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 The current paper illustrates the consequence of viscous dissipation on the unsteady 

MHD flow of an incompressible viscous fluid over a vertical permeable surface 

embedded in a porous medium. The roles of chemical reaction and thermal radiation has 

made the study more interesting. The Perturbation method has been applied to solve the 

coupled and nonlinear governing equations. It is found that the present solutions are in 

very good agreement with the previous solutions. The important findings are: increasing 

values of Eckert number (Ec) enhances the velocity of the fluid flow. The viscous 

dissipation convincingly increases the temperature. This analysis is of great interest in 

many applications such as polymer processing flows, condensation process of metallic 

plate in cooling bath, aerodynamic extrusion of plastic sheets etc. 
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1. INTRODUCTION 

 

Magnetohydrodynamics (MHD) presents the magnetic 

properties of electrically conducting fluid such as plasma, 

liquid metals, salt water etc. These fluids also exhibit the 

viscosity property which is responsible for the flow of fluid. It 

takes energy from the motion of fluid and transfer it into 

internal energy. As a result, the fluid gets heated. This 

dissipation process has applications in polymer processing 

flows, aerodynamic heating in the thin boundary layer around 

high speed aircraft etc. Many researchers have studied the 

significant effects of viscous dissipation on MHD flow. Devi 

et al. [1] investigated the effect of viscous and joule dissipation 

on MHD flow past a stretching porous surface. Murugesan and 

Kumar [2], Kumari and Goyal [3], Kumar and Reddy [4] and 

Rani et al. [5] have considered the viscous dissipation effects 

under distinct flow domain. 

Now-a-days, it is also of great interest to study thermal 

radiation and chemical reaction in MHD flow of the fluid. 

Fluid temperature greater than absolute zero emits thermal 

radiation. When the fluid flows it results in change 

acceleration a dipole oscillation which produces electro-

magnetic radiation. Mass transfer with chemical reaction also 

acts a vital role in the fluid flow. Many authors ([6-12]) tried 

to study the influences of thermal radiation and chemical 

reaction on MHD flow along with viscous dissipation. They 

solved the governing equations either analytically or 

numerically. 

Further, the roles of external magnetic field and porous 

medium in MHD heat transfer flow are very much of industrial 

importance. These types of engineering problems are very 

relevant in geothermal, energy extractions, oil exploration and 

the boundary layer control in the field of aerodynamics. 

Therefore, many investigations have been accomplished by 

the renowned authors. Makinde et al. [13-15] elucidated 

numerically the MHD fluid flows past a vertical plate as well 

as past a slippery stretching. In all of their study, they 

considered the flow system in a porous medium. Swain and 

Senapati [16] examined the mass transfer effect on MHD free 

convective flow embedded in a porous medium. Uddin [17] 

also carried out his research in a Porous Medium. 

The objective of the present study is to analyze viscous 

dissipation effect on an unsteady MHD free convective flow 

embedded in a porous medium. Viscous dissipation effect was 

not attained by Prakash et al. [6], but here we consider it. The 

expressions for velocity, skin friction, Sherwood number, 

Nusselt number are obtained using the perturbation technique. 

These are compared with the previous results for different 

physical parameters. The present results agree well with the 

previous results. Moreover, the works of Prakash et al. [6] and 

Kim [18] have been discussed as special cases. The 

significance of the physical parameters also studied 

graphically. Here, all the calculations and graphs are carried 

out using MATLAB software. 

 
 

2. MATHEMATICAL FORMULATION 

 

The geometrical flow of the problem is shown in Figure 1. 

A two-dimensional boundary layer flow of a viscous 

incompressible fluid past a semi-infinite vertical permeable 

plate placed in a uniform porous medium is observed. The 

fluid is also assumed to be electrically conducting and heat 

absorbing. An external magnetic field B0 is applied in the 

presence of thermal and concentration buoyancy effects. The 

Hall and ion slip effects are considered negligible. External 

electric field is assumed to be zero and the electric field due to 

the polarization of charges is negligible. The plate is 

maintained at constant temperature Tw and concentration Cw. 

which is higher than the ambient temperature T∞ and 
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concentration C∞, respectively. Since we have taken semi-

infinite plane surface, the flow variables are the functions of 

𝑦∗  and 𝑡∗  only. Under these assumptions, the governing 

equations are given by; 

 
𝜕𝑣∗

𝜕𝑦∗ = 0  , (1) 

 
𝜕𝑢∗

𝜕𝑡∗ + 𝑣∗ 𝜕𝑢∗

𝜕𝑦∗ = −
1

𝜌

𝜕𝑝∗

𝜕𝑥∗ + 𝜈
𝜕2𝑢∗

𝜕𝑦∗2  −  
𝜎𝐵0

2

𝜌
𝑢∗ +

𝑔𝛽𝑇(𝑇∗ −  𝑇∞) + 𝑔𝛽𝐶(𝐶∗  −  𝐶∞) −  
𝜈

𝐾∗ 𝑢∗, 
(2) 

 
𝜕𝑇∗

𝜕𝑡∗  +  𝑣∗ 𝜕𝑇∗

𝜕𝑦∗  =  
𝐾

𝜌𝐶𝑝

𝜕2𝑇∗

𝜕𝑦∗2 −  
1

𝜌𝐶𝑝

𝜕𝑞𝑟
∗

𝜕𝑦∗  −  
𝑄0

𝜌𝐶𝑝
(𝑇∗ −

𝑇∞) + 
𝑄1

∗

𝜌𝐶𝑝
(𝐶∗ − 𝐶∞) + 

𝐷𝑚

𝐶𝑠

𝐾𝑇

𝜌𝐶𝑝

𝜕2𝐶∗

𝜕𝑦∗2 +
𝜇

𝜌𝐶𝑝
(

𝜕𝑢∗

𝜕𝑦∗)2 , 
(3) 

 
𝜕𝐶∗

𝜕𝑡∗ + 𝑣∗ 𝜕𝐶∗

𝜕𝑦∗ = 𝐷
𝜕2𝐶∗

𝜕𝑦∗2 − 𝑅(𝐶∗ − 𝐶∞) . (4) 

 

The radiative heat flux is taken, which has been given by 

Pal and Talukdar [19] and Cogley et al. [20] as: 

 
𝜕𝑞𝑟

∗

𝜕𝑦∗ =4 (𝑇∗ − 𝑇∞)𝐼′ ,     (5) 

 

where, 𝐼′ = ∫ 𝐾𝑤𝜆
∞

0

𝜕𝑒𝑏𝜆

𝜕𝑇∗ 𝑑𝜆, 𝐾𝑤𝜆 is the absorption coefficient 

at the wall and 𝑒𝑏𝜆 is Planck's function.  

 

 
 

Figure 1. Flow geometry 
 

Under the assumption stated above, the initial and boundary 

conditions for the velocity distribution involving slip flow, 

temperature, and concentration distributions are defined as: 

 

𝑢∗ = 𝑢𝑠𝑙𝑖𝑝
∗ =

√𝑘

𝛼

𝜕𝑢∗

𝜕𝑦∗ , 𝑇∗ =  𝑇𝑤 + 𝜖(𝑇𝑤 − 𝑇∞)𝑒𝑛∗𝑡∗
,     

        

𝐶∗ = 𝐶𝑤 + 𝜖(𝐶𝑤 − 𝐶∞)𝑒𝑛∗𝑡∗
                   at  𝑦∗ =

0 

(6) 

 

𝑢∗ = 𝑈∞
∗ = 𝑈0(1 + 𝜖𝑒𝑛∗𝑡∗

), 𝑇∗ → 𝑇∞, 𝐶∗ →

𝐶∞ 𝑎𝑠 𝑦∗ → ∞   
(7) 

 

From Eq. (1) we know that the suction velocity near the 

plate surface is either a constant or a function of time only. 

Consequently, it is considered that 

 

𝑣∗ = −𝑉0(1 + 𝜖𝐴𝑒𝑛∗𝑡∗
), (8) 

 

where, 𝑉0  is the mean suction velocity and 𝜖𝐴 ≪ 1 . The 

negative sign indicates that the suction velocity is pointed 

towards the plate.  

In the free stream Eq. (2) gives  

−
1

𝜌

𝑑𝑝∗

𝑑𝑥∗ =
𝑑𝑈∞

∗

𝑑𝑡∗ +
𝜎

𝜌
𝐵0

2𝑈∞
∗ +

𝜈

𝐾∗ 𝑈∞
∗       (9) 

 

The non- dimensional quantities used in the text are: 

 

𝑢 =
𝑢∗

𝑈0
, 𝑣 =

𝑣∗

𝑉0
, 𝑦 =

𝑣0𝑦∗

𝜈
, 𝑈∞ =

𝑈∞
∗

𝑈0
, 𝑡 =

𝑉0
2𝑡∗

𝜈
, 𝜃 =

𝑇∗−𝑇∞

𝑇𝑤−𝑇∞
,    𝐶 =

𝐶∗−𝐶∞

𝐶𝑤−𝐶∞
, 𝑛 =

𝑛∗𝜈

𝑉0
2 , 𝐺𝑟 =

𝜌𝑔𝜈(𝑇𝑤−𝑇∞)𝛽𝑇

𝑈0𝑉0
2 ,

𝑀 =
𝜎𝜈𝐵0

2

𝜌𝑉0
2 , 𝑆𝑐 =

𝜈

𝐷
                

𝑄1 =
𝑄1

∗𝜈(𝐶𝑤−𝐶∞)

𝜌𝐶𝑝𝑉𝑜
2(𝑇𝑤−𝑇∞)

, 𝛾 =
𝑅𝜈

𝑉0
2 , 𝐷𝑢 =

𝐷𝑚𝑘𝑇(𝐶𝑤−𝐶∞)

𝐶𝑠𝐾(𝑇𝑤−𝑇∞)
,  𝐾 =

𝑉0
2𝐾∗

𝜈2 ,   

𝐸𝑐 =
𝑉0

2

𝐶𝑝(𝑇𝑤−𝑇∞)
 , 𝐺𝑚 =

𝜌𝑔𝜈(𝐶𝑤−𝐶∞)𝛽𝐶

𝑈0𝑉0
2  , 𝑃𝑟 =

𝜇𝐶𝑝

𝑘
 ,  

𝜙 =
𝑄0𝜈

𝜌𝐶𝑝𝑉𝑜
2 , 𝐹 =

4𝜈𝐼′

𝜌𝐶𝑝𝑉𝑜
2 

(10) 

 

Considering the above dimensionless variables, the Eq. (2) 

- (4) can be written in a dimensionless form as: 

 
𝜕𝑢

𝜕𝑡
− (1 + 𝜖𝐴𝑒𝑛𝑡)

𝜕𝑢

𝜕𝑦
=

𝑑𝑈∞

𝑑𝑡
+ 𝑀1(𝑈∞ − 𝑈) +

𝜕2𝑢

𝜕𝑦2 +

𝐺𝑟𝜃 + 𝐺𝑚𝐶 , 
(11) 

 
𝜕𝜃

𝜕𝑡
− (1 + 𝜖𝐴𝑒𝑛𝑡)

𝜕𝜃

𝜕𝑦
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 − 𝐹𝜃 + 𝑄1𝐶 + ∅𝜃 +

𝐷𝑢

𝑃𝑟
(

𝜕2𝐶

𝜕𝑦2) + 𝐸𝑐(
𝜕𝑢

𝜕𝑦
)2 , 

(12) 

 
𝜕𝐶

𝜕𝑡
− (1 + 𝜖𝐴𝑒𝑛𝑡)

𝜕𝐶

𝜕𝑦
=

1

𝑆𝑐

𝜕2𝐶

𝜕𝑦2 − 𝛾𝐶 . (13) 

 

where, 𝑀1 = 𝑀 +
1

𝐾
, M and K represents the magnetic force 

intensity and porosity parameter.  

The corresponding non-dimensional initial and boundary 

conditions are given by: 

 

𝑢 = 𝑢𝑠𝑙𝑖𝑝 = ∅1
𝜕𝑢

𝜕𝑦
, 𝜃 = 1 + 𝜖𝑒𝑛𝑡 , 𝐶 = 1 +

𝜖𝑒𝑛𝑡        𝑎𝑡 𝑦 = 0   
(14) 

 

𝑈 → 𝑈∞ = (1 + 𝜖𝑒𝑛𝑡), 𝜃 → 0, 𝐶 → 0          𝑎𝑠 𝑦 → ∞    (15) 

 

where, ∅1 =
√𝐾

𝛼

𝑉0

𝑣
 is the permeability parameter.  

 

 

3. METHOD OF SOLUTION 
 

To solve the coupled non-linear partial differential Eqns. 

(11)-(13) subject to the boundary conditions (14) and (15), the 

Perturbation method [21] is adopted.  

We assume that 

 

𝑢 = 𝑓0(𝑦) + 𝜖𝑒𝑛𝑡𝑓1(𝑦) + 𝑂(𝜖2),     (16) 

 

𝜃 = 𝑔0(𝑦) + 𝜖𝑒𝑛𝑡𝑔1(𝑦) + 𝑂(𝜖2),    (17) 

 

𝐶 = ℎ0(𝑦) + 𝜖𝑒𝑛𝑡ℎ1(𝑦) + 𝑂(𝜖2).   (18) 
 

Putting Eqns. (16)-(18) into Eqns. (11)-(13) and comparing 

the coefficients (after neglecting the higher order terms of 𝜖), 

we get 

 

𝑓0
′′ + 𝑓0

′ − 𝑀1𝑓0 = −𝑀1 − 𝐺𝑟𝑔0 − 𝐺𝑚ℎ0 ,   (19) 
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𝑓1
′′ + 𝑓1

′ − (𝑀1 + 𝑛)𝑓1 = −(𝑀1 + 𝑛) − 𝐴𝑓0
′ −

𝐺𝑟𝑔1 − 𝐺𝑚ℎ1, 
(20) 

 

𝑔𝑜
′′ + 𝑃𝑟𝑔0

′ − Pr(𝐹 + ∅) 𝑔0 = −𝑃𝑟𝑄1ℎ0 − 𝐷𝑢ℎ0
′′ −

𝐸𝑐(𝑓0
′)2𝑃𝑟 ,   

(21) 

 

𝑔0
′′ + 𝑃𝑟𝑔1 − Pr(𝐹 + ∅ + 𝑛) 𝑔1 = −𝑃𝑟𝑄1ℎ1 −

𝐷𝑢ℎ1
′′ − 𝑃𝑟𝐴𝑔0

′ − 2𝐸𝑐𝑃𝑟𝑓0
′𝑓1

′ ,   
(22) 

 

ℎ0
′′ + 𝑆𝑐ℎ0

′ − 𝑆𝑐𝛾ℎ0 = 0 ,     (23) 

 

ℎ1
′′ + 𝑆𝑐ℎ1

′ − 𝑆𝑐(𝛾 + 𝑛)ℎ1 = −𝐴𝑆𝑐ℎ0
′  . (24) 

 

Further, the boundary conditions (14) and (15) reduce to:   

 

𝑓0 = ∅1𝑓0
′, 𝑓1 = ∅1𝑓1

′, 𝑔0 = 1, 𝑔1 = 1, ℎ𝑜 = 1, ℎ1

= 1 

at     𝑦 = 0 , 

(25) 

 

𝑓0 = 1, 𝑓1 = 1, 𝑔0 → 0, 𝑔1 → 0, ℎ0 → 0, ℎ1 →
0 𝑎𝑠 𝑦 → ∞ .   

(26) 

 

Solving Eqns. (23) and (24) under the boundary conditions 

(25) and (26) i.e. ℎ0 = 1, ℎ1 = 1 𝑎𝑡 𝑦 = 0 and ℎ0 → 0, ℎ1 →
0 𝑎𝑠 𝑦 → ∞; we get ℎ0 = 𝑒𝑚2𝑦, ℎ1 = (1 − 𝐿)𝑒𝑚4𝑦 + 𝐿𝑒𝑚2𝑦. 

Now, since Eqns. (19)-(22) are non-linear, we again assume 

 

𝑔0(𝑦) = 𝑔00(𝑦) + 𝐸𝑐𝑔01(𝑦) + 𝑂(𝐸𝑐
2),     (27) 

 

𝑔1(𝑦) = 𝑔10(𝑦) + 𝐸𝑐𝑔11(𝑦) + 𝑂(𝐸𝑐
2),       (28) 

 

𝑓0(𝑦) = 𝑓00(𝑦) + 𝐸𝑐𝑓01(𝑦) + 𝑂(𝐸𝑐
2),      (29) 

 

𝑓1(𝑦) = 𝑓10(𝑦) + 𝐸𝑐𝑓11(𝑦) + 𝑂(𝐸𝑐
2), (30) 

 

where, 𝐸𝑐 ≪ 1. 

Substituting (27)-(30) in (19)-(22) respectively, we find the 

following equations: 

 

Zeroth order 

 

𝑔00
′′ + 𝑃𝑟𝑔00

′ − 𝑃𝑟(𝐹 + ∅)𝑔00 = −𝑃𝑟𝑄1ℎ0 −
𝐷𝑢ℎ0

′′ , 
(31) 

 

𝑔10
′′ + 𝑃𝑟𝑔10

′ − 𝑃𝑟(𝐹 + ∅ + 𝑛) 𝑔10 = −𝑃𝑟𝑄1ℎ1 −
𝐷𝑢ℎ1

′′ − 𝑃𝑟𝐴𝑔00
′  ,   

(32) 

 

𝑓00
′′ + 𝑓00

′ − 𝑀1𝑓00 = −𝑀1 − 𝐺𝑟𝑔00 − 𝐺𝑚ℎ0 , (33) 

 

𝑓10
′′ + 𝑓10

′ − (𝑀1 + 𝑛)𝑓10 = −(𝑀1 + 𝑛) − 𝐴𝑓00
′ −

𝐺𝑟𝑔10 − 𝐺𝑚ℎ1.  
(34) 

 

First order 

 

𝑔01
′′ + 𝑃𝑟𝑔01

′ − 𝑃𝑟(𝐹 + ∅)𝑔01 = −𝑓00
′2

 ,   (35) 

 

𝑔11
′′ + 𝑃𝑟𝑔11

′ − 𝑃𝑟 (𝐹 + ∅ + 𝑛)𝑔11 = −𝑃𝑟𝐴𝑔01
′ −

2𝑃𝑟𝑓00
′ 𝑓10

′ ,   
(36) 

 

𝑓01
′′ + 𝑓01

′ − 𝑀1𝑓01 = −𝐺𝑟𝑔01 ,     (37) 

 

𝑓11
′′ + 𝑓11

′ − (𝑀1 + 𝑛)𝑓11 = −𝐴𝑓01
′ − 𝐺𝑟𝑔11 .   (38) 

 

Similarly, the corresponding boundary conditions are as 

follows: 

 

𝑔00 = 1, 𝑔01 = 0, 𝑔10 = 1, 𝑔11 = 0,𝑓00 =
∅1𝑓00

′, 𝑓01 = ∅1𝑓01
′ , 𝑓10 = ∅1𝑓10

′, 𝑓11 = ∅1𝑓11
′    at 

 𝑦 = 0,  

(39) 

 

and𝑔00 → 0, 𝑔01 → 0, 𝑔10 → 0, 𝑔11 → 0, 𝑓00 →
1, 𝑓01 → 0,   𝑓10 → 1, 𝑓11 → 0            as 𝑦 → ∞ . 

(40) 

 

Now, solving the Eqns. (31)-(38) under the boundary 

conditions (39) and (40) we get; 

 

𝑔00 = 𝐶6𝑒𝑚6𝑦 + 𝐾1𝑒𝑚2𝑦  , (41) 

 

𝑔01 = 𝐶10𝑒𝑚10𝑦 + 𝐾5𝑒2𝑚6𝑦 + 𝐾6𝑒2𝑚2𝑦 +
𝐾7𝑒2𝑚8𝑦 + 𝐾17𝑒(𝑚2+𝑚6)𝑦 + 𝐾18𝑒(𝑚2+𝑚8)𝑦 +

𝐾19𝑒(𝑚6+𝑚8)𝑦, 

(42) 

 

𝑔10 = 𝐶12𝑒𝑚12𝑦 + 𝐾8𝑒𝑚2𝑦 + 𝐾9𝑒𝑚4𝑦 + 𝐾10𝑒𝑚6𝑦 , (43) 

 

𝑔11 = 𝐶16𝑒𝑚16𝑦 + 𝐾20𝑒𝑚10𝑦 + 𝐾21𝑒2𝑚6𝑦 +

𝐾22𝑒2𝑚2𝑦 + 𝐾23𝑒2𝑚8𝑦 + 𝐾24𝑒(𝑚2+𝑚6)𝑦 +

𝐾25𝑒(𝑚2+𝑚8)𝑦 + 𝐾26𝑒(𝑚6+𝑚8)𝑦 + 𝐾27𝑒(𝑚6+𝑚14)𝑦 +

𝐾28𝑒(𝑚2+𝑚6)𝑦 + 𝐾29𝑒(𝑚4+𝑚6)𝑦 + 𝐾30𝑒(2𝑚6𝑦) +

𝐾31𝑒(𝑚6+𝑚8)𝑦 + 𝐾32𝑒(𝑚6+𝑚12)𝑦 + 𝐾33𝑒(𝑚2+𝑚14)𝑦 +

𝐾34𝑒2𝑚2𝑦 + 𝐾35𝑒(𝑚2+𝑚4)𝑦 + 𝐾36𝑒(𝑚2+𝑚6)𝑦 +

𝐾37𝑒(𝑚2+𝑚8)𝑦 + 𝐾38𝑒(𝑚2+𝑚12)𝑦 + 𝐾39𝑒(𝑚8+𝑚14)𝑦 +

𝐾40𝑒(𝑚2+𝑚8)𝑦 + 𝐾41𝑒(𝑚4+𝑚8)𝑦 + 𝐾42𝑒(𝑚6+𝑚8)𝑦 +

𝐾43𝑒(2𝑚8𝑦 ) + 𝐾44𝑒(𝑚8+𝑚12)𝑦 ,  

(44) 

 

𝑓00 = 1 + 𝐾2𝑒𝑚6𝑦 + 𝐾3𝑒𝑚2𝑦 + 𝐾4𝑒𝑚8𝑦 , (45) 

 

𝑓01 = 𝐶18𝑒𝑚18𝑦 + 𝐾45𝑒𝑚10𝑦 + 𝐾46𝑒2𝑚6𝑦 +

𝐾47𝑒2𝑚2𝑦 + 𝐾48𝑒2𝑚8𝑦 + 𝐾49𝑒(𝑚2+𝑚6)𝑦 +

𝐾50𝑒(𝑚2+𝑚8)𝑦 + 𝐾51𝑒(𝑚6+𝑚8)𝑦, 

(46) 

 

𝑓10 = 1 + 𝐾16𝑒𝑚14𝑦 + 𝐾11𝑒𝑚2𝑦 + 𝐾12𝑒𝑚4𝑦 +
𝐾13𝑒𝑚6𝑦 + 𝐾14𝑒𝑚8𝑦 + 𝐾15𝑒𝑚12𝑦,  

(47) 

 

𝑓11 = 𝐶20𝑒𝑚20𝑦 + 𝐾52𝑒𝑚18𝑦 + 𝐾53𝑒𝑚10𝑦 +
𝐾54𝑒2𝑚6𝑦 + 𝐾55𝑒2𝑚2𝑦 + 𝐾56𝑒2𝑚8𝑦 +

𝐾57𝑒(𝑚2+𝑚6)𝑦 + 𝐾58𝑒(𝑚2+𝑚8)𝑦 + 𝐾59𝑒(𝑚6+𝑚8)𝑦 +
𝐾60𝑒𝑚16𝑦 + 𝐾61𝑒𝑚10𝑦 + 𝐾62𝑒2𝑚6𝑦 + 𝐾63𝑒2𝑚2𝑦 +

𝐾64𝑒2𝑚8𝑦 + 𝐾65𝑒(𝑚2+𝑚8)𝑦 + 𝐾66𝑒(𝑚2+𝑚8)𝑦 +

𝐾67𝑒(𝑚6+𝑚8)𝑦 + 𝐾68𝑒(𝑚6+𝑚14)𝑦 + 𝐾69𝑒(𝑚2+𝑚6)𝑦 +

𝐾70𝑒(𝑚4+𝑚6)𝑦 + 𝐾71𝑒2𝑚6𝑦 + 𝐾72𝑒(𝑚6+𝑚8)𝑦 +

𝐾73𝑒(𝑚6+𝑚12)𝑦 + 𝐾74𝑒(𝑚2+𝑚14)𝑦 + 𝐾75𝑒2𝑚2𝑦 +

𝐾76𝑒(𝑚2+𝑚4)𝑦 + 𝐾77𝑒(𝑚2+𝑚6)𝑦 + 𝐾78𝑒(𝑚2+𝑚8)𝑦 +

𝐾79𝑒(𝑚2+𝑚12)𝑦 + 𝐾80𝑒(𝑚8+𝑚14)𝑦 + 𝐾81𝑒(𝑚2+𝑚8)𝑦 +

𝐾82𝑒(𝑚4+𝑚8)𝑦 + 𝐾83𝑒(𝑚6+𝑚8)𝑦 + 𝐾84𝑒2𝑚8𝑦 +

𝐾85𝑒(𝑚8+𝑚12)𝑦 .  

(48) 

 

Therefore, from Eqns. (16)-(18) and (27)-(30), we get the 

values of u, θ and C as follows: 

 

𝑢 = 𝑓00(𝑦) + 𝐸𝑐𝑓01(𝑦) + 𝜖𝑒𝑛𝑡[𝑓10(𝑦) + 𝐸𝑐𝑓11(𝑦)] 
 = [1 + 𝐾2𝑒𝑚6𝑦 + 𝐾3𝑒𝑚2𝑦 + 𝐾4𝑒𝑚8𝑦] +

𝐸𝑐[𝐶18𝑒𝑚18𝑦 + 𝐾45𝑒𝑚10𝑦 + 𝐾46𝑒2𝑚6𝑦 +

𝐾47𝑒2𝑚2𝑦 + 𝐾48𝑒2𝑚8𝑦 + 𝐾49𝑒(𝑚6+𝑚2)𝑦 +

𝐾50𝑒(𝑚2+𝑚8)𝑦 + 𝐾51𝑒(𝑚6+𝑚8)𝑦] + 𝜖𝑒𝑛𝑡{[1 +

(49) 
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𝐾16𝑒𝑚14𝑦 + 𝐾11𝑒𝑚2𝑦 + 𝐾12𝑒𝑚4𝑦 + 𝐾13𝑒𝑚6𝑦 +
𝐾14𝑒𝑚8𝑦 + 𝐾15𝑒𝑚12𝑦] + 𝐸𝑐[𝐶20𝑒𝑚20𝑦 +

𝐾52𝑒𝑚18𝑦 + 𝐾53𝑒𝑚10𝑦 + 𝐾54𝑒2𝑚6𝑦 + 𝐾55𝑒2𝑚2𝑦 +
𝐾56𝑒2𝑚8𝑦 + 𝐾57𝑒(𝑚2+𝑚6)𝑦 + 𝐾58𝑒(𝑚2+𝑚8)𝑦 +

𝐾59𝑒(𝑚6+𝑚8)𝑦 + 𝐾60𝑒𝑚16𝑦 + 𝐾61𝑒𝑚10𝑦 +
𝐾62𝑒2𝑚6𝑦 + 𝐾63𝑒2𝑚2𝑦 + 𝐾64𝑒2𝑚8𝑦 +

𝐾65𝑒(𝑚2+𝑚8)𝑦 + 𝐾66𝑒(𝑚2+𝑚8)𝑦 + 𝐾67𝑒(𝑚6+𝑚8)𝑦 +
𝐾68𝑒(𝑚6+𝑚14)𝑦 + 𝐾69𝑒(𝑚2+𝑚6)𝑦 + 𝐾70𝑒(𝑚4+𝑚6)𝑦 +

𝐾71𝑒2𝑚6𝑦 + 𝐾72𝑒(𝑚6+𝑚8)𝑦 + 𝐾73𝑒(𝑚6+𝑚12)𝑦 +
𝐾74𝑒(𝑚2+𝑚14)𝑦 + 𝐾75𝑒2𝑚2𝑦 + 𝐾76𝑒(𝑚2+𝑚4)𝑦 +

𝐾77𝑒(𝑚2+𝑚6)𝑦 + 𝐾78𝑒(𝑚2+𝑚8)𝑦 + 𝐾79𝑒(𝑚2+𝑚12)𝑦 +
𝐾80𝑒(𝑚8+𝑚14)𝑦 + 𝐾81𝑒(𝑚2+𝑚8)𝑦 + 𝐾82𝑒(𝑚8+𝑚4)𝑦 +

𝐾83𝑒(𝑚6+𝑚8)𝑦 + 𝐾84𝑒2𝑚8𝑦 + 𝐾85𝑒(𝑚8+𝑚12)𝑦]} , 

  

𝜃 = 𝑔00(𝑦) + 𝐸𝑐𝑔01(𝑦) + 𝜖𝑒𝑛𝑡[𝑔10(𝑦) + 𝐸𝑐𝑔11(𝑦)] 
= 𝐶6𝑒𝑚6𝑦 + 𝐾1𝑒𝑚2𝑦 + 𝐸𝑐[𝐶10𝑒𝑚10𝑦 + 𝐾5𝑒2𝑚6𝑦 +

𝐾6𝑒2𝑚2𝑦 + 𝐾7𝑒2𝑚8𝑦 + 𝐾17𝑒(𝑚2+𝑚6)𝑦 +

𝐾18𝑒(𝑚2+𝑚8)𝑦 + 𝐾19𝑒(𝑚6+𝑚8)𝑦] +
𝜖𝑒𝑛𝑡{[𝐶12𝑒𝑚12𝑦 + 𝐾8𝑒𝑚2𝑦 + 𝐾9𝑒𝑚4𝑦 + 𝐾10𝑒𝑚6𝑦] +

𝐸𝑐[𝐶16𝑒𝑚16𝑦 + 𝐾20𝑒𝑚10𝑦 + 𝐾21𝑒2𝑚6𝑦 +

𝐾22𝑒2𝑚2𝑦 + 𝐾23𝑒2𝑚8𝑦 + 𝐾24𝑒(𝑚2+𝑚6)𝑦 +

𝐾25𝑒(𝑚2+𝑚8)𝑦 + 𝐾26𝑒(𝑚6+𝑚8)𝑦 + 𝐾27𝑒(𝑚6+𝑚14)𝑦 +

𝐾28𝑒(𝑚2+𝑚6)𝑦 + 𝐾29𝑒(𝑚4+𝑚6)𝑦 + 𝐾30𝑒(2𝑚6𝑦) +

𝐾31𝑒(𝑚6+𝑚8)𝑦 + 𝐾32𝑒(𝑚6+𝑚12)𝑦 + 𝐾33𝑒(𝑚2+𝑚14)𝑦 +

𝐾34𝑒2𝑚2𝑦 + 𝐾35𝑒(𝑚2+𝑚4)𝑦 + 𝐾36𝑒(𝑚2+𝑚6)𝑦 +

𝐾37𝑒(𝑚2+𝑚8)𝑦 + 𝐾38𝑒(𝑚2+𝑚12)𝑦 + 𝐾39𝑒(𝑚8+𝑚14)𝑦 +

𝐾40𝑒(𝑚2+𝑚8)𝑦 + 𝐾41𝑒(𝑚4+𝑚8)𝑦 + 𝐾42𝑒(𝑚6+𝑚8)𝑦 +

𝐾43𝑒(2𝑚8𝑦 ) + 𝐾44𝑒(𝑚8+𝑚12)𝑦]}  , 

(50) 

 

𝐶 = 𝑒𝑚2𝑦 + 𝜖𝑒𝑛𝑡[(1 − 𝐿)𝑒𝑚4𝑦 + 𝐿𝑒𝑚2𝑦].  (51) 

 

The coefficient of skin friction is given by 

 
𝜕𝑢

𝜕𝑦
]

𝑦=0
= 𝐾2𝑚6 + 𝐾3𝑚2 + 𝐾4𝑚8 + 𝐸𝑐[𝐶18𝑚18 +

𝐾45𝑚10 + 𝐾462𝑚6 + 𝐾472𝑚2 + 𝐾482𝑚8 +
𝐾49(𝑚2 + 𝑚6) + 𝐾50(𝑚2 + 𝑚8) + 𝐾51(𝑚6 +
𝑚8)] + 𝜖𝑒𝑛𝑡{[𝐾16𝑚14 + 𝐾11𝑚2 + 𝐾12𝑚4 +
𝐾13𝑚6 + 𝐾14𝑚8 + 𝐾15𝑚12] + 𝐸𝑐[𝐶20𝑚20 +
𝐾18𝑚18 + 𝐾53𝑚10 + 𝐾542𝑚6 + 𝐾552𝑚2 +

𝐾562𝑚8 + 𝐾57(𝑚2 + 𝑚6) + 𝐾58(𝑚2 + 𝑚8) +
𝐾59(𝑚6 + 𝑚8) + 𝐾60𝑚16 + 𝐾61𝑚10 + 𝐾622𝑚6 +
𝐾632𝑚2 + 𝐾642𝑚8 + 𝐾65(𝑚2 + 𝑚8) + 𝐾66(𝑚2 +

𝑚8) + 𝐾67(𝑚6 + 𝑚8) + 𝐾68(𝑚6 + 𝑚14) +
𝐾69(𝑚2 + 𝑚6) + 𝐾70(𝑚4 + 𝑚6) + 𝐾712𝑚6 +
𝐾72(𝑚6 + 𝑚8) + 𝐾73(𝑚6 + 𝑚12) + 𝐾74(𝑚2 +
𝑚14) + 𝐾752𝑚2 + 𝐾76(𝑚2 + 𝑚4) + 𝐾77(𝑚2 +

𝑚6) + 𝐾78(𝑚2 + 𝑚8) + 𝐾79(𝑚2 + 𝑚12) +
𝐾80(𝑚8 + 𝑚14) + 𝐾81(𝑚2 + 𝑚8) + 𝐾82(𝑚4 +
𝑚8) + 𝐾83(𝑚6 + 𝑚8) + 𝐾842𝑚8+𝐾85(𝑚8 +

𝑚12)]} . 

(52) 

 

The rate of heat transfer in terms of Nusselt number  

 
𝑁𝑢

𝑅𝑒𝑥
= (

𝜕𝜃

𝜕𝑦
)

𝑦=0

= 𝐶6𝑚6 + 𝐾1𝑚2 + 𝐸𝑐[𝐶10𝑚10 + 𝐾52𝑚6

+ 𝐾62𝑚2 + 𝐾72𝑚8 + 𝐾17(𝑚2 + 𝑚6)
+ 𝐾18(𝑚2 + 𝑚8) + 𝐾19(𝑚6 + 𝑚8)]
+ 𝜖𝑒𝑛𝑡{[𝐶12𝑚12 + 𝐾8𝑚2 + 𝐾9𝑚4

+ 𝐾10𝑚6] + 𝐸𝑐[𝐶16𝑚16 + 𝐾20𝑚10

+ 𝐾212𝑚6 + 𝐾222𝑚2 + 𝐾232𝑚8

+ 𝐾24(𝑚2 + 𝑚6) + 𝐾25(𝑚2 + 𝑚8) 

(53) 

                                    +𝐾26(𝑚6 + 𝑚8) + 𝐾27(𝑚6 + 𝑚14)
+ 𝐾28(𝑚2 + 𝑚6) + 𝐾29(𝑚4 + 𝑚6)
+ 𝐾302𝑚6 + 𝐾31(𝑚6 + 𝑚8)
+ 𝐾32(𝑚6 + 𝑚12) + 𝐾33(𝑚2 + 𝑚14)
+ 𝐾342𝑚2 + 𝐾35(𝑚2 + 𝑚4)
+ 𝐾36(𝑚2 + 𝑚6) + 𝐾37(𝑚2 + 𝑚8)
+ 𝐾38(𝑚2 + 𝑚12) + 𝐾39(𝑚8 + 𝑚14)
+ 𝐾40(𝑚2 + 𝑚8) + 𝐾41(𝑚4 + 𝑚8)
+ 𝐾42(𝑚6 + 𝑚8) + 𝐾432𝑚8

+ 𝐾44(𝑚8 + 𝑚12)]} 

 

Finally the rate of mass transfer in terms of Sherwood 

number (Sh) is given by 

 
𝑆ℎ

𝑅𝑒𝑥

= (
𝜕𝐶

𝜕𝑦
)

𝑦=0

= 𝑚2 + 𝜖𝑒𝑛𝑡[𝑚4(1 − 𝐿) + 𝐿𝑚2] (54) 

 

 

4. RESULT AND DISCUSSION 

 

The perturbation solutions are obtained for the MHD free 

convective flow under the appropriate boundary conditions 

and are presented through graphs and tables. The effect of 

viscous dissipation is of special interest which has not been 

taken care of in the earlier studies.  

In the Figure 2, velocity profile is depicted for distinct 

values of Eckert number (Ec). Increasing values of Ec 

enhances the velocity. This is happened by the increase in 

kinetic energy resulted by viscous dissipation in the boundary 

layer. 

Velocity of fluid flow for distinct values of Gm and Gr are 

drawn in the Figures (3) and (4). It is noted that the increasing 

values of Gm and Gr help to improve the velocity. For both 

thermal and solutal Grasshoff number, buoyancy force 

dominates the viscous force which gives higher velocity. The 

results agree well with the study of Prakash et. al. [5]. 

From Figures (5) and (6), the effects of porous permeability 

parameters K and ∅1 on velocity are observed. Here, ∅1 is 

directly proportional to the square root of K. In the present 

study higher permeability K allows the fluids to flow rapidly. 

As a result, increasing values of ∅1 also enhance the fluid 

velocity. At K=0.001, we get approximately linear flow after 

some elevation. 

 
 

Figure 2. Velocity profiles for Ec, Sc=0.6, F=2, M=2, Gr=4, 

Gm=2, t=1, Pr=0.2, A=0.5, n1=0.1, Q1=2, Du=0.5,K=0.1 
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Figure 3. Velocity profiles for Gm, Sc=0.6, F=2, M=2, 

Gr=4, A=0.5, n1=0.1, t=1, Pr=0.2,K=0.1, Q1=2, Du=0.5 

 

 
  

Figure 4. Velocity profiles for Gr, Sc=0.6, F=2, M=2, Gm=2, 

n1=0.1, t=1, Pr=0.2, K=0.1, A=0.5, Q1=2, Du=0.5 

 

 
 

Figure 5. Velocity profiles for ∅1, Sc=0.6, F=2, M=2, Gr=4, 

Gm=2, n1=0.1, t=1, Pr=0.2,K=0.1, A=0.5, Q1=2, Du=0.5 

 

 
 

Figure 6. Velocity profiles for K, Sc=0.6, F=2, M=2, Gm=2, 

n1=0.1, t=1, Pr=0.2, Gr=4, A=0.5, Q1=2, Du=0.5 

 

 
 

Figure 7. Velocity profiles for M, Sc=0.6, F=2, K=0.1, 

Gm=2, n1=0.1, t=1, Pr=0.2, Gr=4, A=0.5, Q1=2, Du=0.5, 

F=2 

 
 

Figure 8. Velocity profiles for F, Sc=0.6, M=2, Gr=4, Gm=2, 

n1=0.1, t=1, Pr=0.2, K=0.1, Q1=2, Du=0.5, A=0.5 
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Figure 9. Velocity profiles for 𝜙, Sc=0.6, M=2, Gr=4, Gm=2, 

n1=0.1, t=1, Pr=0.2, K=0.1, Q1=2, Du=0.5, A=0.5, F=2 

 

 
 

Figure 10. Velocity profiles for Pr, Sc=0.6, M=2, Gr=4, 

Gm=2, n1=0.1, t=1,  K=0.1, Gr=4, Q1=2, Du=0.5, A=0.5, 

F=2 

 
 

Figure 11. Temperature profiles for Ec, Sc=0.6, M= 2, Gr=4, 

Gm=2, n1=0.1, t=1, K=0.1, Pr=0.2, Q1=2, Du=0.5, A=0.5, 

F=2 

 

 
 

Figure 12. Temperature profiles for Pr, Sc=0.6, M=2, Gr=4, 

Gm=2, n1=0.1, t=1, K=0.1, F=2, Q1=2, Du=0.5, A=0.5 

 

Table 1. Comparison between present results with previous results 

 
γ Result of Kim [18] Result of Prakash et al. [6] Present results 

 Nu Sh Nu Sh Nu Sh 

0.00 -1.3400 -0.8098 -1.3400 -0.8098 -1.3400 -0.8097 

0.50 -1.4825 -1.1864 -1.4825 -1.1864 -1.4827 -1.1859 

0.75 -1.5227 -1.3178 -1.5227 -1.3178 -1.5227 -1.3177 

1.00 -1.5546 -1.4325 -1.5546 -1.4325 -1.5543 -1.4326 

 

Figure 7 shows that magnetic parameter acts as a resistive 

force to the fluid flow. This results also agree well with 

previous study of Prakash et al. [5]. 

Figure 8 and 9, that velocity decreases when radiation 

parameter F and heat absorption parameter ∅ increase. So, we 

can control the flow of fluid by rising both the parameters. 

In the Figure 10, effects of Prandtl number (Pr) on velocity 

is shown. Velocity is reduced with increasing values of Prandtl 

number. Here the momentum diffusivity influences behaviour 

of the fluid flow resulting lower velocity. 

The increasing values of Eckert number (Ec) lead higher 

temperature which is shown in Figure 11. But in Figure 12, the 

Prandtl number (Pr) adversely affects the temperature. Here 

we can measure the relative importance of viscous dissipation 

to the thermal dissipation.  
 

Table 2. Values of Nu and 𝜏 w.r.t. Ec 

                    
Ec Nu 𝜏 

0.00 -0.8243 2.3054 

0.01 -0.8301 2.2896 

0.02 -0.8359 2.2580 

0.03 -0.8416 -1.4325 

0.04 -0.8474 2.2422 

 

In Table 1, our results with Ec=0, Sc=0.6, F=2, M=2, Gr=4, 

Gm=2, Q1=2, Pr=0.2,  A=0.5, Du=0.5, n1=0.1, t=1, K=0.1 is 
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compared with the previous results of Prakash et.al. [6], and 

Kim [18] and it agrees well. This supports our method and 

accuracy of calculation. From Table 2, the Nusselt number and 

Skin friction both diminish with higher Eckert number. 

 

 

5. CONCLUSIONS 

 

The study of viscous dissipation effect on the unsteady 

MHD flow of an incompressible viscous fluid over a vertical 

permeable surface fixed in a porous medium is executed in the 

proximity of thermal radiation and chemical reaction. After 

applying the perturbation technique, the governing partial 

differential equations lead some non-linear ordinary 

differential equations. To handle these non-linearities, Eckert 

number (Ec) is taken as a small parameter to perturb the 

equations again. This assumption gives us better result. Some 

results are given below. 

• An increase in dissipative heat characterized by the 

parameter, Ec due to viscous dissipation leads to 

significant increase in temperature of the fluid. 

• Increasing values of Eckert number enhances the 

velocity of fluid flow. 

• For both thermal and solutal Grashoff number, 

buoyancy force dominates the viscous force. 

• Higher porous permeability allows the fluid to flow 

rapidly. 

• Magnetic parameter behaves as a resistive force to 

the fluid flow. 

• Velocity is reduced with increasing values of Prandtl 

number. 

• Velocity reduces when radiation parameter and heat 

absorption parameter rise. 
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NOMENCLATURE 

A Suction velocity parameter 

B0 Magnetic field of uniform strength 

C* Species concentration, kgm-3  

Cw 

Cp 

CS 

Cf 

C∞ 

D 

Du 

Dm 

Ec 

F 

Gr 

Gm 

g 

K 

KT 

Kλw 

Species concentration at the plate 

Specific heat at constant pressure, Jkg-1K 

Concentration susceptibility the plate 

Skin friction coefficient 

Species concentration far away from the plate 

Chemical molecular diffusivity, m2s-1 

Dufour number 

The coefficient of mass diffusivity 

Eckert number 

Thermal radiation parameter 

Thermal Grashof number 

Solutal Grashof number 

Acceleration due to gravity, ms-2 

Permeability parameter 

Thermal diffusion ratio 

Absorption coefficient at the wall 

The permeability of the porous medium 

K* 

M 

Nu 

Pr 

P* 

Q 

Q0 

Q* 

Q1 

Q1
* 

qr

R 

Sh 

Sc 

T 

T* 

Hartmann number   

Nusselt number 

Prandtl number 

Pressure 

Heat source parameter 

Dimensional heat absorption coefficient 

Sink strength 

Radiation absorption parameter 

The coefficient of proportionality for the 

absorption 

Radiative heat flux  

Chemical reaction parameter 

Sherwood number 

Schmidt number 

Fluid temperature 

Temperature of fluid near the plate, K 

Tw
* 

T∞
* 

Tw 

T∞

u, v 

Fluid temperature at the surface, K 

Fluid temperature in the free stream, K 

Temperature at the wall 

The free stream dimensional temperature 

Radiative heat flux 

Dimensionless velocity component, ms-1 

Greek symbols 

 Fluid thermal diffusivity, m2s-1 

βT 

βC 

Thermal expansion coefficient, K-1

Concentration expansion coefficient, K-1 

 

1 

Heat source  parameter 

Porous permeability parameter  

Ɵ Dimensionless fluid temperature, K 

µ Dynamic viscosity, kgm-1s-1 

ν 

σ 

1 

η 

τ 

ρ 

The kinematic viscosity, m2s-1 

The fluid-electrical conductivity 

Permeability parameter 

Dimensionless normal distance 

Skin friction coefficient 

Density of the fluid, kgm-3 

Subscripts 

w Conditions on the wall 

∞ Free stream condition 
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