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 We focused on developing an accurate numerical scheme for the flow of a fractional-

order Oldroyd–B fluid model with the non-isothermal property. In many cases, the 

direct application of the Chebyshev tau method using the operational matrix of the 

Chebyshev polynomials usually leads to an accurate solution. However, in some cases, 

dealing with non–linearity and coupling can be tedious. In this study, we present a 

numerical method based on Chebyshev polynomials of the first kind and interpolation 

using Gauss–Lobatto quadrature. The coefficients of the series expansion of the 

pseudospectral method are obtained through integration of the Chebyshev polynomials 

orthogonality condition. The numerical results show that the scheme is accurate and 

reliable. The effects of the fractional-order objective stress rate of the Oldroyd–B fluid 

on the velocity and shear stress are also presented. The error bound theorems presented 

in this study support the findings of the numerical computations. 
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1. INTRODUCTION 

 

The Oldroyd–B fluid is a rate type model for viscoelastic 

fluids that have been studied extensively since its formulation 

by Oldroyd [1]. This model is part of a large class of rate type 

viscoelastic fluids models, which include, but are not limited 

to the upper convected Maxwell model, Jeffrey model and 

Burgers’ model. The Oldroyd-B model gives a good 

representation of the rheological response of viscoelastic 

fluids in shear flow. The Cauchy stress tensor for the classical 

Oldroyd–B constitutive model has the form 

 

𝑆𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜏𝑖𝑗 , (1) 

 

[1 + 𝜆D
▽

] 𝜏𝑖𝑗 = 𝜇 [1 + 𝜆𝑟D
▽

] 𝑒𝑖𝑗 , (2) 

 

where, τij is the extra stress tensor, eij is the stress tensor. The 

material parameters μ, λ and λr are the viscosity, stress 

relaxation time and retardation time respectively and D
▽

 is the 

upper convected time derivative. The constitutive model of the 

Oldroyd–B is a generalization of the Maxwell fluid model [2]. 

Unlike the Maxwell model, the Oldroyd–B fluid uses the 

objective stress rate that takes into account frame indifference 

of the deformation rate. The deformation rate is represented by 

the upper convected derivative in Eq. (2). Because of the 

memory retention characteristics of viscoelastic fluids, recent 

studies have suggested using non–local time derivatives [3]. 

Non–local objective stress rate exhibits complex dynamical 

and viscoelastic behaviours. Taking advantage of the inherent 

non–locality and memory retention characteristics of 

fractional derivatives, we generalize the Oldroyd–B 

constitutive relation by replacing the local time derivatives in 

Eq. (2) with fractional time derivative [4]:  

 

[1 + 𝜆𝛼D𝛼
▽

] 𝜏𝑖𝑗 = 𝜇 [1 + 𝜆𝑟
𝛽
D𝛽
▽

] 𝑒𝑖𝑗 , (3) 

 

where, 

 

D𝛼
▽

=
𝜕𝛼𝜏

𝜕𝑡𝛼
+ 𝐔 ⋅ ∇𝜏 − 𝜏∇𝐔 − (∇𝐔)T𝜏. (4) 

 

In the constitutive model Eq. (3), 0<α, β≤1 and μ, λ, λr>0. If 

α>β, it should be noted that the model is physically unrealistic. 

This case corresponds to an increasing relaxation function [5]. 

Hence, the constraint on the order of the derivatives must 

satisfy 0<α≤β≤1. It is evident that if α=β=1, the constitutive 

relation is the classical Oldroyd–B fluid. Setting λr to zero in 

Eq. (3) corresponds to the fractional Maxwell fluid, if λ=0, the 

model is equivalent to the fractional second-grade fluid, if 

0<λr<λ, we obtain the fractional Jeffrey fluid [6] and when 

λ=λr=0, the model corresponds to the classical Newtonian fluid. 

If we consider an incompressible fluid with constant pressure 

and using established notation, the momentum conservation 

equation for an unsteady flow of a magnetohydrodynamic 

(MHD) fluid is: 

 

𝜌 [
𝜕𝐔

𝜕𝑡
+ 𝐔 ⋅ ∇𝐔] = ∇𝜏𝑖𝑗 − 𝜎𝐵0

2𝐔, (5) 

 

where, ρ is the fluid density, σ is the electrical conductivity of 

the fluid and B0 is the applied magnetic field. To write the 

conservation equation and the shear stress relation in non–

dimensional form, we assume a reference length 𝐋  and 

velocity 𝐔0, so that we define 𝑡 = �̃�𝐋𝐔0
−1, 𝐲 = �̃�𝐋 for all 𝐲 in 
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the domain of the flow, 𝐔(𝐲, 𝑡) = 𝐔0�̃�(�̃�, �̃�) , 𝜏𝑖𝑗(𝐲, 𝑡) =

𝐔0𝜇𝐋
−1�̃�𝑖𝑗(�̃�, �̃�), and 𝜆𝑟 = �̃�𝑟𝐋𝐔0

−1. Therefore, we write Eq. 

(3) and Eq. (5) in the dimensionless form (dropping the tilde 

for convenience): 

  

𝑅𝑒 [
𝜕𝐔

𝜕𝑡
+ 𝐔 ⋅ ∇𝐔] = ∇𝜏𝑖𝑗 − 𝐻𝑎

2𝐔 (6) 

 

[1 +𝑊𝑒𝛼D𝛼
▽

] 𝜏𝑖𝑗 = [1 + 𝜆𝑟
𝛽
D𝛽
▽

] 𝑒𝑖𝑗 . (7) 

 

Here, 𝑅𝑒 = 𝜌𝐋𝐔0𝜇
−1  is the Reynolds number, 𝐻𝑎 =

𝐵0𝐋(𝜎/𝜇)
1/2  is the Hartmann number, 𝑊𝑒 = 𝐔0𝜆𝐋

−1  is the 

Weissenberg number, λr is a dimensionless retardation 

parameter. Some special cases of interest include the Jeffrey 

fluid (0<λr<We), Maxwell fluid (λr=0), second-order fluid 

(We=0), Newtonian fluid (We=λr=0) and hydrodynamic fluids 

(Ha=0).  

Exact solutions to fractional partial differential equations 

are, in general, challenging to find. Even when found, the 

solution may contain complicated integrals and special 

functions that have to be approximated numerically. Several 

studies have proposed various methods, both numerical and 

analytic, for solving fractional differential equations [7-12]. 

However, recent studies have identified spectral methods as 

efficient for approximating solutions of fractional partial 

differential equations. Spectral methods are favoured because 

of their spectral rate of convergence and accuracy, especially 

for differential equations with sufficiently smooth solutions. 

Doha et al. [13] and Atabakzadeh et al. [14] presented the 

operational matrix of the shifted Chebyshev polynomial and 

used the polynomial to approximate multi-order fractional 

ordinary differential equations. Liu et al. [15] presented 

numerical solutions to multiterm variable-order fractional 

ordinary differential equations using the Chebyshev 

polynomial of the second kind as the basis function. 

Operational matrices of the shifted Chebyshev wavelets, 

generalized Laguerre polynomials, and Bernstein polynomials 

are presented in the studies of Benattia and Belghaba [16], 

Bhrawy and Alghamdi [17], Baseri et al. [18] respectively. 

These matrices are used to approximate the solutions of 

fractional differential equations. The numerical results that 

were reported in the studies as mentioned earlier are typical of 

spectral method, and they exhibit the spectral convergence 

property of spectral methods. From literature, many authors 

have used the spectral tau method to solve fractional 

differential equations with different orthogonal polynomials as 

basis functions. In this study, we propose a spectral method 

that uses the shifted Chebyshev polynomials of the first kind 

as basis functions and interpolates using Gauss–Lobatto 

quadrature. We obtain the coefficients of the series expansion 

in the spectral method by integrating the orthogonal condition 

of the Chebyshev polynomials using Chebyshev-Gauss-

Lobatto quadrature. We then apply the resulting fractional 

differentiation matrix to solve fractional partial differential 

equations that describe the unsteady boundary layer flow of a 

generalized MHD Oldroyd–B fluid and a non–isothermal flow 

of an Oldroyd–B fluid (see Section 4). We also investigate the 

effects of derivatives of arbitrary order in Eq. (6) and Eq. (7) 

on fluid velocity and shear stress. 

 

 

2. FRACTIONAL ORDER DIFFERENTIATION 

MATRIX 

 

The most used definitions of fractional operators are the 

Riemann-Liouville and Caputo fractional operators. In the 

Riemann-Liouville case, we have the definition 

  

 𝑅𝐿D𝑦
𝛼𝐻(𝑦) =

1

Γ(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑦𝑛
∫
𝑦

0

𝐻(𝜍)

(𝑦 − 𝜍)𝛼+1−𝑛
𝑑𝜍 (8) 

 

and the Caputo case is defined as 

 
 0
𝐶D𝑦

𝛼𝐻(𝑦)

=

{
 
 

 
 1

Γ(𝑛 − 𝛼)
∫
𝑦

0

𝐻(𝑛)(𝜍)

(𝑦 − 𝜍)𝛼+1−𝑛
𝑑𝜍,             𝑛 − 1 < 𝛼 < 𝑛

𝑑𝑛𝐻

𝑑𝑦𝑛
,                                        𝛼 = 𝑛.

 
(9) 

 

In both cases, n-1<α<n, and 𝑛 ∈ ℕ  and H(y) is a 

continuously bounded function with 𝑛 derivatives in [0, L], for 

χ>0. For an in-depth exploration of these definitions, see 

Podlubny [19], Atangana [20]. Using the Caputo operator, the 

following holds 

 

 𝐶D𝛼   𝐾 = 0,        K  is a constant, (10) 

 

 𝐶D𝛼𝑦𝑗 = {

0                      for j ∈ ℕ0and j < ⌈α⌉ 
Γ(𝑗 + 1)

Γ(𝑗 + 1 − 𝛼)
𝑦𝑗−𝛼      for j ∈ ℕ0, j ≥ ⌈α⌉.

 (11) 

 

Considering that most physical problems are defined in [0, 

L], L being a truncation of the semi-infinite domain, we define 

the series form of the shifted Chebyshev polynomials TL,n of 

degree n>0 as ([21, 22]) 

 

𝑇𝐿,𝑛 = 𝑛∑

𝑛

𝑗=0

(−1)𝑛−𝑗(𝑛 + 𝑗 − 1)! 22𝑗

(𝑛 − 𝑗)! (2𝑗)! 𝐿𝑗
𝑦𝑗 , (12) 

 

which satisfies the orthogonality condition 

 

∫
𝐿

0

𝑇𝐿,𝑛(𝑦)𝑇𝐿,𝑚(𝑦)𝑤𝐿(𝑦)𝑑𝑦 = 𝛿𝑚𝑛ℎ𝑛. (13) 

 

Here, the weight function of the shifted Chebyshev 

polynomials is given by 𝑤𝐿(𝑦) = 1/√𝐿𝑦 − 𝑦
2 and hn=cn π/2, 

with c0=2 and cn=1 for n≥1. 

At this point, we discuss some lemmas and theorems that 

are used in developing the approximation of the fractional-

order derivative of a square-integrable function that is 

expanded by a shifted Chebyshev series and integrated using 

the Chebyshev-Gauss-Lobatto quadrature. 

 

Remark 2.1: For the shifted Chebyshev–Gauss–Lobatto 

quadrature, the Christoffel numbers are the same as those of 

the Chebyshev-Gauss-Lobatto quadrature. The shifted Gauss–

Lobatto nodes are defined as ([21]) 

  

𝑦𝑗 =
𝐿

2
cos (

𝜋𝑗

𝑁
) +

𝐿

2
, (14) 

 

and the associated Christoffel weight number wL,j=π/ci N, 

0≤j≤N, where c0=cN=2 and cj=1 for j=1,2,…, N-1.  
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Lemma 2.2: Assume that u(y) is an integrable function 

defined on the domain[0,L], then the function can be expanded 

in terms of shifted Chebyshev polynomials as a N+1 truncated 

series: 

 

𝑢𝑁(𝑦) = ∑

𝑁

𝑛=0

𝑢𝑛𝑇𝐿,𝑛(𝑦), (15) 

 

where, the coefficients un satisfy the orthogonality condition, 

which is given in discrete form as 

 

𝑢𝑛 =
1

ℎ𝑛
∑

𝑁

𝑗=0

𝜋

𝑐𝑗𝑁
𝑢(𝑦𝑗)𝑇𝐿,𝑛(𝑦𝑗),    𝑛 = 0,… , 𝑁. (16) 

 
Lemma 2.3: Let TL,n (y) be a n–th order shifted Chebyshev 

polynomials, then the a–th order derivative based on the 

Caputo’s definition is defined as [13, 14] 

 

D𝛼𝑇𝐿,𝑛(𝑦) = ∑

𝑁

𝑘=0

D𝑛,𝑘
(𝛼)
𝑇𝐿,𝑘(𝑦), (17) 

 

where, 

 

D𝑛,𝑘
(𝛼)

= 𝑛∑

𝑛

𝑗=0

(−1)𝑛−𝑗(𝑛 + 𝑗 − 1)! 22𝑗

(𝑛 − 𝑗)! (2𝑗)! 𝐿𝑗
Γ(𝑗 + 1)

Γ(𝑗 − 𝛼 + 1)
𝑞𝑗,𝑘 , 

(18) 

 

and qj,k are entries of a matrix and these entries are defined as 

(Ahmadi - Darani and Saadatmandi [22], Ahmadi - Darani and 

Nasiri [23])  

 

𝑞𝑗,𝑘 =

{
 
 

 
 
0  𝑗 = 0,1, … , ⌈𝛼⌉ − 1,

𝑘√𝜋

ℎ𝑘
∑

𝑘

𝑟=0

(−1)𝑘−𝑟(𝑘 + 𝑟 − 1)! 22𝑟

(𝑘 − 𝑟)! (2𝑟)!
𝐿𝑗−𝛼

Γ (𝑗 − 𝛼 + 𝑟 +
1
2
)

Γ(𝑗 − 𝛼 + 𝑟 + 1)
,  𝑗 = ⌈𝛼⌉, ⌈𝛼⌉ + 1,… , 𝑁;

 𝑘 = 0,1,… , 𝑁.

 (19) 

 

The proof of this lemma can be found in Atabakzadeh et al. 

[14] and Doha et al. [13]. 

 

Theorem 2.4: Assume u(y) is a continuously bounded and 

integrable function defined on the truncated semi-infinite 

domain [0,L]. If u(y) is approximated using the shifted 

Chebyshev polynomials and evaluated at the shifted Gauss-

Lobatto collocation points, then any arbitrary order derivative 

of u(y) is given by 

  

D𝛼𝑢𝑁(𝑦) =∑

𝑁

𝑗=0

D𝑗,𝑝
𝛼 𝑢(𝑦𝑗). (20) 

 

Here, 

 

D𝑗,𝑝
𝛼 =

𝜋

𝑐𝑗𝑁
∑

𝑁

𝑛=0

∑

𝑁

𝑘=0

1

ℎ𝑛
𝑇𝐿,𝑛(𝑦𝑗)D𝑛,𝑘

(𝛼)𝑇𝐿,𝑘(𝑦𝑝),  

 𝑗, 𝑝 = 0,1,… , 𝑁. 

(21) 

 

Proof. If we consider the first 𝑁 + 1  shifted Chebyshev 

polynomials, and a combination of the results of Lemma 2.2 

and Lemma 2.3, the proof is completed.  

Hitherto, we have only focused on functions of one variable. 

We now focus on functions of two variables, precisely time 

and spatial variables. We will use the results of the lemmas 

and theorem stated above to obtain the approximated values of 

a bivariate function and its fractional-order partial derivatives. 

The most straightforward approach to expanding a function of 

two variables is to take the tensor product of the expansion in 

each variable [24]. For a function u(y,t), the expansion by 

shifted Chebyshev polynomials is given as  

 

𝑢𝑁𝑦,𝑁𝑡(𝑦, 𝑡) = ∑

𝑁𝑦

𝑛=0

∑

𝑁𝑡

𝑚=0

𝑢𝑛,𝑚𝑇𝐿,𝑛(𝑦)𝑇T,𝑚(𝑡), (22) 

 

where, un,m are entries of the matrix which consist of the 

coefficients of expansion. 

Proposition 2.5: If u(y,t) is a function defined on the 

rectangular domain [0,L]×[0,T], then it can be approximated at 

the shifted Gauss-Lobatto nodes in terms of N+1 shifted 

Chebyshev polynomials so that we have 

 

𝑣𝑒𝑐(�⃗� ) = [𝐼𝑡 ⊗ 𝐼𝑦]𝑣𝑒𝑐(�⃗� ). (23) 

 

Here, both Iy and It are interpolation matrices (Lemma 2.2) 

in y and t respectively, and 𝑣𝑒𝑐(�⃗� )  is formed by piling 

columns of {u(yi,tj)  |  i=0,…, Ny, j=0,…,Nt} into a vector.  

 

Proposition 2.6: Any arbitrary order, say α>0 derivatives of 

u(y,t) can also be expanded and approximated in terms of the 

shifted Chebyshev polynomials and shifted Gauss–Lobatto 

nodes. The α–th order derivatives in terms of both variables 

are given as 

𝑣𝑒𝑐(�⃗� 𝛼) = [𝐼𝑡 ⊗D𝑦
𝛼]𝑣𝑒𝑐(�⃗� ), 

𝑣𝑒𝑐(�⃗� 𝛼) = [D𝑡
𝛼⊗ 𝐼𝑦]𝑣𝑒𝑐(�⃗� ), 

𝑣𝑒𝑐(�⃗� 𝛼
𝛼) = [D𝑡

𝛼 ⊗D𝑦
𝛼]𝑣𝑒𝑐(�⃗� ), 

 

where, the superscript indicates the derivative with respect to 

the temporal variable and the subscript is the derivative with 

respect to the spatial variable and Dα is from Theorem 2.4. 

 

 

3. ERROR ESTIMATION FOR THE 

APPROXIMATION 

 

Assume that u(y) is a square-integrable function and wL (y) 

is a Lebesgue integrable function defined in the interval 𝕀 =
[0, 𝐿] . Then, we can define a 𝐋𝑤𝐿

2  space in which u(y) is 

measurable and the norm ∥ 𝑢(𝑦) ∥𝑤𝐿  is defined as  

 

∥ 𝑢(𝑦) ∥𝑤𝐿= (∫
𝕀

|𝑢(𝑦)|2𝑤𝐿(𝑦)𝑑𝑦)

1/2

< ∞, (24) 

 

such that the norm is induced by the inner product 
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⟨𝑢(𝑦), �̂�(𝑦)⟩ = ∫
𝐿

0

𝑢(𝑦)�̂�(𝑦)𝑤𝐿(𝑦)𝑑𝑦. (25) 

 

If u(y) is the exact solution and uN (y) is the approximated 

solution based on the Chebyshev polynomials given in Eq. 

(15) with the coefficients un obtained by the normalized inner 

product 

 

𝑢𝑛 =
⟨𝑢𝑁(𝑦), 𝑇𝐿,𝑛(𝑦)⟩

∥ 𝑇𝐿,𝑛(𝑦) ∥𝑤𝐿
2

, (26) 

 

We can define an error bound for the approximation in the 

𝐋𝑤𝐿
2  norm. 

 

Theorem 3.1 (Error estimation for a single variable 

approximation): Given the shifted interpolation nodes defined 

in Eq. (14) and let PN u(y) be the approximation through these 

nodes given in Eq. (15), where PN is the space of all Chebyshev 

polynomials of degree less than or equal to N. Assume that 

dN+1u/dyN+1 exist and is continuous on the interval 𝕀, then the 

error bound is defined as 

 
‖𝑢(𝑦) − 𝐏𝑁𝑢(𝑦)‖

≤
1

(Γ(𝑁 + 2))
2 (max0<𝑦≤𝐿

|
𝑑𝑁+1𝑢(𝑦)

𝑑𝑦𝑁+1
|)

2

𝐿2𝑁+2√𝜋
Γ (2𝑁 +

5
2
)

Γ(2𝑁 + 3)
. 

(27) 

  

Proof. Consider the generalized Taylor’s approximation of 

u(y) in which the error bound is known as 

 

|𝑅𝑁(𝑦)| ≤
|𝑦|𝑁+1

Γ(𝑁 + 2)
max
0<𝑦≤𝐿

|
𝑑𝑁+1𝑢(𝑦)

𝑑𝑦𝑁+1
|, (28) 

 

then for any y in the collocation points 

 
‖𝑢(𝑦) − 𝐏𝑁𝑢(𝑦)‖𝑤𝐿

2 ≤ ‖𝑅𝑁(𝑦)‖𝑤𝐿
2

≤
1

(Γ(𝑁 + 2))
2 ( max0<𝑦≤𝐿

|
𝑑𝑁+1𝑢(𝑦)

𝑑𝑦𝑁+1
|)

2

∫
𝐿

0

𝑦2𝑁+2

√𝐿𝑦 − 𝑦2
𝑑𝑦 

(29) 

 

=
1

(Γ(𝑁 + 2))
2 (max0<𝑦≤𝐿

|
𝑑𝑁+1𝑢(𝑦)

𝑑𝑦𝑁+1
|)

2

𝐿2𝑁+2√𝜋
Γ (2𝑁 +

5
2
)

Γ(2𝑁 + 3)
. (30) 

 

This leads to the desired result.  

 

Theorem 3.2: Let 𝑢: 𝕀 × 𝕁 → ℝ  be a continuously 

differentiable function such that at least (Ny+1)th partial 

derivative with respect to y, (Nt+1)th partial derivative with 

respect to t, and (Ny+Nt+2)th mixed derivative with respect to 

y and t exist, then based on the mean value theorem, the 

following remainder formula holds ([25]) 

 

|𝑅𝑁𝑦,𝑁𝑡(𝑦, 𝑡)| ≤
𝐾1𝑦

𝑁𝑦+1

Γ(𝑁𝑦 + 2)
+

𝐾2𝑡
𝑁𝑡+1

Γ(𝑁𝑡 + 2)

+
𝐾3𝑦

𝑁𝑦+1𝑡𝑁𝑡+1

Γ(𝑁𝑦 + 2)Γ(𝑁𝑡 + 2)
, 

(31) 

 

where, 𝕀 = [0, 𝐿], 𝕁 = [0, T]  and K1, K2, K3 are constants, 

defined as 

 

𝐾1 = sup {|
𝜕𝑁𝑦+1𝑢(𝑦, 𝑡)

𝜕𝑦𝑁𝑦+1
| : 𝑦, 𝑡 ∈ 𝕀 × 𝕁},   (32) 

𝐾2 = sup {|
𝜕𝑁𝑡+1𝑢(𝑦, 𝑡)

𝜕𝑡𝑁𝑡+1
| : 𝑦, 𝑡 ∈ 𝕀 × 𝕁}, 

 

𝐾3 = sup {|
𝜕𝑁𝑦+𝑁𝑡+2𝑢(𝑦, 𝑡)

𝜕𝑦𝑁𝑦+1𝜕𝑡𝑁𝑡+1
| : 𝑦, 𝑡 ∈ 𝕀 × 𝕁}, (33) 

 

respectively.  

 

Theorem 3.3 (Error bound for functions of 1+1 variables 

approximation): We define the error bound for the 

approximation of a function of two variables as 

 

‖𝑅𝑁𝑦,𝑁𝑡(𝑦, 𝑡)‖𝑤𝐿,𝑤T

≤
𝐾1
2𝜋√𝜋𝐿2𝑁𝑦+2

(Γ(𝑁𝑦 + 2))
2

Γ(2𝑁𝑦 +
5
2
)

Γ(2𝑁𝑦 + 3)

+
𝐾2
2𝜋√𝜋T2𝑁𝑡+2

(Γ(𝑁𝑡 + 2))
2

Γ(2𝑁𝑡 +
5
2
)

Γ(2𝑁𝑡 + 3)

+
𝐾3
2𝜋𝐿2𝑁𝑦+2T2𝑁𝑡+2

(Γ(𝑁𝑦 + 2))
2(Γ(𝑁𝑡 + 2))

2

Γ (2𝑁𝑡 +
5
2
)

Γ(2𝑁𝑡 + 3)

Γ (2𝑁𝑦 +
5
2
)

Γ(2𝑁𝑦 + 3)
 

(34) 

 

Proof. Given that 𝐏𝑁𝑦,𝑁𝑡𝑢(𝑦, 𝑡)  is the space of all 

Chebyshev polynomials which approximate u(y,t). In a similar 

sense as in Theorem 3.1, for any points 𝑦, 𝑡 in the collocation 

points and using the relation in Eq. (31), we define 

 

‖𝑢(𝑦, 𝑡) − 𝐏𝑁𝑦,𝑁𝑡𝑢(𝑦, 𝑡)‖𝑤𝐿,𝑤T

2

≤ ‖𝑅𝑁𝑦,𝑁𝑡(𝑦, 𝑡)‖𝑤𝐿 ,𝑤T

2

 
(35) 

 

≤ ∫
𝕀×𝕁

(|
𝐾1𝑦

𝑁𝑦+1

Γ(𝑁𝑦 + 2)
|

2

+ |
𝐾2𝑡

𝑁𝑡+1

Γ(𝑁𝑡 + 2)
|

2

+ |
𝐾3𝑦

𝑁𝑦+1𝑡𝑁𝑡+1

Γ(𝑁𝑦 + 2)Γ(𝑁𝑡 + 2)
|

2

)
1

√T𝑡 − 𝑡2

1

√𝐿𝑦 − 𝑦2
𝑑𝑦𝑑𝑡 

(36) 

 

=
𝐾1
2

(Γ(𝑁𝑦 + 2))
2
∫
𝕀×𝕁

1

√T𝑡 − 𝑡2

𝑦2𝑁𝑦+2

√𝐿𝑦 − 𝑦2
𝑑𝑦𝑑𝑡

+
𝐾2
2

(Γ(𝑁𝑡 + 2))
2∫

𝕀×𝕁

𝑡2𝑁𝑡+2

√T𝑡 − 𝑡2

1

√𝐿𝑦 − 𝑦2
𝑑𝑦𝑑𝑡

+
𝐾3
2

(Γ(𝑁𝑡 + 2))
2(Γ(𝑁𝑦 + 2))

2∫
𝕀×𝕁

𝑡2𝑁𝑡+2

√T𝑡 − 𝑡2

𝑦2𝑁𝑦+2

√𝐿𝑦 − 𝑦2
𝑑𝑦𝑑𝑡 

(37) 

 

The integrals in Eq. (37) are evaluated as  

 

∫
𝕀×𝕁

1

√T𝑡 − 𝑡2

𝑦2𝑁𝑦+2

√𝐿𝑦 − 𝑦2
𝑑𝑦𝑑𝑡

= 𝜋√𝜋𝐿2𝑁𝑦+2
Γ(2𝑁𝑦 +

5
2
)

Γ(2𝑁𝑦 + 3)
 

(38) 

 

∫
𝕀×𝕁

𝑡2𝑁𝑡+2

√T𝑡 − 𝑡2

1

√𝐿𝑦 − 𝑦2
𝑑𝑦𝑑𝑡

= 𝜋√𝜋T2𝑁𝑡+2
Γ (2𝑁𝑡 +

5
2
)

Γ(2𝑁𝑡 + 3)
 

(39) 

 

380



 

∫
𝕀×𝕁

𝑡2𝑁𝑡+2

√T𝑡 − 𝑡2

𝑦2𝑁𝑦+2

√𝐿𝑦 − 𝑦2
𝑑𝑦𝑑𝑡

= 𝜋𝐿2𝑁𝑦+2T2𝑁𝑡+2
Γ(2𝑁𝑡 +

5
2
)

Γ(2𝑁𝑡 + 3)

Γ(2𝑁𝑦 +
5
2
)

Γ(2𝑁𝑦 + 3)
. 

(40) 

 

Substituting Eq. (38) to Eq. (40) into Eq. (37) completes the 

proof. If we consider 𝑢𝑁𝑦,𝑁𝑡(𝑦, 𝑡) , the 𝐋𝑤𝐿 ,𝑤T
2  orthogonal 

projection of u(y,t)onto 𝐏𝑁𝑦,𝑁𝑡, then 

 

|𝑢(𝑦, 𝑡) − 𝑢𝑁𝑦,𝑁𝑡(𝑦, 𝑡)|

= |𝑢(𝑦, 𝑡) − 𝐏𝑁𝑦,𝑁𝑡𝑢(𝑦, 𝑡)

+ 𝐏𝑁𝑦,𝑁𝑡𝑢(𝑦, 𝑡) − 𝑢𝑁𝑦,𝑁𝑡(𝑦, 𝑡)| 

(41) 

 

≤ |𝑢(𝑦, 𝑡) − 𝐏𝑁𝑦,𝑁𝑡𝑢(𝑦, 𝑡)|

+ |𝑢𝑁𝑦,𝑁𝑡(𝑦, 𝑡) − 𝐏𝑁𝑦,𝑁𝑡𝑢(𝑦, 𝑡)|. 
(42) 

 

Based on Theorem 3.3, Eq. (42) tends to zero as 𝑁𝑦 , 𝑁𝑡 →

∞. 

 

 

4. NUMERICAL ILLUSTRATION 

 

In this section, we apply the numerical scheme using the 

Chebyshev–Gauss–Lobatto quadrature to the flow of an MHD 

and non–isothermal generalized Oldroyd–B fluid.  

 

4.1 Flow of an MHD Oldroyd–B fluid 

 

We investigate an unsteady unidirectional flow of an MHD 

Oldroyd-B fluid occupying the upper half-plane bounded by 

an impermeable wall at y=0. The y–axis is perpendicular to the 

rigid flat plate, and the plate oscillates parallel to itself. The 

fluid is assumed to be at rest until startup. The momentum and 

shear stress equations for this unsteady flow are given as [26] 

 

𝑅𝑒 [
𝜕

𝜕𝑡
+𝑊𝑒𝛼

𝜕𝛼+1

𝜕𝑡𝛼+1
] 𝑢 − [

𝜕2

𝜕𝑦2
+ 𝜆𝑟

𝛽 𝜕𝛽+2

𝜕𝑡𝛽𝜕𝑦2
] 𝑢

+ 𝐻𝑎2 [1 +𝑊𝑒𝛼
𝜕𝛼

𝜕𝑡𝛼
] 𝑢 = 0 

(43) 

 

[1 +𝑊𝑒𝛼
𝜕𝛼

𝜕𝑡𝛼
] 𝜏 = [

𝜕

𝜕𝑦
+ 𝜆𝑟

𝛽 𝜕𝛽+1

𝜕𝑡𝛽𝜕𝑦
] 𝑢, (44) 

 

with initial conditions  

 

𝑢(𝑦, 0) =
𝜕

𝜕𝑡
𝑢(𝑦, 0) = 0,    𝜏(𝑦, 0) = 0, (45) 

 

and boundary conditions with a sine oscillation at the wall and 

dimensionless frequency of oscillation ω 

 
𝑢(0, 𝑡) = sin(𝜔𝑡), 𝑢(𝑦, 𝑡) = 0  as  𝑦 → ∞, 𝑡 > 0. (46) 

 

We seek a solution in the form of truncated Chebyshev 

polynomials 

𝑢(𝑦, 𝑡) = ∑

𝑁𝑦

𝑛=0

∑

𝑁𝑡

𝑚=0

𝑢𝑛,𝑚𝑇𝐿,𝑛(𝑦)𝑇T,𝑚(𝑡),     

𝜏(𝑦, 𝑡) = ∑

𝑁𝑦

𝑛=0

∑

𝑁𝑡

𝑚=0

𝜏𝑛,𝑚𝑇𝐿,𝑛(𝑦)𝑇T,𝑚(𝑡), 

(47) 

 

where, the coefficients �̂�𝑛,𝑚 and �̂�𝑛,𝑚 are defined by Lemma 

2.2. Using the results of Proposition 2.6, we resolve Eq. (43) 

and Eq. (44) into a system of discrete equations  

 

𝑅𝑒 [[(D𝑡
1⊗ 𝐼𝑦) +𝑊𝑒

𝛼(D𝑡
𝛼+1⊗ 𝐼𝑦)]

− [(𝐼𝑡 ⊗D𝑦
2) + 𝜆𝑟

𝛽
(D𝑡

𝛽

⊗D𝑦
2)]+𝐻𝑎2[(𝐼𝑡⊗ 𝐼𝑥)

+𝑊𝑒𝛼(D𝑡
𝛼𝐼𝑦)]] 𝑣𝑒𝑐(�⃗� ) = 𝑣𝑒𝑐(0⃗ ) 

(48) 

 

[(𝐼𝑡 ⊗ 𝐼𝑦) +𝑊𝑒
𝛼(D𝑡

𝛼⊗ 𝐼𝑦)]𝑣𝑒𝑐(𝜏 )

= [(𝐼𝑡 ⊗D𝑦
1 ) + 𝜆𝑟

𝛽
(D𝑡

𝛽

⊗D𝑦
1 )]𝑣𝑒𝑐(�⃗� ), 

(49) 

 

where, 𝑣𝑒𝑐(0⃗ ) is a vector of zeroes of size (Ny+1) times (Nt+1) 

and each system is solved independently by matrix inversion.  

The accuracy of the solutions for different values of α, β, Nt, 

Ny are presented in Table 1 in terms of the maximum residual 

error and condition number. The condition number was 

computed using the python package ‘numpy.linalg.cond’. The 

results in Figure 1 are shown for two frequencies of oscillation 

and α=0.25, β=0.75, t=10, Re=0.1 and Ha=0.5. We consider 

the cases: We=1<λr=1.5, Jeffrey fluid (λr=1.2<We=1.5), 

Maxwell fluid (We=1.5, λr=0), second-grade fluid (We=0, 

λr=1.2) and Newtonian fluid. The figure shows the velocity 

and tangential shear stress profiles. In Figure 1a, the velocity 

profiles are plotted for special cases of the fractional Oldroyd–

B fluid. In all cases, the oscillation of the fluid velocity decays 

as it approaches the boundary layer region. The fractional 

second-grade fluid has the lowest amplitude of oscillation, 

while the fractional Maxwell fluid has the highest amplitude. 

This result is in agreement with the study of Jamil et al. [26]. 

In Figure 1b, the shear stress profiles for fixed time t are 

plotted for special cases. This figure shows that the case We=0 

(second-grade fluid) has the highest shear stress at the wall, 

while the case when λr=0 (Maxwell fluid) has the smallest 

shear stress. Figure 2 and Figure 3 illustrate the behaviour of 

the velocity and shear stress for different values of the 

fractional orders α and β. Figure 2 shows that as the order α 

increases, the shear stress decreases, while the net effect of 

increasing β is that the shear stress increases. In Figure 3, it 

can be seen that as β increases, the amplitude of oscillation 

becomes smaller while the amplitude becomes more 

significant as α increases. This result, in effect, shows that the 

likelihood of having a region of reverse flow close to the wall 

is less likely for fixed β, decreasing α and fixed α, increasing 

β. We remark that the degree of α is related to the relaxation 

time. Hence, the lack of reverse flow or small amplitude of 

oscillation for small values of α can be associated with the 

short memory of the fluid and slow response to shear stress. 
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Table 1. Residual and condition number for the problem in Section 4.1 

 
(α,β) (Nt,Ny) Resu CNu Resτ CNτ 

(0.25,0.5) (5,5) 4.1482e-16 203.5 1.3210e-15 17.35 
 (10,10) 2.8511e-14 6.0310e+04 7.2893e-15 18.99 
 (15,15) 1.3015e-07 6.1347e+11 1.7146e-07 8.6119e+04 

(0.5,0.75) (5,5 ) 9.0899e-16 313.1 1.1055e-15 24.02 
 (10,10 ) 3.1403e-14 1.5079e+03 5.2698e-15 44.92 
 (15,15 ) 3.5876e-07 5.6432e+11 1.2344e-06 4.1606e+06 

(0.75,1) ( 5,5 ) 5.7333e-16 477.8 2.0091e-15 36.39 
 (10,10) 4.8934e-14 4.3557e+04 7.8238e-15 104.4 
 (15,15) 1.2859e-07 2.2473e+11 3.4619e-07 2.7625e+06 

(1,1) (5,5 ) 7.8409e-16 625.5 1.4658e-15 60.11 
 (10,10) 7.6247e-14 7.0962e+04 1.7502e-14 236.8 

 (15,15 ) 1.1289e-08 2.6527e+10 3.9879e-07 4.1076e+06 
 

     
(a)                                                                                 (b)                                                        

 

Figure 1. Velocity and shear stress of special cases of the fractional Oldroyd-B fluid with ω=70+nπ/2 

 

     
(a)                                                                                     (b)                                                      

 

Figure 2. Variation of the tangential shear stress profiles with ω=10+π/2 for (a) different α with β=1 and (b) different β with 

α=0.25 

 

      
(a)                                                                              (b)                                                          

 

Figure 3. Velocity profiles with ω=10+π/2 for: (a) different α with β=1 and (b) different β with α=0.25 
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4.2 The non-isothermal flow of an Oldroyd–B fluid 

 

Here we consider the unsteady non–isothermal flow of a 

generalized Oldroyd–B fluid. The thermal property of the fluid 

(γ), the specific heat (c) and the thermal conductivity (k) are 

constant and isotropic, except the viscosity which is assumed 

to be temperature-dependent with reference viscosity, μ0. We 

use [27]  

𝜇(𝑇) =
𝜇0

1 + 𝛾(𝑇 − 𝑇0)
 (50) 

 

to model the non-isothermal viscosity. The system of 

equations describing the conservation of momentum Eq. (6) 

[Ha=0], the shear stress Eq. (7), and the energy equation are 

given as [28, 29]:  

 

𝑅𝑒 [
𝜕𝑢

𝜕𝑡
+𝑊𝑒𝛼

𝜕𝛼+1𝑢

𝜕𝑡𝛼+1
] − [

𝜕𝑢

𝜕𝑦

𝜕

𝜕𝑦
(

1

1 + 𝜃𝑒𝜃
) + 𝜆𝑟

𝛽 𝜕
𝛽+1𝑢

𝜕𝑡𝛽𝜕𝑦

𝜕

𝜕𝑦
(

1

1 + 𝜃𝑒𝜃
) +

1

1 + 𝜃𝑒𝜃

𝜕2𝑢

𝜕𝑦2
+

1

1 + 𝜃𝑒𝜃

𝜕𝛽+2𝑢

𝜕𝑡𝛽𝜕𝑦2
] = 0 (51) 

  

𝑅𝑒 [
𝜕𝜃

𝜕𝑡
+𝑊𝑒𝛼

𝜕𝛼+1𝜃

𝜕𝑡𝛼+1
] −

1

𝑃𝑟
[
𝜕2𝜃

𝜕𝑦2
+𝑊𝑒𝛼

𝜕𝛼+2𝜃

𝜕𝑡𝛼𝜕𝑦2
] − 𝐸𝑐 [

1

1 + 𝜃𝑒𝜃
(
𝜕𝑢

𝜕𝑦
)
2

+
𝜆𝑟
𝛽

1 + 𝜃𝑒𝜃

𝜕𝛽+1𝑢

𝜕𝑡𝛽𝜕𝑦

𝜕𝑢

𝜕𝑦
] = 0 (52) 

[1 +𝑊𝑒𝛼
𝜕𝛼

𝜕𝑡𝛼
] 𝜏 =

1

1 + 𝜃𝑒𝜃
[
𝜕𝑢

𝜕𝑦
+ 𝜆𝑟

𝛽 𝜕
𝛽+1𝑢

𝜕𝑡𝛽𝜕𝑦
], (53) 

 

where, θe=γΔT, the temperature ratio, 𝐸𝑐 = 𝐔0
2(𝑐Δ𝑇)−1 , the 

Eckert number, Pr=cμ0 k-1, the reference Prandtl number, 

θ=(T-T0)ΔT-1, the dimensionless temperature are 

dimensionless parameters. The initial and boundary conditions 

are given as in Eq. (45) and Eq. (46) and  

 

𝜃(𝑦, 0) =
𝜕

𝜕𝑡
𝜃(𝑦, 0) = 0  ∀ 𝑦 > 0 (54) 

 

𝜃(0, 𝑡) = 1,    𝜃(𝑦, 𝑡) = 0   as    𝑦 → ∞, 𝑡 > 0. (55) 

 

We seek a solution in the form of Eq. (22) for each 

dependent variable and apply the quasi–linearization method 

to linearize the system of equations (see Bellman and Kalaba 

[30], Motsa et al. [31]):  
 

[𝑅𝑒[(D𝑡
1⊗ 𝐼𝑦) +𝑊𝑒

𝛼(D𝑡
𝛼+1⊗ 𝐼𝑦)] + 𝑎0𝑟(𝐼𝑡⊗D𝑦

2)

+ 𝑎1𝑟(𝐼𝑡⊗D𝑦)

+ 𝑎2𝑟 (D𝑡
𝛽
⊗D𝑦

2)+𝑎3𝑟 (D𝑡
𝛽

⊗D𝑦
1)] 𝑣𝑒𝑐(�⃗� 𝑟+1)

+ [𝑎4𝑟(𝐼𝑡⊗D𝑦
1)

+ 𝑎5𝑟(𝐼𝑡⊗ 𝐼𝑦)]𝑣𝑒𝑐(𝜃 𝑟+1)

= 𝑣𝑒𝑐(�⃗� 1𝑟) 

(56) 

  

[𝑅𝑒(D𝑡
1⊗ 𝐼𝑦) + 𝑅𝑒𝑊𝑒

𝛼(D𝑡
𝛼+1⊗ 𝐼𝑦) −

1

𝑃𝑟
(𝐼𝑡⊗D𝑦

2)

−
𝑊𝑒𝛼

𝑃𝑟
(D𝑡

𝛼⊗D𝑦
2) + 𝑏2𝑟(𝐼𝑡

⊗ 𝐼𝑦)] 𝑣𝑒𝑐(𝜃 𝑟+1)

+ [𝑏0𝑟(𝐼𝑡⊗D𝑦
1 ) + 𝑏1𝑟(D𝑡

𝛽

⊗D𝑦
1)] 𝑣𝑒𝑐(�⃗� 𝑟+1) = 𝑣𝑒𝑐(�⃗� 2𝑟) 

(57) 

 

Table 2. Residuals for the dependent variables in the problem in Section 4.2 
 

(α,β) (Nt,Ny) Resu Resθ Resτ 
(0.25,0.5) (7,10) 2.1518e-14 1.0823e-13 9.8749e-16 

 (10,15) 1.7957e-13 6.2928e-13 6.8437e-15 
 (12,20) 2.0137e-12 5.9289e-12 3.9240e-14 

(0.5,0.75) (7,10) 3.2932e-14 1.7114e-13 1.0634e-15 
 (10,15) 4.0798e-13 9.5568e-13 4.3160e-15 
 (12,20) 5.1502e-12 8.9247e-12 4.9766e-14 

(0.75,1) (7,10) 4.4381e-14 1.3593e-13 2.2664e-15 
 (10,15) 1.1795e-12 1.3475e-12 2.0567e-14 
 (12 ,20) 1.4751e-11 1.9498e-11  3.6492e-14 

(1,1) (7,10) 7.6759e-14 1.3427e-13 3.5037e-15 
 (10,15) 2.0559e-12 3.0306e-12 1.7538e-14 

 

         
(a)                                                                                      (b)                                                    

 

Figure 4. Velocity and temperature profiles for non-isothermal flow of the special cases of the fractional Oldroyd-B fluid 
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(a)                                                                                (b)                                                         

 

Figure 5. Velocity profiles of the non-isothermal flow for (a) β= 0.5 and (b) α=0.1 

 

Table 2 shows the maximum residual error for 0≤t≤10 for 

different values of α and β. In Figure 4, the velocity and 

temperature profiles are illustrated for the special cases of the 

fractional Oldroyd–B fluid with α=0.25, β=0.5, Re=1.1, Pr=5, 

Ec=0.2, θe=0.33 and ω=10+π/2. We consider the cases: 

We=0.2<λr=1.5, Jeffrey fluid (λr=1.2<We=1.5), Maxwell 

fluid (We=1.5, λr=0), second-grade fluid (We=0, λr=1.2) and 

Newtonian fluid. It can be seen that, as in Section 4.1, the 

second-order fluid has the smallest amplitude while the 

Maxwell fluid has the highest oscillation amplitude. However, 

for the temperature profiles, the Maxwell fluid reaches its 

thermal boundary layer region quicker than the other fluids, 

and the second-grade fluid has the most extensive thermal 

boundary layer. Figure 4b also show increased temperature 

close to the wall. The study of Ishfaq et al. [28] attributes this 

behaviour to the accumulation of energy in the fluid particles 

in the vicinity of the wall because the viscous effect is 

profoundly felt in this region. The effects of different orders of 

derivatives are shown in Figure 5. Unlike the problem in 

Section 4.1, where velocity profiles are either strictly 

increasing or decreasing functions of α and β, in this flow, the 

velocity profiles intersect. We ascribe this behaviour to the 

coupling effect and non–isothermic nature of the fluid. 

 
 

5. CONCLUSION 

 

In this study, efficient and accurate numerical solutions for 

unsteady and unidirectional flows of generalized Oldroyd–B 

fluids have been obtained using the shifted Chebyshev 

polynomials of the first kind as the basis function. The two 

problems presented have a varying degree of complexity, 

which are mainly non–linearity and coupling. The accuracy of 

the solutions was investigated through the calculation of the 

residual error norm. The condition number of the 

discretization matrices was also presented for various values 

of the orders of derivatives and truncation of the Chebyshev 

series. The effects of the fractional-order derivatives in the 

constitutive equation of the Oldroyd–B fluid on shear stress 

and velocity are also discussed. We found that small values of 

the order of the relaxation term can be used to model the flow 

of viscoelastic fluid with short-term memory and slow 

response to shear force. Since many fluid dynamics problems 

exist on complex geometries, improvement can be made to 

accommodate problems with complex geometries. 
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NOMENCLATURE 

 

B0 the applied magnetic field, N⋅s / C⋅m 

c specific heat capacity, J/ K/ kg 

Ec Eckert number 

eij stress tensor, N/m2 

Ha Hartmann number 

k thermal conductivity, W/ m⋅K 

Pr reference Prandtl number 

Re Reynolds number 

U0 reference velocity, m/s 

We Weissenberg number 

 

Greek symbols 

 

α,β fractional orders 

θe temperature ratio 

λ relaxation time, 𝑠 
λr retardation time, 𝑠 / dimensionless retardation time 

μ viscosity, kg/m/s 

μ0 reference viscosity, kg/m/s 

ρ fluid density, kg/m3   

σ electrical conductivity, S/m  

τ shear stress, N/m2 

ω frequency of oscillation, s-1 
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APPENDIX 

The vectors 𝑅1𝑟  and 𝑅2𝑟  in Eq. (56) and Eq. (57) are

defined as  

𝑅1𝑟 = 𝑎0𝑟
𝜕2𝑢𝑟
𝜕𝑦2

+ 𝑎1𝑟
𝜕𝑢𝑟
𝜕𝑦

+ 𝑎2𝑟
𝜕𝛽+2𝑢𝑟

𝜕𝑡𝛽𝜕𝑦2

+ 𝑎3𝑟
𝜕𝛽+1𝑢𝑟

𝜕𝑡𝛽𝜕𝑦
+ 𝑎4𝑟

𝜕𝜃𝑟
𝜕𝑦

+ 𝑎5𝑟𝜃𝑟

− 𝑁𝑢𝑟 ,

(58) 

where, 

𝑁𝑢𝑟 = −
𝜕𝑢𝑟
𝜕𝑦

𝜕

𝜕𝑦
(

1

1 + 𝜃𝑒𝜃𝑟
) − 𝜆𝑟

𝛽 𝜕
𝛽+1𝑢𝑟

𝜕𝑡𝛽𝜕𝑦

𝜕

𝜕𝑦
(

1

1 + 𝜃𝑒𝜃𝑟
)

−
1

1 + 𝜃𝑒𝜃𝑟

𝜕2𝑢𝑟
𝜕𝑦2

−
1

1 + 𝜃𝑒𝜃𝑟

𝜕𝛽+2𝑢𝑟

𝜕𝑡𝛽𝜕𝑦2
, 

𝑎0𝑟 = −(1 + 𝜃𝑒𝜃𝑟)
−1,    𝑎1𝑟 = 𝜃𝑒(1 + 𝜃𝑒𝜃𝑟)

−2
𝜕𝜃𝑟
𝜕𝑦

,

𝑎2𝑟 = −(1 + 𝜃𝑒𝜃𝑟)
−1,

𝑎3𝑟 = 𝜃𝑒𝜆𝑟
𝛽
(1 + 𝜃𝑒𝜃𝑟)

−2
𝜕𝜃𝑟
𝜕𝑦
, 

𝑎4𝑟 = 𝜃𝑒(1 + 𝜃𝑒𝜃𝑟)
−2 (

𝜕𝑢𝑟
𝜕𝑦

+ 𝜆𝑟
𝛽 𝜕

𝛽+1𝑢𝑟

𝜕𝑡𝛽𝜕𝑦
), 

𝑎5𝑟 = −2𝜃𝑒
2(1 + 𝜃𝑒𝜃𝑟)

−3 (
𝜕𝜃𝑟
𝜕𝑦

𝜕𝑢𝑟
𝜕𝑦

+ 𝜆𝑟
𝛽 𝜕𝜃𝑟
𝜕𝑦

𝜕𝛽+1𝑢𝑟

𝜕𝑡𝛽𝜕𝑦
)

+ 𝜃𝑒(1 + 𝜃𝑒𝜃𝑟)
−2 (

𝜕2𝑢𝑟
𝜕𝑦2

+
𝜕𝛽+2𝑢𝑟

𝜕𝑡𝛽𝜕𝑦2
), 

and 

𝑅2𝑟 = 𝑏0𝑟
𝜕𝑢𝑟
𝜕𝑦

+ 𝑏1𝑟
𝜕𝛽+1𝑢𝑟

𝜕𝑡𝛽𝜕𝑦
+ 𝑏2𝑟𝜃𝑟 − 𝑁𝜃𝑟. (59) 

Here, 

𝑁𝜃𝑟 = −𝐸𝑐 [
1

1 + 𝜃𝑒𝜃𝑟
(
𝜕𝑢𝑟
𝜕𝑦
)
2

+
𝜆𝑟
𝛽

1 + 𝜃𝑒𝜃𝑟

𝜕𝛽+1𝑢𝑟

𝜕𝑡𝛽𝜕𝑦

𝜕𝑢𝑟
𝜕𝑦
], 

𝑏0𝑟 = −2𝐸𝑐(1 + 𝜃𝑒𝜃𝑟)
−1
𝜕𝑢𝑟
𝜕𝑦

− 𝜆𝑟
𝛽
(1 + 𝜃𝑒𝜃𝑟)

−1
𝜕𝛽+1𝑢𝑟

𝜕𝑡𝛽𝜕𝑦
, 

𝑏1𝑟 = −𝜆𝑟
𝛽
(1 + 𝜃𝑒𝜃𝑟)

−1
𝜕𝑢𝑟
𝜕𝑦

, 

𝑏2𝑟 = 𝜃𝑒(1 + 𝜃𝑒𝜃𝑟)
−1 (𝐸𝑐 (

𝜕𝑢𝑟
𝜕𝑦

)
2

+ 𝜆𝑟
𝛽 𝜕

𝛽+1𝑢𝑟

𝜕𝑡𝛽𝜕𝑦

𝜕𝑢𝑟
𝜕𝑦

) . 
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