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In the current work boundary layer flow of Casson fluid over a stretched sheet is 

considered to analyze the heat transfer analysis in presence of viscous dissipation. The 

study of Casson fluid is the best study to analyze the nature of non-Newtonian fluid. 

The set ordinary equations are derived from the governing equations of the flow along 

with boundary conditions. The transformed coupled ordinary differential equations are 

solved numerically by using the spectral relaxation method. Later the numerical 

solutions are compared with exact solutions. The consequences of governing 

parameters on dimensionless quantities like velocity, temperature, friction factor and 

local Nusselt numbers are shown and discussed. Here the result shows that the Casson 

fluid has a propensity to decrease the velocity of the fluid due to its higher viscidness. 

And the fluid of relatively small Prandtl number has high temperature in the occurrence 

of viscous dissipation. Applications of such type of problems are obtained in the control 

of complex fluid materials significant to energy and biomedical systems. 
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1. INTRODUCTION

In the view of both theoretical and applied points the fluid 

flow over a stretching sheet has more importance in the plastic 

engineering and metallurgy. Consequently, the study of 

stretching sheet flow has importance in the applications of 

paper counting production, manufacturing of aluminum bottle 

process, illustration of copper wires, metallurgical processes, 

spiraling of fibers, plastic and rubber sheets manufacture, film 

coating and crystal growing etc. In the development of 

extrusion worth of the final product is depends on the 

percentage of stretching along with the occurring heating or 

cooling. Therefore, in several industrial processes the fluid 

flow and heat transfer over the stretching sheet have a realistic 

importance.  

Crane [1] conducted a study to examine the flow because of 

the stretching of a sheet. Further, Sakiadis [2] initiated the 

thought of boundary layer flow over a moving surface. Later, 

Tsou et al. [3] analyzed the momentum and heat transfer 

aspects in both analytical and experimental method over a 

stretching surface. After that, a number of authors, Noor et al. 

[4], Prasannakumara et al. [5], Bilal et al. [6] broadened the 

notion of a stretching sheet for different fluid models. They are 

concluded that there are numerous numbers of applications in 

polymer industry. Further, Mabood et al. [7] analyzed the 

study of time-independent flow of non-Newtonian fluids. 

Casson fluid can be  assumed as a shear thinning model and at 

zero shear rate it having infinite viscosity , moreover , there is 

no flow at below the yield stress.  

As of we know that Casson model is the one of the well-

known rheological form to characterize the nature of non-

Newtonian fluids along with the yield stress [8]. For viscous 

suspensions of cylindrical particles the Casson fluid form is 

developed [9]. Why Casson fluid has great importance means 

this model has nonlinear yield-stress-pseudo plastic nature, 

apart from it describes the various types of suspensions. 

Examples for such type of fluids are blood [10], chocolate [11], 

and xanthan gum solutions [12]. According to the authors 

Kirsanov et al. [13], Joye [14] comparatively general 

Herschel-Bulkley model  gives a better flow data with  power-

law dependence for the yield stress. Bird et al. [15], Wilkinson 

[16] Rheological fluids are chocolate , blood and  Casson

models. This form appears to vigorous the nonlinear conduct

of yield stress-pseudo plastic fluids quite well, and its

prominence developed since its presentation in 1959. It is

moderatively easy to utilize, and it is firmly identified with the

Bingham form Bird et al. [15], Wilkinson [16] which is in all

aspects broadly utilized to depict the flows of slurries,

suspensions, ooze, and other rheological complex fluids

Churchill [17]. Later Boyd, Buick, and Green [18] they

utilized model of Casson fluid is utilized to study the steady as

well as oscillatory blood flow. As of late, a flow of boundary-

layer of a Casson fluid over groups of various geometries was

contemplated  by numerous  authors.In this connection,

Nadeem, Haq, and Lee [19] contemplated about the  MHD

flow of exponentially shrinking sheet by considering the

Casson fluid as working model. Later Kumari et al. [20]

examined the peristaltic pumping of an MHD Casson fluid in

an inclined channel. Further Sreenadh, Pallavi, and

Satyanarayana [21] considered a Casson fluid flow all the way

through an inclined tube of a non uniform cross section.

Mukhopadhyay et al. [22] well thought out an unsteady 2D

flow of a non-Newtonian fluid by means of a prescribed

surface temperature. A detail note is presented on steady fully-
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developed laminar flow of Casson fluid [23]. In perspective on 

the non-Newtonian nature of blood in vessels and 

filtration/assimilation property of the dividers, Further Saqib 

et al. [24] got the Laplace transformation strategy for the 

Casson liquid over a boundless swaying plate.   

The flow of heat transfer in together viscous and elastic type 

of fluid characteristics over a stretching sheet through power 

law of surface temperature was examined by Vajravelu and 

Roper [25] while Alinejad et al. [26] explored this spectacle in 

a viscous fluid over a non-linear stretching sheet by including 

the effects of heat dissipation. Zaimi et al. [27] investigated the 

fluid flow due to a permeable stretching sheet with viscous 

effect. Later Dhanai et al. [28] prolong the work of Zaimi 

together with the MHD flow with viscous dissipation effect. 

Mobood et al. [29] also considered the boundary layer flow 

with heat and mass of an electrically conductively water based 

nanofluid of a nonlinear stretching sheet through viscous 

dissipation effect. Goyal and Bhargava [29] premeditated the 

triple diffusive boundary layer flow of nanofluid over a 

nonlinear stretching sheet. Later Shen et al. [30], Jat and 

Chaudhary [31] examined the MHD boundary layer flow with 

heat transfer for stagnation point over a stretching sheet with 

and without viscous dissipation and Joule heating. Dessie and 

Kishan [32] considered the boundary layer flow with heat 

transfer over a stretching sheet embedded in a porous medium 

by enchanting the effect of viscous dissipation and heat 

source/sink in the presence of uniform magnetic field.   

By the above all motivated investigations, the present 

research is concentrated on the laminar boundary layer flow of 

Casson fluid along with heat transfer treatment in the 

occurrence of viscous dissipation. By utilizing the appropriate 

transformations order of the ordinary differential equations 

relating to the momentum and energy equation are reduced and 

then by using spectral relaxation method these equations can 

be solved numerically. Later obtained numerical solutions are 

exhibit in graphs and tables to study the variations of various 

values of the dimensionless parameters which are used in this 

problem. The investigation of the results shows that the flow 

field is significantly affected by the leading parameters. A very 

important industrial application, like estimation of the skin 

friction is also presented in this analysis. Hence here the 

investigation is expecting that the results which we obtained 

are not only useful for applications but also used as a 

complement to the earlier studies. 

 

 

2. MATHEMATICAL FORMULATION 

 

Let us consider two-dimensional, steady, boundary-layer 

flow, incompressible, viscous fluid, over a sheet. It coincides 

at y=0. The region flow refers to y>0. Two equal and opposite 

forces are applied in the direction of x component. The sheet 

has a velocity uw (x)=a xn by means of fixed origin location, 

where n is refer to nonlinearity parameter, if n=1 then the case 

is refer linear case and n ≠1 is refer nonlinear case, a refer 

constant and it considered as a>0. The rheological equation  

for Casson fluid is given below. 

 

𝜏𝑖 𝑗 = 

{
 
 

 
 2 (𝜇𝐵 +

𝑝𝑦

√2𝜋
) 𝑒𝑖 𝑗 ,   𝜋>𝜋𝑐,

2 (𝜇𝐵 +
𝑝𝑦

√2𝜋𝑐
) 𝑒𝑖 𝑗 ,   𝜋<𝜋𝑐,

 (1) 

 

where, π refer to the rate of deformation of product of 

component and it can be defined as π=eij eij, πc is refer to 

critical value of the product non – Newtonian fluid model, µ𝐵 

is refer to plastic dynamic viscosity, and py is refer to fluid 

yield stress. Tw is referring to temperature at the wall and it can 

be assumed that this value is constant at the stretching surface. 

The ambient temperature is referring to T∞ at this position y is 

tending to infinity. Moreover, boundary condition for 

Newtonian heating condition is involved in energy equation. 

The physical sketch of present model is shown in Figure 1.  

 

  
Figure 1. Physical model and coordinate system 

 

The governing equations of momentum and thermal energy 

can be written as, Mukhopadhyay [33].  

 
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0, (2) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜐 (1 +

1

𝛽
)
𝜕2𝑢

𝜕𝑦2
 , (3) 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+

𝜇

𝜌𝑐𝑝
(1 +

1

𝛽
) (

𝜕𝑢

𝜕𝑦
)
2

 . (4) 

 

where, u and v are referring to velocity segments in the 

direction of x and y correspondingly, υ is refer to viscosity of  

kinematic, μ is refer to viscosity of the fluid, α=k/ρcp is refer 

to thermal diffusivity, k is refer to the thermal conductivity, ρ 

is refer to fluid density, cp is refer to specific heat at constant 

pressure, β=μB √(2πc)/py is refer to Casson fluid parameter. 

The following are the boundary conditions: 

 

𝑢 = 𝑢𝑤 = 𝑎 𝑥𝑛 , 𝑣 = 0, 𝑇 = 𝑇𝑤, at 𝑦 = 0, (5) 

 

𝑢 → 0, 𝑇 → 𝑇∞, as 𝑦 → ∞. (6) 

 

Here, a is refer to constant and it can be taken as a>0, n is 

referring to power law numbe it can be used to measure the 

velocitof the stretching surface, hs is heat transfer parameter. 

Let Ψ be the stream function of this study and it satisfies the 

condition 𝑢 =
𝜕Ψ

𝜕𝑦
 and 𝑣 = −

𝜕Ψ

𝜕𝑥
 by this defined function of 

the Eqns. (2)-(4) can be written as follows: 

 

𝜕Ψ

𝜕𝑦

𝜕2Ψ

𝜕𝑥𝜕𝑦
− 
𝜕Ψ

𝜕𝑥

𝜕2Ψ

𝜕𝑦2
 =  𝜐 (1 +

1

𝛽
)
𝜕3Ψ

𝜕𝑦3
, (7) 

 

𝜕Ψ

𝜕𝑦

𝜕𝑇

𝜕𝑥
− 

𝜕Ψ

𝜕𝑥

𝜕𝑇

𝜕𝑦
 =  𝛼

𝜕2T

𝜕𝑦2
+

𝜇

𝜌𝑐𝑝
(1 +

1

𝛽
) (

𝜕2Ψ

𝜕𝑦2
)
2

.     (8) 
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Consequently boundary conditions are follows as: 

 
𝜕Ψ

𝜕𝑦
= 𝑢𝑤 = 𝑎 𝑥𝑛 ,

𝜕Ψ

𝜕𝑥
= 0, 𝑇 = 𝑇𝑤, at 𝑦 = 0, (9) 

 
𝜕Ψ

𝜕𝑦
→ 0, 𝑇 → 𝑇∞,    as   𝑦 → ∞. (10) 

 

The following are the similarity transformations: 

 

( )
( ) ( )=

+
=

+
=

+−

faxufx
m

va
x

v

na
y n

nn

,
1

2
,

2

1
2

1

2

1

 (11) 

 

( ) ( ) ( )




−

−

−
=










+

−
+

+
−=

TT

TT
f

n

n
fx

n
avv

w

n

,
1

1

2

1
2

1

 (12) 

 

From the above assumptions Eqns. (7)-(8) can be written as: 

 

(1 +
1

𝛽
)
𝜕3𝑓

𝜕ℑ3
+ 𝑓 

𝜕2𝑓

𝜕ℑ2
−
2 𝑛 

𝑛 + 1
(
𝜕𝑓

𝜕ℑ
)
2

= 0, (13) 

 

𝜕2𝜃

𝜕ℑ2
+ 𝑃𝑟𝑓 

𝜕𝜃

𝜕ℑ
+ Pr 𝐸𝑐 (

𝜕2𝑓

𝜕ℑ2
)
2

= 0.  (14) 

 

Consequently boundary conditions are follows as: 

 

𝑓(ℑ) = 0,
𝜕𝑓

𝜕ℑ
= 1, 𝜃(ℑ) = 1 at  ℑ = 0,  (15) 

 
𝜕𝑓

𝜕ℑ
= 0,   𝜃(ℑ)  = 0      as ℑ → ∞.   (16) 

 

The physical parameters which are involved in the present 

flow are defined as: Pr =  
𝜐

𝛼
, Ec =  

𝑢𝑤
2

𝑐𝑝(𝑇𝑤−𝑇∞)
. 

Here, Pr is the parameter representing the Prnadtl number 

and Ec is the parameter for the viscous dissipation parameter 

(Eckert number). 

Thereafter for nonlinear stretching case proposed numerical 

technique is applied to solve. 

In this present analysis, flow quantities like, local skin 

friction coefficient Cfx and Nusselt number Nux, and they are 

follows: 

 

𝐶𝑓𝑥 =
𝜇

𝜌𝑢𝑤
2
(
𝜕𝑢

𝜕𝑦
)
𝑦=0

, 𝑁𝑢𝑥 =
𝑥 𝑞𝑤
𝑘𝑇∞

, (17) 

 

Here k is referring to thermal conductivity and qw is refer to 

surface heat flux, and defined by: 

 

𝑞𝑤 = −(
𝜕𝑇

𝜕𝑦
)
𝑦=0

.  (18) 

 

By all these substitutions we get: 

 

𝑅𝑒𝑥
1/2
𝐶𝑓𝑥 = (1 +

1

𝛽
)√

𝑛+1

2
𝑓′′(0), 𝑅𝑒𝑥

−1/2
𝑁𝑢𝑥 =

−√
𝑛+1

2
𝜃′(0).     

(19) 

 

( )

( ),0
2

1
Re

,0
2

11
1Re

2
1

2
1






+

−=


+









+=

− n
Nux

f
n

Cx

x

fx

 
(20) 

 

Local Reynolds number is given by 𝑅𝑒𝑥 =
𝑥𝑢𝑤

𝜐
  

 

 

3. SOLUTION OF THE PROBLEM 

 

In order to solve the Eqns. (13)-(16) along with the 

mentioned boundary conditions by using the numerical 

strategy i.e. Spectral Relaxation method and actually this 

strategy is proposed by Motsa [34]. Moreover, this proposed 

strategy is applied to get the solution for corresponding 

boundary layer problems with exponentially decaying profiles. 

Chebyshev spectral collocation methods are used to discretize 

the differential equations (see, for example, (Canuto et al. [35], 

Trefethene [36]). To get the ample accuracy of SRM, number 

of grid point are taken as 120 all the way through numerical 

experimentation is that ℑ∞ = 100.  Spectral strategies are 

favoured here as a result of their surprisingly high exactness 

and simplicity of usage in discretizing and the consequent 

result of variable coefficient linear differential equations with 

soft solutions up basic spaces. With regards to the SRM 

iteration scheme depicted above, Eqns. (13) - (16) become: 

 

𝑓′
𝑟+1

= 𝑔𝑟+1, 𝑓𝑟+1(0) = 0, (21) 

 

(1 +
1

𝛽
)𝑔′′𝑟+1 + 𝑓𝑟𝑔′𝑟+1 =

2 𝑛

𝑛 + 1
𝑔𝑟+1
2  (22) 

 

𝜃′′𝑟+1 + 𝑃𝑟𝑓𝑟𝜃′𝑟+1 + Pr 𝐸𝑐  (𝑔′𝑟+1)
2
= 0.  (23) 

 

The boundary conditions for the above iteration scheme are: 

 

𝑔𝑟+1(0) = 1, 𝜃𝑟+1(0) = 1, (24) 

 

𝑔𝑟+1(∞) = 0, 𝜃𝑟+1(∞) = 0.      (25) 

 

Here, 𝜃′′ = 
𝜕2𝜃

𝜕ℑ2
, 𝜃′ =

𝜕𝜃

𝜕ℑ
. 

So as to unravel the coupled Eqns. (21)-(23), The 

Chebyshev spectral collocation technique is utilized. The 

computational area [0, L] is changed to the interim [-1, 1] 

using  ℑ = 𝐿(𝜒 + 1)/2 on which the spectral strategy is 

applied. Here L refer to boundary conditions at infinity. The 

essential thought at the rear the spectral collocation method is 

to give the preface of a differentiation matrix 𝒟, which is 

utilized to estimate the derivatives of the unknown variables at 

the collocation points and the matrix vector product form is 

given by: 

 
𝜕𝑓𝑟+1

𝜕ℑ
= ∑ 𝐷𝑙𝑘𝑓𝑟(𝜒𝑘)

�̄�
𝑘=0 = 𝐷𝑓𝑟 , 𝑙 = 0,1,2, . . . . . . . . . �̄�    (26) 

 

where, D=2𝒟/L, f= [𝑓(𝜒0), 𝑓(𝜒1), 𝑓(𝜒2), . . . . . . . . . 𝑓(𝜒�̄�)]
𝑇 is 

referring to vector function at the collocation points with the 

order �̄� + 1. Moreover, the derivatives with higher order find 

as powers of D, i.e. 
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𝑓𝑟
(𝑝) = 𝑫𝑝𝑓𝑟.  (27) 

 

where, p is referring to derivative order of. By using the 

proposed method to Eqns. (21)- (23), these can be written as: 

 

𝐴1𝑔𝑟+1 = 𝐵2, 𝑔𝑟+1(𝜒�̄�) = 1, 𝑔𝑟+1(𝜒0) = 0, (28) 

 

𝐴2𝑓𝑟+1 = 𝐵2, 𝑓𝑟+1(𝜒�̄�) = 0, (29) 

  

𝐴3𝜃𝑟+1 = 𝐵3, 𝜃𝑟+1(𝜒�̄�) = 1, 𝜃𝑟+1(𝜒0) = 0,  (30) 

 

where, 

 

𝐴1 = (1 +
1

𝛽
)𝐷2 + 𝑑𝑖𝑎𝑔 [𝑓𝑟] 𝐷,    𝐵2 = 𝑔𝑟+1

2  (31) 

 

𝐴2 = 𝐷, 𝐵2 = 𝑓𝑟+1   (32) 

 

𝐴3 = 𝐷
2 + 𝑃𝑟 𝑑 𝑖𝑎𝑔[𝑓𝑟+1] 𝐷, 𝐵3 = −Pr𝐸𝑐  (𝑔′

𝑟+1
)
2
 (33) 

 

In Eqns. (31)-(33), diag [] is a diagonal matrix, all of 

size(�̄� + 1) × (�̄� + 1) here �̄� is the number of gridpoints, g, 

f and θ are the values of the functions g, f and θ, reciprocally, 

the calculated at the grid points and the subscript r express the 

iteration number.  

The underlying theories to begin the SRM plot for Eqns. 

(28)-(30) are chosen as: 

 
𝑓0(ℑ) = 1 − 𝑒

−ℑ, 𝑔0(ℑ) = 𝑒
−ℑ,

𝜃0(ℑ) = 𝑒
−ℑ, 

(34) 

 
These all functions are chosen randomly to satisfy the 

boundary conditions. The cycle is rehashed until combination 

is accomplished. The convergence of the SRM plan is 

characterized as far as the infinity norm as: 

𝐸𝑟 = 𝑀𝑎𝑥(‖𝑔𝑟+1 − 𝑔𝑟‖, ‖𝑓𝑟+1 − 𝑓𝑟‖, ‖𝜃𝑟+1 − 𝜃𝑟‖).    (35) 

 
To obtain the Accuracy of the technique, the number of 

collocation points �̄�  are increased up to the solutions are 

remains stable and the fore coming growths cannot change the 

value of the solutions. To enhance the rate of convergence of 

the SRM solutions essentially the successive over-relaxation 

(SOR) technique is applied to the Eqns. (28)-(30). ω is the 

convergence controlling parameter in the SOR frame work, 

which is introduced to modify the SRM technique. For finding 

X is given by: 

 

𝐴𝑋𝑟+1 = (1 − 𝜔)𝐴𝑋𝑟 + 𝜔𝐵    (36) 

 

3.1 Validation of the numerical procedure  

 

For the purpose of validation of suggested method the 

consequences which are acquired by the numerical strategy are 

compared with the earlier presented outcomes in the literature. 

Mainly the SRM outcomes of classical nanofluid for distinct 

values of Prandtl number Pr, and nonlinear stretching 

parameter 𝑛  are compared with the outcomes produced by 

Rana and Bhargava [37], Cortell [38], Zaimi et al. [39] and 

Mabood et al. [7] are shown Table 1.The results which are 

acquired from the numerical strategy talked about in the past 

segment are contrasted and those of Khan and Pop [40], Wang 

[41] , Gorla and Sidawi [42], and Mabood et al. [7] are shown 

in Table 2. From these two tabular values there exists a closer 

correlation between the proposed strategy and available 

various numerical strategies. Furthermore, from the Table 3 it 

can be noticed that for low Prandtl number there is a high 

thermal diffusion when compared to momentum diffusion. As 

a result, it is observed that heat conduction is more important 

than the convection, at the same time for high prandtl numbers 

reverse trend is observed. Hence it is clear that, as the prandtl 

numbers increases the heat transfer coefficient also increases. 

 

Table 1. Comparison of −𝜃′(0) for viscous Newtonian fluid for Ec=0  
 

Pr n Rana and Bhargava [37] Cortell [38] Zaimi et al. [39] Mabood et al. [7] Present Analysis 

1 

 

 

5 

0.2 

0.5 

1.5 

0.1 

0.2 

0.3 

0.5 

0.8 

1.0 

1.5 

0.6113 

0.5967 

0.5768 

 

1.5910 

 

1.5839 

 

 

1.5496 

0.610262 

0.595277 

0.574537 

 

1.607175 

 

1.586744 

 

 

1.557463 

0.61131 

0.59668 

0.57686 

1.61805 

1.60757 

1.59919 

1.58658 

1.57389 

1.56787 

1.55751 

0.61131 

0.59668 

0.57686 

 

1.60757 

 

1.58658 

 

1.56787 

1.55751 

0.6102017603 

0.5952008002 

0.5673971515 

1.6182771291 

1.6077869643 

1.5993982290 

1.5867824303 

1.5740786416 

1.5680541903 

1.5514537998 

 

Table 2. Comparison of −𝜃′(0) for viscous Newtonian fluid when n=1, Ec=0  

 
Pr Khan and Pop [40] Wang [41] Gorla and Sidawi [42] Mabood et al. [7] Present Analysis 

0.07 

0.20 

0.70 

2.0 

7.0 

20.0 

70.0 

0.0663 

0.1691 

0.4539 

0.9113 

1.8954 

3.3539 

6.4621 

0.0656 

0.1691 

0.4539 

0.9114 

1.8954 

3.3539 

6.4622 

0.0656 

0.1691 

0.4539 

0.9114 

1.8905 

3.3539 

6.4622 

0.0665 

0.1691 

0.4539 

0.9114 

1.8954 

3.3539 

6.4622 

0.0683038750 

0.1691062173 

0.4539161580 

0.9113576837 

1.8954032582 

3.3539042823 

6.4624077433 
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Table 3. SRM convergence based on iterations for kept at constants β=0.5, Pr=0.72, Ec=0.2, n=10  

 

Iter 𝜉∞ ‖𝑓𝑟+1 − 𝑓𝑟‖ ‖𝑔𝑟+1 − 𝑔𝑟‖ ‖𝜃𝑟+1 − 𝜃𝑟‖ CPU time 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

20 

25 

30 

35 

36 

37 

38 

82 

81 

76 

87 

74 

80 

76 

69 

84 

64 

62 

62 

61 

61 

50 

64 

60 

64 

51 

53 

58 

1.3730 

1.0323 

0.4465 

0.2821 

0.1439 

0.0830 

0.0447 

0.0250 

0.0137 

0.0076 

0.0042 

0.0023 

0.0013 

0.6979× 10−3 

0.3555× 10−4 

0.1811× 10−5 

0.9224× 10−7 

0.4697× 10−8 

0.2590× 10−8 

0.1425× 10−8 

0.7931× 10−9 

0.2552 

0.1672 

0.0821 

0.0483 

0.0256 

0.0144 

0.0079 

0.0044 

0.0024 

0.0013 

0.0007 

0.0004 

0.0002 

0.1224× 10−3 

0.0622× 10−4 

0.0317× 10−5 

0.1618× 10−7 

0.0822× 10−8 

0.0454× 10−8 

0.0250× 10−8 

0.1380× 10−9 

0.1562 

0.0694 

0.0377 

0.0206 

0.0113 

0.0063 

0.0034 

0.0019 

0.0010 

0.0006 

0.0003 

0.0002 

0.0001 

0.0534× 10−3 

0.0272× 10−4 

0.0138× 10−5 

0.0706× 10−7 

0.0359× 10−8 

0.0199× 10−8 

0.0109× 10−8 

0.0604× 10−9 

0.394360 

0.366717 

0.341498 

0.451857 

0.789563 

0.651409 

0.659356 

0.748656 

1.024120 

0.757227 

0.802267 

0.868983 

0.898314 

0.970187 

1.091985 

1.716809 

1.940810 

2.483735 

1.955532 

2.111583 

2.300877 

 

 
 

Figure 2. Graph for SRM solutions of velocity for various 

values of n 

 

 

4. RESULTS AND DISCUSSION 

 

In this area all the numerical outcomes are exposed 

graphically from Figure 2 to Figure 7 to talk about different 

resulting parameters encountered in the present study. Figure 

2 exhibits that a distinguish between the outcomes of stream 

function profiles f(ξ) and velocity profiles 
𝜕𝑓

𝜕ξ
 for the 

longitudinal stretching sheet (n=1) with the exact solutions. 

This correlation demonstrates a good understanding between 

present examination and past investigations. Figure 2 presents 

the information about the type of velocity profiles for linear 

and nonlinear stretching, for Newtonian and non-Newtonian 

fluid cases. Here based on the value of n nature of the 

stretching can be classified as for n=1 represents linear 

stretching case and n≠1 represents the nonlinear stretching 

case. From the Figure 2 it can be seen that there is a decrease 

in the velocity for increasing values of n for two cases i.e. 

Casson and clear fluid. In both linear and nonlinear cases 

Figure 3 express the variation of casson parameter β on the 

velocity profile. Also from Figure 3 it is noticed that for both 

linear and nonlinear cases i.e. for linear stretching sheet (n=1) 

and nonlinear stretching sheet (n=10) the velocity and 

momentum of boundary layer thickness decrease with the 

increase in β. Physically, as β increases the fluid gets more 

viscous, as a result the fluid velocity reduces. Further, as β →∞ 

the current phenomenon lessen to Newtonian fluid (clear 

fluids).   

 
 

Figure 3. Graph for SRM solutions of velocity for various 

values of β 

 

Figures 4 and 5 exhibit the distribution of non dimensional 

temperature for increasing values of β and n. In Figure 4 it is 

observed that as β raises the dimensionless temperature also 

raises. In other hand side it is noticed that for raising values of 

n a reverse trend exists for dimensionless temperature (see 

Figure 5). For distinct values of the viscous dissipation 

parameter 𝐸𝑐  for linear and nonlinear stretching sheets the 

behavior of temperature profiles is demonstrate in Figure 6. 

With the increment of viscous dissipation parameter Ec the 

thickness of the boundary layer also increases as indicated in 

the figure. Here it is clear that the Ec number restricts the fluid 

motion and the value of Ec=0 represents no viscous dissipation. 

The reason behind is Eckert number Ec means it is the ratio of 

the square of velocity of fluid far-away from the surface of the 

boundary to the product of the fluid specific heat at constant 

temperature. In the case of viscous dissipation (Ec>0 or Ec<0), 
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so that as the value of Ec the thermal boundary layer increases. 

The behavior of temperature profiles for distinct values of 

Prandtl number Pr for two linear and nonlinear stretching 

sheets can be found in Figure 7. It is notified from this figure 

that, the temperature profiles falls as the Prandtl number Pr 

rises, Moreover, the thermal boundary layer is thinner at large 

Pr. It is because of the small augment of the Prandtl number 

(Pr<<1). 

 
Figure 4. Graph for SRM solutions of temperature for 

various values of β 

 
 

Figure 5. Graph for SRM solutions of temperature for 

various values of n 

 
                 

Figure 6. Graph for SRM solutions of temperature for 

various values of Ec 

 
 

Figure 7. Graph for SRM solutions of temperature for 

various values of Pr 

 

 

5. CONCLUSIONS 

 

A numerical study of free convection flow of Casson fluid 

in the presence of viscous dissipation over a non linear 

stretching sheet has been studied. In this study the effect of 

Casson parameter β, nonlinearity parameter n, viscous 

dissipation parameter Ec and Prandtl number Pr are discussed 

in detail and the outcomes are presented graphically along with 

tables. The observations of present study can be summarized 

as follows:  

(i) increasing Casson parameter can condense the heat 

transfer rate and opposite trend is observed in skin 

friction coefficient  

(ii) The rate of heat transfer reduces, whereas 

temperature raises with viscous dissipation parameter  

(iii) The consequence of nonlinear stretching parameter is 

to restrain the velocity field, which in turn causes the 

improvement of the skin friction coefficient  

(iv) By increasing nonlinear stretching parameter the 

thermal boundary layer thickness increases.  

 

The outcomes may be useful for probable technological 

applications in liquid-based systems concerning elongated 

materials. Because of the numerical values are very close to 

exact values. 
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