

3.2 Numerical solution 

 

Starting with the initial values calculated in the above steps, 

the derivatives of all variables with respect to time are 

calculated as follows: 

1) Calculate �̇�, �̇�, �̇� (Eqns. (12) to (14)) 

2) Calculate �̇� (Eq. (15)) 

3) Calculate �̇�, �̇�, �̇� (Eqns. (35), (38) and (41)) 

4) Calculate �̇�, �̇� (Eqns. (45) and (47)) 

5) Calculate �̇�, �̇�, �̇� 

6) Calculate  �̈� (Eq. (44)) 

7) Calculate �̈�, �̈�, �̈� (Eqns. (36), (39) and (42)) 

8) Calculate 𝛾, 𝜒, 𝜇 (Eqns. (37), (40) and (43)) 

9) Calculate �̈�, �̈� (Eqns. (46) and (48)) 

10) Calculate �̈�, �̈�, �̈� 

11) Calculate �̇�, �̇�, �̇� (Eqns. (49) to (51)) 

12) Calculate 𝑀,𝑁, 𝐿 (Eqns. (21) to (23)) 

13) Calculate 𝛿𝑝𝑖𝑡𝑐ℎ, 𝛿𝑦𝑎𝑤, 𝛿𝑟𝑜𝑙𝑙 (Eqns. (30) and (31)). 

14) Transfer 𝛿𝑝𝑖𝑡𝑐ℎ, 𝛿𝑦𝑎𝑤, 𝛿𝑟𝑜𝑙𝑙 into 𝛿1, 𝛿2, 𝛿3, 𝛿4. 

 

𝛾(𝑠) = − sin−1(𝑧′(𝑠)) (33) 

 

𝜒(𝑠) = tan−1(𝑦′(𝑠) 𝑥′⁄ (𝑠)) (34) 

 

�̇� =
𝑑𝛾

𝑑𝑡
=
𝑑𝛾

𝑑𝑠
 
𝑑𝑠

𝑑𝑡
 

�̇� = 𝛾′ 𝑉 

(35) 

 

�̈� =
𝑑�̇�

𝑑𝑡
=
𝑑

𝑑𝑡
[𝛾′ 𝑉] =

𝑑𝛾′

𝑑𝑡
 𝑉 +

𝑑𝑉

𝑑𝑡
 𝛾′  

=
𝑑𝛾′

𝑑𝑠
 
𝑑𝑠

𝑑𝑡
 𝑉 +

𝑑𝑉

𝑑𝑡
 𝛾′ 

�̈� = 𝛾′′ 𝑉2 + 𝛾′ �̇� 

(36) 

 

�̈� = 𝛾′′ 𝑉2 + 𝛾′ �̇� 

𝛾 = 𝛾′′′ 𝑉3 + 2 𝛾′′ 𝑉 �̇� + 𝛾′′ 𝑉 �̇� + 𝛾′ �̈� 
(37) 

 

Similarly, the derivatives (�̇�, �̈�, 𝜒, �̇�, �̈�, 𝜇) are obtained. 

 

�̇� = 𝜒′ 𝑉 (38) 

 

�̈� = 𝜒′′ 𝑉2 + 𝜒′ �̇� (39) 

 

𝜒 = 𝜒′′′ 𝑉3 + 2 𝜒′′ 𝑉 �̇� + 𝜒′′ 𝑉 �̇� + 𝜒′ �̈� (40) 

 

�̇� = 𝜇′ 𝑉 (41) 

 

�̈� = 𝜇′′ 𝑉2 + 𝜇′ �̇� (42) 

  

𝜇 = 𝜇′′′ 𝑉3 + 2 𝜇′′ 𝑉 �̇� + 𝜇′′ 𝑉 �̇� + 𝜇′ �̈� (43) 

 

Differentiate Eq. (15) with respect to time to obtain �̈�. 

 

�̈� = −[0.5 𝜌 𝑆 𝑉2 (𝐶𝐷𝛼  �̇� + 𝐶𝐷𝛽 �̇�) + 0.5 �̇� 𝑆 𝑉
2 𝐶𝐷

+ 𝜌 𝑆 𝑉 �̇� 𝐶𝐷 +𝑚𝑔 �̇�  𝑐𝑜𝑠 𝛾]/𝑚 
(44) 

 

Obtain �̇�, �̈� by differentiating Eq. (16) twice with respect to 

time. 
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�̇� = [𝑚 𝑉 (�̈�  sin 𝜇 − �̈� cos 𝛾  cos 𝜇 + �̇� �̇�  cos 𝜇
+ �̇� �̇�  cos 𝜇  sin 𝛾
+ �̇� �̇�  cos 𝛾  sin 𝜇)

+ 𝑚 �̇� (−�̇� 𝑐𝑜𝑠 𝜇  𝑐𝑜𝑠 𝛾
+ �̇�  𝑠𝑖𝑛 𝜇) − 0.5 �̇� 𝑆 𝑉2 𝐶𝑌
−  𝜌 𝑆 𝑉 �̇� 𝐶𝑌
+𝑚𝑔 (�̇�  cos 𝛾  cos 𝜇
− �̇�  sin 𝛾  sin 𝜇)]
/(0.5 𝜌 𝑆 𝑉2 𝐶𝑌𝛽) 

(45) 

 

 �̈� = [𝑚 𝑉 (𝛾 sin 𝜇 − �̇� �̇�2 sin 𝜇 − 𝜒 cos 𝛾 cos 𝜇
+ �̇� �̈�  cos 𝜇 + 2 �̇� �̈�  cos 𝜇
+ �̇� �̇�2  cos 𝛾  cos 𝜇
+ �̇� �̇�2  cos 𝛾  cos 𝜇
+ 2 �̇� �̈�  cos 𝜇  sin 𝛾 + �̇� �̈�  cos 𝜇 sin 𝛾
+ �̇� �̈�  cos 𝛾  sin 𝜇 + 2 �̇� �̈�  cos 𝛾  sin 𝜇
− 2 �̇� �̇� �̇�  sin 𝛾 sin 𝜇)

+𝑚 �̈�(−�̇�  𝑐𝑜𝑠 𝜇 𝑐𝑜𝑠 𝛾 + �̇�  𝑠𝑖𝑛 𝜇)

+ 2 𝑚 �̇� (�̈�  sin 𝜇 − �̈� cos 𝛾  cos 𝜇
+ �̇� �̇�  cos 𝜇 + �̇� �̇�  cos 𝜇  sin 𝛾
+ �̇� �̇�  cos 𝛾  sin 𝜇) − 𝜌 �̇�2 𝑆 𝐶𝑌
− 0.5 �̈� 𝑆 𝑉2 𝐶𝑌 − 𝜌 𝑆 𝑉 �̈� 𝐶𝑌
− 2 �̇� 𝑆 𝑉 �̇� 𝐶𝑌 − �̇� 𝑆 𝑉

2 �̇� 𝐶𝑌𝛽
− 2 𝜌 𝑆 𝑉 �̇� �̇� 𝐶𝑌𝛽
−𝑚𝑔 �̇�2 cos 𝛾  sin 𝜇  
− 𝑚𝑔 �̇�2 cos 𝛾 sin 𝜇
+𝑚𝑔 �̈�  cos 𝛾 cos 𝜇
−𝑚𝑔 �̈�  sin 𝛾 sin 𝜇
− 2 𝑚𝑔 �̇� �̇�  cos 𝜇  sin 𝛾]
/(0.5 𝜌 𝑆 𝑉2 𝐶𝑌𝛽) 

(46) 

 

Obtain �̇�, �̈� by differentiating Eq. (17) twice with respect to 

time. 

 
�̇� = [𝑚 𝑉 (�̈�  𝑐𝑜𝑠 𝜇 + �̈� 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝜇 − �̇� �̇�  𝑠𝑖𝑛 𝜇

+ �̇� �̇�  𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 𝜇
− �̇� �̇�  𝑠𝑖𝑛 𝛾  𝑠𝑖𝑛 𝜇)

+ 𝑚 �̇�(�̇�  𝑠𝑖𝑛 𝜇 𝑐𝑜𝑠 𝛾 + �̇�  𝑐𝑜𝑠 𝜇)

− 0.5 𝜌 𝑆 𝑉2 �̇� 𝐶𝐿𝛽 −  0.5 �̇� 𝑆 𝑉
2 𝐶𝐿

−  𝜌 𝑆 𝑉 �̇� 𝐶𝐿
−𝑚𝑔 (�̇�  𝑐𝑜𝑠 𝜇  𝑠𝑖𝑛 𝛾
+ �̇�  𝑐𝑜𝑠 𝛾  𝑠𝑖𝑛 𝜇)]/(0.5 𝜌 𝑆 𝑉2 𝐶𝐿𝛼) 

(47) 

 
�̈� = [−𝑚 𝑉 (−𝛾 cos 𝜇 + �̇� �̇�2  cos 𝜇 − 𝜒 cos 𝛾  sin 𝜇

+ �̇� �̈�  sin 𝜇 + 2 �̇� �̈�  sin 𝜇
+ �̇� �̇�2  cos 𝛾 sin 𝜇 + �̇� �̇�2  cos 𝛾  sin 𝜇
− �̇� �̈�  cos 𝛾 cos 𝜇
− 2 �̈� �̇�  cos 𝛾 cos 𝜇
+ 2 �̈� �̇�  sin 𝛾 sin 𝜇 + �̈� �̇�  sin 𝛾  sin 𝜇
+ 2 �̇� �̇� �̇�  cos 𝜇 sin 𝛾)

+ 𝑚 �̈� (�̇�  𝑠𝑖𝑛 𝜇  𝑐𝑜𝑠 𝛾 + �̇�  𝑐𝑜𝑠 𝜇)

+ 2 𝑚 �̇� (�̈�  cos 𝜇 + �̈� cos 𝛾  sin 𝜇
− �̇� �̇�  sin 𝜇 + �̇� �̇�  cos 𝛾 cos 𝜇

− �̇� �̇�  sin 𝛾 sin 𝜇) − 0.5 𝜌 𝑆 𝑉2 𝐶𝐿𝛽 �̈�

− 0.5 �̈� 𝑆 𝑉2 𝐶𝐿 − 𝜌 𝑆 �̇�
2𝐶𝐿

− �̇� 𝑆 𝑉2 (𝐶𝐿𝛼�̇� + 𝐶𝐿𝛽�̇�)

− 2 �̇� 𝑆 𝑉 �̇� 𝐶𝐿
− 2 𝜌 𝑆 𝑉 �̇� (𝐶𝐿𝛼�̇� + 𝐶𝐿𝛽�̇�)

− 𝜌 𝑆 𝑉 �̈� 𝐶𝐿 −𝑚𝑔 �̇�
2  cos 𝛾  cos 𝜇

− 𝑚𝑔 �̇�2  cos 𝛾  cos 𝜇
− 𝑚𝑔 �̈�  cos 𝜇 sin 𝛾
− 𝑚𝑔 �̈�  cos 𝛾  sin 𝜇
+ 2 𝑚𝑔 �̇� �̇�  sin 𝛾  sin 𝜇]
/(0.5 𝜌 𝑆 𝑉2 𝐶𝐿𝛼) 

(48) 

 

From the equations of motion, differentiate Eqns. (18), (19) 

and (20) with respect to time to obtain �̇�, �̇�, �̇� as functions of 

the attitudes angles and their derivatives. 

 

�̈� − �̇� − tan 𝜃  (�̇�  cos 𝜙 + �̇� sin𝜙 + 𝑄 �̇�  cos 𝜙

− 𝑅 �̇�  sin𝜙)

− �̇� (tan2 𝜃 + 1)(𝑄 sin 𝜙
+ 𝑅 cos𝜙) = 0 

(49) 

 

�̈� − �̇�  cos 𝜙 + �̇�  sin 𝜙 + 𝑅 �̇�  cos𝜙 + 𝑄 �̇�  sin 𝜙
= 0 

(50) 

 

�̈� cos 𝜃 − �̇� �̇� sin 𝜃

− (�̇�  cos 𝜙 + �̇�  sin 𝜙

+ 𝑄 �̇�  cos 𝜙 − 𝑅 �̇�  sin𝜙) = 0 

(51) 

 

 

4. RESULTS AND DISCUSSION 
 

To perform inverse simulation, the overall generated 

trajectory (Figure 7) is input to the inverse dynamics model. 

The inverse simulation of the overall trajectory is performed 

with a time step of five milliseconds. The inverse simulation 

input is the gliding trajectory position vector X(t) shown in 

Figure 9. The outputs are [δp, δr, δy], which are transformed 

into the fins' deflection angles [δ1, δ2, δ3, δ4] that are within 

limits as shown in Figure 8 and Figure 9 where the maximum 

deflection angle of the third fin is 30˚.  
 

 
 

Figure 6. Fourth derivatives of (x, y, z) with respect to 

trajectory path 

 

 
 

Figure 7. Input to inverse simulation (overall trajectory) 
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Figure 8. Results of inverse simulation 

 

 
 

Figure 9. Control surface deflection of the four fins 

 
 

Figure 10. Trajectory in vertical plane (comparison) 

 

The direct simulation of a glide trajectory is performed with 

a time step of ten milliseconds. A sudden raise in the fourth 

derivative of the trajectory position vector after the turning 

glide can be noticed (as shown in Figure 6). Therefore, the 

overall trajectory has some imperfections at the connection 

between the first two phases.  

 
 

Figure 11. Trajectory in horizontal plane (comparison) 

 

 
 

Figure 12. Angle of attack response 

 

 
 

Figure 13. Sideslip response 

 
 

Figure 14. Velocity response 
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Figure 15. Pitch angle response 

 
 

Figure 16. Heading angle response 

 
 

Figure 17. Bank angle response 

 

 
 

Figure 18. Inverse and direct overall trajectories 

(comparisons) 

In order to validate the inverse simulation method, a direct 

simulation technique is performed using the deflection angles 

(similar to [29]) which are the output of the proposed method. 

A comparison between both the direct and the inverse 

simulations is then plotted (Figure 10 to Figure 18). The direct 

and inverse trajectories responses are matched.  

To demonstrate the accuracy of the method, the percentage 

of difference at the trajectory end point is calculated. The error 

in altitude, lateral displacement, angle of attack, sideslip angle, 

pitch angle, heading angle, and bank angle are found to be 

2.5%, 1%, 0.02%, 0.869%, 1.1%, 0.033%, 16.6%, and 16.6%, 

respectively. 
 

 

5. CONCLUSIONS 

 

In this paper, a new three-dimensional path planning and 

following tool for six degrees of freedom subsonic guided 

gliders has been developed. This tool generates an optimal 

trajectory depending on the required ground target impact 

angle and velocity. Despite the sensitivity to the trajectory 

generation imperfections, the proposed inverse simulation 

method results fairly match those of the direct simulation. 

These simulations involve the usage of Euler angles, which are 

more conveniently used in aeronautics (in contrast with 

quaternions). The proposed method involves pre-formulated 

inverse dynamics equations of motion which decreases the 

computational cost significantly. 

As an extension to the current work, a dual quaternion 

approach [28] could be used in order to increase the efficiency 

of the inverse simulation besides the decrease in the 

computational cost. The ongoing research includes the inverse 

and direct simulations in a closed loop control with a position 

feedback system, such as the GPS/INS system, to eliminate the 

effect of disturbances e.g. random wind effect. 
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NOMENCLATURE 

 

CL, CD, Cm 
Lift, drag, and pitching moment 

coefficients. 

𝐶𝑌, 𝐶𝑙 , 𝐶𝑛 
Lateral force, rolling, and yawing 

moment coefficients. 

𝐶𝐿𝑜, 𝐶𝐷𝑜, 𝐶𝑚𝑜 

Lift, drag, and pitching moment 

coefficients at zero values of 𝛼, q, 𝛿, 

and �̇� 

𝐶𝑌𝑜, 𝐶𝑙𝑜 , 𝐶𝑛𝑜 
Lateral force, rolling, and yawing 

moment coefficients at zero values of 

𝛽, p, r, and 𝛿. 

𝐶𝐿𝛼 , 𝐶𝐿𝑞 , 𝐶𝐿𝛿𝑝 , 𝐶𝐿�̇� 
Derivatives of lift coefficient with 

respect to 𝛼, q, 𝛿𝑝, and �̇�. 
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𝐶𝑌𝛽 , 𝐶𝑌𝑝 , 𝐶𝑌𝑟 , 𝐶𝑌𝛿𝑟 
Derivatives of lateral force coefficient 

with respect to 𝛽, p, r, and 𝛿𝑟. 

𝐶𝑚𝛼 , 𝐶𝑚𝑞 , 𝐶𝑚𝛿𝑝 , 𝐶𝑚�̇�  
Derivatives of moment coefficient 

with respect to 𝛼, q, 𝛿𝑝, and �̇�. 

𝐶𝑙𝛽 , 𝐶𝑙𝑝, 𝐶𝑙𝑟 , 𝐶𝑙𝛿𝑟  
Derivatives of rolling moment 

coefficient with respect to 𝛽, p, r, and 

𝛿𝑟. 

𝐶𝑛𝛽 , 𝐶𝑛𝑝, 𝐶𝑛𝑟 , 𝐶𝑛𝛿𝑟 
Derivatives of yawing moment 

coefficient with respect to 𝛽, p, r, and 

𝛿𝑟. 

𝑝, 𝑞, 𝑟 
Scalar components of angular velocity 

in body axis [rad/sec]. 

𝑢, 𝑣, 𝑤 
Scalar components of linear velocity 

in body axis [m/s]. 

�⃗� 𝐵 Velocity vector in body frame [m/s]. 

𝑉𝑡 Total velocity [m/s]. 

𝑥, 𝑦, 𝑧 Position vector in NED frame [m]. 

𝛼, 𝛽 Wind angles [deg]. 

𝜌𝐻_𝑎𝑖𝑟  Air density at (H) altitude [kg/m3]. 

𝛿𝑟 , 𝛿𝑝 , 𝛿𝑦 
Roll, pitch, and yaw fins deflection 

angles [deg]. 

𝜙, 𝜃, 𝜓 Euler angles [deg]. 

�⃗⃗� 𝐵 
Angular velocity vector in body axis 

[rad/s]. 

 

 

APPENDIX 

 

Equations of Attitudes Derivatives 

 

 

theta_dot = -(calpha*cbeta*cgam*gam_dot ... 

    + calpha*cgam*cmeu*alpha_dot - 

cbeta*salpha*sgam*alpha_dot ... 

    - calpha*sbeta*sgam*beta_dot - 

cmeu*salpha*sgam*gam_dot ... 

    - cgam*salpha*smeu*meu_dot + 

calpha*cbeta*cgam*smeu*beta_dot ... 

    + calpha*cgam*cmeu*sbeta*meu_dot - 

cgam*salpha*sbeta*smeu*alpha_dot ... 

    - calpha*sbeta*sgam*smeu*gam_dot)/cth; 

 

phi_dot=-(cbeta*sgam*beta_dot + 

cgam*sbeta*gam_dot ... 

     - sphi*sth*theta_dot ... 

    - cbeta*cgam*cmeu*meu_dot ... 

    + cgam*sbeta*smeu*beta_dot + 

cbeta*sgam*smeu*gam_dot)/(cphi*cth); 

 

 psi_dot=-(salpha*(skai*smeu*kai_dot ... 

    - ckai*cmeu*meu_dot - sgam*skai*smeu*meu_dot ... 

    + cgam*cmeu*skai*gam_dot + ... 

    ckai*cmeu*sgam*kai_dot) + ... 

    calpha*sbeta*(cgam*skai*smeu*gam_dot ... 

    - ckai*smeu*meu_dot - cmeu*skai*kai_dot ... 

    + ckai*sgam*smeu*kai_dot + 

cmeu*sgam*skai*meu_dot) ... 

    - spsi*sth*theta_dot ... 

    - calpha*(ckai*smeu - cmeu*sgam*skai)*alpha_dot ... 

    + calpha*cbeta*(ckai*cmeu + 

sgam*skai*smeu)*beta_dot ... 

    - salpha*sbeta*(ckai*cmeu + 

sgam*skai*smeu)*alpha_dot... 

    - calpha*cbeta*cgam*ckai*kai_dot ... 

    + cbeta*cgam*salpha*skai*alpha_dot ... 

    + calpha*cgam*sbeta*skai*beta_dot... 

    + calpha*cbeta*sgam*skai*gam_dot)/(cpsi*cth); 

 

 

theta_2dot = -(- sth*theta_dot^2 ... 

    - calpha*cbeta*sgam*alpha_dot^2 - 

calpha*cbeta*sgam*beta_dot^2 ... 

    - calpha*cbeta*sgam*gam_dot^2 + 

calpha*cbeta*cgam*gam_2dot... 

    - cgam*cmeu*salpha*alpha_dot^2 + 

calpha*cgam*cmeu* alpha_2dot ... 

    - cgam*cmeu*salpha* gam_dot^2 - 

cgam*cmeu*salpha* meu_dot^2 ... 

    - cbeta*salpha*sgam* alpha_2dot - 

calpha*sbeta*sgam* beta_2dot ... 

    - cmeu*salpha*sgam* gam_2dot - cgam*salpha*smeu* 

meu_2dot ... 

    - 2*cbeta*cgam*salpha* alpha_dot* gam_dot - 

calpha*cgam*sbeta*smeu* alpha_dot^2 ... 

    - 2*calpha*cgam*sbeta* gam_dot* beta_dot - 

calpha*cgam*sbeta*smeu* beta_dot^2 ... 

    + calpha*cbeta*cgam*smeu* beta_2dot - 

calpha*cgam*sbeta*smeu* gam_dot^2 ... 

    - 2*calpha*cmeu*sgam* alpha_dot* gam_dot - 

calpha*cgam*sbeta*smeu* meu_dot^2 ... 

    + calpha*cgam*cmeu*sbeta* meu_2dot - 

2*calpha*cgam*smeu* alpha_dot* meu_dot ... 

    + 2*salpha*sbeta*sgam* beta_dot* alpha_dot - 

cgam*salpha*sbeta*smeu* alpha_2dot ... 

    - calpha*sbeta*sgam*smeu* gam_2dot + 

2*salpha*sgam*smeu* gam_dot* meu_dot ... 

    + 2*calpha*cbeta*cgam*cmeu* beta_dot* meu_dot ... 

    - 2*cbeta*cgam*salpha*smeu* beta_dot* alpha_dot ...  

    - 2*calpha*cbeta*sgam*smeu* beta_dot* gam_dot ... 

    - 2*cgam*cmeu*salpha*sbeta* alpha_dot* meu_dot ... 

    - 2*calpha*cmeu*sbeta*sgam* gam_dot* meu_dot ... 

    + 2*salpha*sbeta*sgam*smeu* alpha_dot* 

gam_dot)/cth; 

 

  phi_2dot =-(cbeta*sgam*beta_2dot ... 

       - sbeta*sgam*beta_dot^2 - sbeta*sgam*gam_dot^2 ... 

       + cgam*sbeta*gam_2dot - cth*sphi*phi_dot^2 ... 

       - cth*sphi*theta_dot^2 ... 

       - sphi*sth*theta_2dot + 

2*cbeta*cgam*beta_dot*gam_dot ... 

       + cbeta*cgam*smeu*beta_dot^2 + 

cbeta*cgam*smeu*gam_dot^2 ... 

       + cbeta*cgam*smeu*meu_dot^2 - 

cbeta*cgam*cmeu*meu_2dot ... 

       + cgam*sbeta*smeu*beta_2dot + 

cbeta*sgam*smeu*gam_2dot ... 

       - 2*cphi*sth*phi_dot*theta_dot + 

2*cgam*cmeu*sbeta*meu_dot*beta_dot ... 

       + 2*cbeta*cmeu*sgam*gam_dot*meu_dot ... 

       - 2*sbeta*sgam*smeu*beta_dot*gam_dot)/(cphi*cth); 

 

psi_2dot =-(salpha*(ckai*smeu*kai_dot^2 ... 

    + ckai*smeu*meu_dot^2 - ckai*cmeu*meu_2dot ... 

    + skai*smeu*kai_2dot - cmeu*sgam*skai*gam_dot^2 ... 

    - cmeu*sgam*skai*kai_dot^2 + 

cgam*cmeu*skai*gam_2dot ... 

    - cmeu*sgam*skai*meu_dot^2 + 

ckai*cmeu*sgam*kai_2dot ... 
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    + 2*cmeu*skai*meu_dot*kai_dot - 

sgam*skai*smeu*meu_2dot ... 

    + 2*cgam*ckai*cmeu*kai_dot*gam_dot ... 

    - 2*cgam*skai*smeu*meu_dot*gam_dot ... 

    - 2*ckai*sgam*smeu*meu_dot*kai_dot) ... 

    - cth*spsi*theta_dot^2 - cth*spsi*psi_dot^2 ... 

    - spsi*sth*theta_2dot + salpha*(ckai*smeu ... 

    - cmeu*sgam*skai)*alpha_dot^2 - calpha*(ckai*smeu ... 

    - cmeu*sgam*skai)*alpha_2dot - 

calpha*sbeta*(ckai*cmeu*meu_dot^2 ... 

    + cmeu*skai*kai_2dot + ckai*smeu*meu_2dot ... 

    + ckai*cmeu*kai_dot^2 + 

sgam*skai*smeu*gam_dot^2 ... 

    + sgam*skai*smeu*kai_dot^2 - 

cgam*skai*smeu*gam_2dot ... 

    + sgam*skai*smeu*meu_dot^2 - 

ckai*sgam*smeu*kai_2dot ... 

    - cmeu*sgam*skai*meu_2dot - 

2*skai*smeu*meu_dot*kai_dot ... 

    - 2*cgam*ckai*smeu*gam_dot*kai_dot ... 

    - 2*cgam*cmeu*skai*gam_dot*meu_dot ... 

    - 2*ckai*cmeu*sgam*kai_dot*meu_dot) ... 

    + 2*calpha*(skai*smeu*kai_dot ... 

    - ckai*cmeu*meu_dot - sgam*skai*smeu*meu_dot ... 

    + cgam*cmeu*skai*gam_dot + 

ckai*cmeu*sgam*kai_dot)*alpha_dot ... 

    + 2*calpha*cbeta*(cgam*skai*smeu*gam_dot - 

ckai*smeu*meu_dot ... 

    - cmeu*skai*kai_dot + ckai*sgam*smeu*kai_dot ... 

    + cmeu*sgam*skai*meu_dot)*beta_dot ... 

    - 2*salpha*sbeta*(cgam*skai*smeu*gam_dot ... 

    - ckai*smeu*meu_dot - cmeu*skai*kai_dot ... 

    + ckai*sgam*smeu*kai_dot + 

cmeu*sgam*skai*meu_dot)*alpha_dot ... 

    - calpha*sbeta*(ckai*cmeu + 

sgam*skai*smeu)*alpha_dot^2 ... 

    - calpha*sbeta*(ckai*cmeu + 

sgam*skai*smeu)*beta_dot^2 ... 

    + calpha*cbeta*(ckai*cmeu + 

sgam*skai*smeu)*beta_2dot ... 

    - 2*cpsi*sth*psi_dot*theta_dot - 

salpha*sbeta*(ckai*cmeu ... 

    + sgam*skai*smeu)*alpha_2dot + 

calpha*cbeta*cgam*skai*alpha_dot^2 ... 

    + calpha*cbeta*cgam*skai*beta_dot^2 ... 

    + calpha*cbeta*cgam*skai*gam_dot^2 ... 

    + calpha*cbeta*cgam*skai*kai_dot^2 ... 

    - calpha*cbeta*cgam*ckai*kai_2dot ... 

    + cbeta*cgam*salpha*skai*alpha_2dot ... 

    + calpha*cgam*sbeta*skai*beta_2dot ... 

    + calpha*cbeta*sgam*skai*gam_2dot ... 

    - 2*cbeta*salpha*(ckai*cmeu + 

sgam*skai*smeu)*alpha_dot*beta_dot ... 

    + 2*cbeta*cgam*ckai*salpha*kai_dot*alpha_dot ... 

    + 2*calpha*cgam*ckai*sbeta*kai_dot*beta_dot ... 

    + 2*calpha*cbeta*ckai*sgam*gam_dot*kai_dot ... 

    - 2*cgam*salpha*sbeta*skai*beta_dot*alpha_dot... 

    - 2*cbeta*salpha*sgam*skai*gam_dot*alpha_dot ... 

    - 

2*calpha*sbeta*sgam*skai*beta_dot*gam_dot)/(cpsi*cth)

; 
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