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In this paper we present and implement relatively new analytical techniques, the 

partitioning differential transformation method to approximate solution of integro-

differential equations along with its application in electrical circuit problem. Effectiveness 

of this method is tested by various examples of differential and integro-differential 

equations problem. Obtained results reveal that partitioning differential transformation 

method is very effective, easy to use and simple to perform in the case of large interval. 

The numerical results are presented and show that only few terms are required to obtain an 

approximate solution which is found to be accurate and efficient.  
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1. INTRODUCTION

As a numerical method, the differential transform method 

(DTM) has made great contributions in solving integro-

differential, integral equations, ordinary and partial 

differential equations [1-9]. The method provides the solution 

in terms of convergent series with easily computable 

components. Although the concept of the differential 

transforms was not new (first introduced in the early 1986) 

and first proposed independently by Pukhov and Zhou [8, 9] 

and its main application concern with both linear and 

nonlinear initial value problems in electrical circuit analysis. 

The DTM gives exact values of the nth derivative of an 

analytic function at a point in terms of known and unknown 

boundary conditions in a fast manner. This method constructs, 

for differential equations, an analytical solution in the form 

of a polynomial. Compared with traditional high order Taylor 

series method, derivatives of the data functions should be 

symbolic computed in the DTM method.  

The DTM introduces a promising approach for many 

applications in various domains of science. Although this 

method is used to provide approximate solutions for a wide 

class of nonlinear problems in terms of convergent series 

with easily computable components, but it has some 

drawbacks: by using the DTM, we obtain a truncated series 

solution. This truncated solution does not exhibit the real 

behaviors of the problem but, in most cases, provides an 

excellent approximation of the true solution in a very small 

region. To overcome the shortcoming, we introduce the 

partitioning DTM, call also multi steps/stages DTM, which 

consist on partitioning the large interval [0, T] to a number of 

small sub-interval and then use DTM in it with same 

conditions.   

The rest of this paper is structured as follows. The second 

section is intended to introduce the basic definition of DTM 

and the partitioning DTM methods. Then we applied the 

DTM and partitioning DTM methods for some numerical 

examples to show the effectiveness of the methods in section 

3. Moreover the partitioning DTM to approximate the

solution of the integro-differential problem arising from the

modelling transmissions powers electrical circuit is presented

in section 4. Finally, a conclusion is made in the section 5.

2. DIFFERENTIAL TRANSFORMATION METHOD

AND PARTITIONING

The definitions of the basic one dimensional differential 

transformation approach are introduced as follows [8] and [9]. 

2.1 Definition 

With reference to the articles, we introduce in this section 

the basic definition of the differential transformation: 

Assume that 𝑢(𝑡) is analytic in the time domain [0, 𝑇], then it 

will be differentiated continuously with respect to time t, 

𝑑𝑘𝑢(𝑡)

𝑑𝑡𝑘
= 𝛷(𝑡, 𝑘), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0, 𝑇].   (1) 

where k belongs to the set of non-negative integers, denoted 

as the K-domain. 

For 𝑡 = 𝑡𝑖, then

𝛷(𝑡, 𝑘) = 𝛷(𝑡𝑖 , 𝑘),    (2) 

therefore, Eq. (2) can be rewritten as 

𝑈(𝑘) = 𝛷(𝑡, 𝑘) = [
𝑑𝑘𝑢(𝑡)

𝑑𝑡𝑘
]|𝑡=𝑡𝑖 ,      (3) 

where 𝑈(𝑘)  is called the spectrum or the transformer of 

𝑢(𝑡) 𝑎𝑡 𝑡 = 𝑡𝑖 in K-domain.

If 𝑢(𝑡) can be expressed by Taylor's series, then 𝑢(𝑡) can 

Mathematical Modelling of Engineering Problems 
Vol. 6, No. 2, June, 2019, pp. 235-240 

Journal homepage: http://iieta.org/Journals/MMEP 

235



 

be represented as  

 

𝑢(𝑡) = ∑
(𝑡 − 𝑡𝑖)

𝑘

𝑘!

∞

𝑘=0
𝑈(𝑘). (4) 

 

Eq. (4) is known as the inverse transformation of 𝑈(𝑘). 
Using the symbol “D” denoting the differential 

transformation process and combining the previous equations, 

it is obtained that 

 

𝑢(𝑡) = ∑
(𝑡 − 𝑡𝑖)

𝑘

𝑘!

∞

𝑘=0
𝑈(𝑘) ≡ 𝐷−1𝑈(𝑘). (5) 

 

Using the differential transformation, a differential 

equation in the domain of interest can be transformed to an 

algebraic equation in the K-domain and the 𝑢(𝑡)  can be 

obtained by a finite-term of Taylor's series plus a remainder. 

Thus,  

 

𝑢(𝑡) = ∑
(𝑡 − 𝑡𝑖)

𝑘

𝑘!

𝑛

𝑘=0
𝑈(𝑘) + 𝑅𝑛+1 (6) 

 

Properties of differential transformation method: 

 

If 𝑢(𝑡) and 𝑣(𝑡) are two uncorrelated functions with time t 

where 𝑈(𝑘)  and 𝑉(𝑘)  are the transformed functions 

corresponding to 𝑢(𝑡) and 𝑣(𝑡) then we can easily proof the 

fundamental mathematics operations performed by 

differential transformation and are listed as follows:  

 

Table 1. The fundamental operations of one-dimensional 

differential transform method 

 
Origin Function 

𝑢(𝑡) = 

Transformed 

Function  

𝑈(𝑘) = 

𝛼𝑣(𝑡) + 𝛽𝑤(𝑡) 𝛼𝑉(𝑘) + 𝛽𝑊(𝑘) 
𝑑𝑚𝑢(𝑡)

𝑑𝑡𝑚
 

(𝑘 + 𝑚)! 𝑉(𝑘 + 𝑚)

𝑘!
 

𝑣(𝑡)𝑤(𝑡) 
∑ 𝑉(𝑙)𝑊(𝑘 − 𝑙)

𝑘

𝑙=0
 

𝑡𝑚 
𝛿(𝑘−𝑚) = {

1, 𝑖𝑓 𝑘 = 𝑚,
0, 𝑖𝑓 𝑘 ≠ 𝑚.

 

exp (𝛼𝑡) 𝛼𝑘

𝑘!
, 𝛼 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

sin(𝜔𝑡 + 𝜑) 𝜔𝑘

𝑘!
sin(

𝑘𝜋

2
+ 𝜑) 

cos(𝜔𝑡 + 𝜑) 𝜔𝑘

𝑘!
cos(

𝑘𝜋

2
+ 𝜑) 

∫ 𝑣(𝑠)𝑑𝑠
𝑡

0

 
𝑉(𝑘 − 1)

𝑘
, 𝑘 ≥ 1 

∫ 𝑣(𝑠)𝑤(𝑠)𝑑𝑠
𝑡

0

 1

𝑘
(∑ 𝑉(𝑘1)𝑊(𝑘 − 𝑘1

𝑘−1

𝑘1=0

− 1)), 

 𝑘 ≥ 1 

 

In order to construct an approximate solution of the system 

described by equations in Table 1, the differential 

transformation method is employed. The advantage of this 

method is that it provides a direct scheme for solving the 

problem, i.e., without the need for linearization, perturbation 

or any transformation. 

 

 

2.2 The partitioning differential transformation method 

 

In the previous section, we apply the DTM method to 

approximate the solution of the considered system. Although 

this method has some disadvantages: the solutions converge 

in a very small region and a slow convergence rate [6]. To 

overcome this, we present a partitioning differential 

transformation method (PDTM) as follow:  

Let [0, T] be the time interval of interest. We want to find 

the solutions of the initial value problem over the interval. In 

the classical DTM, the approximate solution can be obtained 

by the finite series  

 

𝑦(𝑡) = ∑ 𝑈(𝑘)𝑡𝑘 𝑓𝑜𝑟 𝑡 ∈ [0, 𝑇]∞
𝑘=0                         (7) 

 

In the partitioning DTM, the time interval [0,T] is 

subdivided into M sub-interval [𝑡𝑚−1, 𝑡𝑚], 𝑚 = 1,… ,𝑀. First, 

the classical DTM method is applied to nonlinear equations 

over the interval [0, 𝑡1] and hence we obtain 

 

𝑦1(𝑡) = ∑ 𝑌1(𝑘)𝑡
𝑘 𝑓𝑜𝑟 𝑡 ∈ [0, 𝑡1]

∞
𝑘=0   

 

The value at 𝑡 = 𝑡1 is used as initial condition for the next 

time step. The initial condition for the next time step is 

written as 𝑦𝑚(𝑡𝑚−1) = 𝑦𝑚−1(𝑡𝑚−1)  
In general, the value at the last time in the interval is used 

as initial conditions for the next time step and the solution is 

approximated as  

 

𝑦𝑚(𝑡) = ∑ 𝑌𝑚(𝑘)(𝑡 − 𝑡𝑚−1)
𝑘  𝑓𝑜𝑟 𝑡 ∈ [𝑡𝑚−1, 𝑡𝑚]

𝑁
𝑘=0           (8) 

 

Finally, we start with initial conditions 𝑦(0) = 𝑦0and use 

the recurrence relation given in the above system; we can 

obtain the partitioning differential transform solution. 

Therefore, to obtain the approximated values of the 𝑦(𝑡) at 

any grid point, we define 

 

𝜒[𝑡𝑖,𝑡𝑖+1](𝑡) = {
1, 𝑖𝑓 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1] 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                       (9) 

 

∀𝑖 ∈ {0, … ,𝑀 − 1} 𝑎𝑛𝑑 [0, 𝑇] = ⋃ [𝑡𝑖 , 𝑡𝑖+1]
𝑀−1
𝑖=0  and for all 

𝑡 ∈ [0, 𝑇], we have  

 

𝑦(𝑡) = ∑ 𝑦𝑗(𝑡)𝜒[𝑡𝑗,𝑡𝑗+1](𝑡)
𝑀−1
𝑗=0                                      (10) 

 

 

3. NUMERICAL EXAMPLES AND DISCUSSION 

 

3.1 The numerical examples 

 

In order to show the limitation of the standard different 

transformation method, the numerical examples are given as 

follow. 

 

Example 1:  

 

𝑦(3) − 𝑦′′ − 𝑦′ + 𝑦 = 0, 𝑦(0) = 2, 𝑦′(0) = 1, 𝑦′′(0) = 0. 
 

The exact solution of the above problem is 

 

𝑦𝑠(𝑡) = (2 − 𝑡)𝑒𝑡 
 

From the initial values we have:  
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𝑌(0) = 2, 𝑌(1) = 1, 𝑌(2) = 0. 
 

Success application of DTM gives the recursive relation:  

 

𝑌(𝑘 + 3) =
1

(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)
((𝑘 + 1)(𝑘 + 2)𝑌(𝑘 + 2)

+(𝑘 + 1)𝑌(𝑘 + 1) − 𝑌(𝑘))
 

 

Using the above relation and initial values  

 

𝑌(3) = −
1

6
, 𝑌(4) = −

1

12
 , 𝑌(5) = −

1

40
 

 

Then the solution has been obtained as  

 

𝑦(𝑡) = 2 + 𝑡 −
1

6
𝑡3 −

1

12
𝑡4 −

1

40
𝑡5 −

1

180
𝑡6 −⋯.  

 

The follow Figure 1, show the absolute error between the 

exact and approximate solution of given IVPs by executing 

DTM: the absolute error is defined by  

 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝐸𝑟𝑟𝑜𝑟 = |𝑦 − 𝑦𝑠| 
 

 
 

Figure 1. Magnitude of the absolute error 

 

The following Figure 2, gives a graphical representation of 

the exact solution and the DTM approximate solution. 

 

 
 

Figure 2. Comparison between the exact and DTM solutions 

 

And Figure 3, gives a graphical representation of the exact 

solution and the PDTM approximate solution when 

 
[0, 𝑇] = [0,10] = [0,1] ∪ [1,2] ∪ …∪ [9,10] 
 

 
 

Figure 3. Comparison between the exact and PDTM solution  

 

Example 2:  

 

𝑦′′ + 2𝑦′ + 𝑦 = 𝑒−𝑡 , 𝑦(0) = −1, 𝑦′(0) = 1. 
 

The exact solution of the above problem is  

 

𝑦(𝑡) = (
1

2
𝑡2 − 1)𝑒−𝑡 

 

Applying DTM to the given problem, we have the 

recursive relation: 

 

𝑌(𝑘 + 2) =
1

(𝑘 + 1)(𝑘 + 2)
(
(−1)𝑘

𝑘!
− 2(𝑘 + 1)𝑌(𝑘 + 1)

−𝑌(𝑘))
 

 

Using the above relation and initial values  

 

𝑌(2) = 0, 𝑌(3) = −
1

3
 , 𝑌(4) =

1

4
 

 

Using Eq. (3) the solution has been obtained as  

 

𝑦(𝑡) = −1 + 𝑡 −
1

3
𝑡3 +

1

4
𝑡4 −

2

15
𝑡5 +⋯.  

 

Table 2. The numerical results of the exact solution and their 

approximations by using DTM and PDTM 

 
t Exact value DTM value PDTM value 

0.1 -0.9003 -0.9003 -0.9003 

0.5 -0.5307 -0.5312 -0.5307 

1 -0.1839 -0.2833 -0.1833 

5 0.0775 -1.1314e+03 0.0779 

10 0.0022 -3.7824e+04 0.0027 

 

Example 3: Consider the following integro-differential 

equation 

 

𝑦′′(𝑡) = 𝑦′(𝑡) − 1 − sin 𝑡 + ∫ 𝑦(𝑥)𝑑𝑥
𝑡

0

,   

𝑦(0) = 0, 𝑦′(0) = 1. 
 

The analytical solution of the above problem is 𝑦(𝑡) =
sin 𝑡. 

At t=0, we can find another initial condition as  𝑦′′(0) =
0. 
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From the initial values we have 𝑌(0) = 0, 𝑌(1) =
1, 𝑌(2) = 0  and application of DTM yields the recursive 

relation: 

 

𝑌(𝑘 + 2) =
1

(𝑘 + 1)(𝑘 + 2)
[(𝑘 + 1)𝑌(𝑘 + 1) + 𝛿(𝑘) −𝑊(𝑘)

+
𝑌(𝑘 − 1)

𝑘
].

 

 

where 𝑊(𝑘) = {
0, 𝑓𝑜𝑟 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛

(−1)(𝑘−1)/2

𝑘!
, 𝑓𝑜𝑟 𝑘 𝑖𝑠 𝑜𝑑𝑑.

 

 

Table 3. The numerical results of the exact solution and their 

approximations by using DTM and PDTM 

 
t Exact value DTM value PDTM value 

0.0 0 0 0 

π/10 0.19866 0.19866 0.19866 

π/5 0.39841 0.39841 0.39841 

π/2 1.0 1.0 1.0 

π 0 -0.01738 0.0 

 

Example 4: Consider the following system of differential 

equations of order two: 

 

{
𝑦1
′′ + 𝑦1 − 𝑦2

′′ − 4𝑦2 = 0

𝑦1
′ + 𝑦2

′ = cos 2 + 2 cos 2𝑡
   

 

with the conditions 

 

{
𝑦1(0) = 0, 𝑦1

′(0) = 1,

𝑦2(0) = 0, 𝑦2
′ (0) = 2.

 

 

The exact solution of this problem is  

 

𝑦(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡)) = (sin 𝑡 , sin 2𝑡). 

 

By using the initial conditions 

 

 
 

and application of DTM yields the recursive relation: 

 

{
 
 

 
 

(𝑘 + 2)(𝑘 + 1)𝑌1(𝑘 + 2) + 𝑌1(𝑘)

−(𝑘 + 2)(𝑘 + 1)𝑌2(𝑘 + 2) − 𝑌2(𝑘) = 0
(𝑘 + 1)𝑌1(𝑘 + 1) + (𝑘 + 1)𝑌2(𝑘 + 1)

=
1

𝑘!
cos

𝑘𝜋

2
+
2𝑘+1

𝑘!
cos

𝑘𝜋

2

 

 

Consequently, we find  

 

{
𝑦1(𝑡) = 𝑡 −

1

3!
𝑡3 +

1

5!
𝑡5 +⋯ = sin 𝑡

𝑦2(𝑡) = 2𝑡 −
8

3!
𝑡3 +

32

5!
𝑡5 +⋯ = 𝑠𝑖𝑛 2𝑡

 

 

 

Table 4. Comparison of the numerical results with exact 

solution and absolute error (max between y1 error and y2 error) 

 
t Exact value DTM error PDTM error 

0.1 (0.0017,0.0035) 2.5443E−3 2.5443E−3 

0.5 (0.0087,0.0174) 1.9556E−3 1.9556E−3 

1 (0.0174,0.0349) 1.5629E−2 2.3793E−3 

5 (0.0871,0.1736) 3.0001E+1 1.7539E−2 

10 (0.1736,0.3420) 0.9015E+5 1.0417E−2 

 

3.2 Discussions 

 

As mentioned in Eqns. (4)-(8), the concept of DTM is 

derived from Taylor series expansion and the convergence of 

the method was studied in many works for small interval. If 

t1=T, then the partitioning DTM and the standard DTM are 

the same. However, when interval becomes large, this 

method gives the bad results or fail.  

In Example 1, we show that for t>2 (see Figure 1,2), the 

absolute error between DTM and the exact solution increases 

as t increases. In Fig3, using the partitioning DTM, we can 

show that for large interval the application of DTM in each 

sub-interval gives a good accuracy. 

In Example 2, the remark, that for t>1, the partitioning 

DTM method is used to improve the basic DTM in order to 

obtain a good approximations.  

In example 3 and 4, we give the comparison between the 

exact value and the partitioning DTM value see Table 4 and 5.  

 

 

4. APPLICATION TO ELECTRICAL CIRCUIT 
 

The model of the transmissions powers electrical circuit is 

shown in paper [4]: ‘Solving differential equations 

analytically is difficult and tedious, especially when the 

equations are complicated and coupled’. In this section, we 

concentrate our effort to give an analytical approximation for 

solving the equations governing system. 

First, we consider the examples discussed in [5] without 

equation differentiation and apply the PDTM approach to 

solve the electrical circuit problems that govern the Kirchhoff 

voltage laws as follow: 
 

𝐿𝑖′ + 𝑅𝑖 +
1

𝐶
∫ 𝑖𝑑𝑡 = 𝑒(𝑡) (11) 

 

where e(t) the electromotive force, e0= constant, L inductance, 

R resistance, C capacitance and i(t) the instantaneous current. 

The analytical approximation of (11) 𝑓𝑜𝑟 𝑘 ≥ 1 is given 

by  
 

𝐼(𝑘 + 1) =
1

𝐿(𝑘 + 1)
(𝐸(𝑘) − 𝑅𝐼(𝑘) +

1

𝐶

𝐼(𝑘 − 1)

𝑘
) 

 

Using Eqns. (8)-(10), we have:  

 

∀𝑗 ∈ {0, … ,𝑀 − 1} 𝑎𝑛𝑑 [0, 𝑇] = ⋃ [𝑡𝑗, 𝑡𝑗+1]
𝑀−1
𝑗=0  and for all 

𝑡 ∈ [0, 𝑇], 

{
 
 

 
 𝑖(𝑡) = ∑ 𝑖𝑗(𝑡)𝜒[𝑡𝑗,𝑡𝑗+1](𝑡),

𝑀−1

𝑗=0

𝑖𝑗(𝑡) = ∑𝐼(𝑘)(𝑡 − 𝑡𝑗−1)
𝑘
, 𝑡 ∈ [𝑡𝑗−1, 𝑡𝑗]

𝑁

𝑙=0

 

Example 5: [5] 

 

𝑖′ + 4𝑖 + 3∫ 𝑖𝑑𝑡 = −2.25 𝑐𝑜𝑠 2𝑡 , 𝑤𝑖𝑡ℎ 𝑖(0) = 𝑖′(0) = 0 

 

The exact to the problem is: 
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𝑖(𝑡) = −
9

26
 𝑒−3𝑡 +

117

130
 𝑒−𝑡 −

72

130
cos 2𝑡 −

9

130
sin 2𝑡 

 

Applying DTM with I(0) = I(1) = 0 and the recursive 

relation  

 

𝐼(𝑘 + 1) =
1

𝑘 + 1
(−4𝐼(𝑘) − 3

𝐼(𝑘 − 1)

𝑘
− 2.25

2𝑘

𝑘!
cos

𝑘𝜋

2
) 

 

In order to get the recursive relation given in [5] (Example 

4), a simple change of variable k by k’+1 gives the result. 

The given IVP has the solution 

 

𝑖(𝑡) =
3

2
 𝑡3 −

3

2
 𝑡4 +

27

40
 𝑡5 −

3

10
 𝑡6 +⋯ 

 

Table 5. Comparison of the numerical results with exact 

solution with PDTM 

 

T Exact value PDTM  Absolute error 

0.1 0.00135646 0.00135646 1E-16 

0.2 0.0097986 0.0097987 1.584E-8 

1 0.48138748 0.5267857 4.54E-2 

2 0.53535575 0.5395137 4.2E-3 

3 -0.46767683 -0.47955 1.19E-3 

 

As in [4], let consider the general electrical circuit defined 

in Figure 4, as follow: 

 

 
 

Figure 4. General electrical circuit with magnetic 

 

The equations obtained by applying the Kirchhoff’s 

Voltage Law (KVL) in an electrical circuit consisting of two 

loops, namely:  

 

{

𝑣1 = 𝑅1𝑖1 + 𝐿11𝑖1
′ −𝑀12𝑖2

′

𝑣2 = 𝑅2𝑖2 + 𝐿22𝑖2
′ −𝑀21𝑖1

′ +
1

𝐶
∫ 𝑖2𝑑𝑡

 

 

(12) 

where 𝑣1, 𝑣2 ∶ voltage, 

𝑖1, 𝑖2 ∶ current, 

𝑅1, 𝑅2 ∶ voltage, 

𝐿11, 𝐿22 ∶ self-inductance, 

𝑀12, 𝑀21 ∶ mutual inductance, 

C: capacitance. 

The coefficients associated with the proportional, 

differential and integral terms can be represented by 

resistance, inductance and capacitance, respectively. 

In the calculation, it is assumed that:  

 

{
 
 

 
 

𝐿11 = 1, 𝐿22 = 1,
𝑀12 = 0.995,𝑀21 = 0.995,
𝑅1 = 0.111, 𝑅2 = 0.987247,

𝐶 = 0.111278,
𝑖1(0) = 0, 𝑖2(0) = 0,

𝑣𝑐(0) = 0, 𝑣1 = 10, 𝑣2 = 0.0.

 

 

with the capacitor voltage 𝑣𝑐 at time t = 0 are zero. 

By using the initial conditions and application of DTM 

yields the recursive relation: 

 

{

𝑣1𝛿(𝑘) = 𝑅1𝐼1(𝑘) + 𝐿11𝐼1(𝑘 + 1) − 𝑀12𝐼2(𝑘 + 1)

𝑣2𝛿(𝑘) = 𝑅2𝐼2(𝑘) + 𝐿22𝐼2(𝑘 + 1) − 𝑀21𝐼1(𝑘 + 1)

+
1

𝐶

𝐼2(𝑘 − 1)

𝑘

 

 

Then,  

 

(
𝐿11 −𝑀12

−𝑀21 𝐿22
) (
𝐼1(𝑘 + 1)

𝐼2(𝑘 + 1)
)

= ((
𝑣1𝛿(𝑘)

𝑣2𝛿(𝑘)
) − (

𝑅1 0
0 𝑅2

) (
𝐼1(𝑘)

𝐼2(𝑘)
))

− (
0

1
𝐶
𝐼2(𝑘 − 1)

𝑘

) 

 

For k=0, we have 

 

(
𝐼1(1)

𝐼2(1)
) = (

𝐿11 −𝑀12

−𝑀21 𝐿22
)
−1

((
𝑣1
𝑣2
) − (

𝑅1 0
0 𝑅2

) (
𝐼1(0)

𝐼2(0)
)

− (
0

0
)) 

= (
1.0025𝐸 + 03

−0.9957𝐸 + 03
) 

 

And 𝑓𝑜𝑟 𝑘 ≥ 1 

 

(
𝐼1(𝑘 + 1)

𝐼2(𝑘 + 1)
) = −(

𝐿11 −𝑀12

−𝑀21 𝐿22
)
−1

[(
𝑅1 0
0 𝑅2

) (
𝐼1(𝑘)

𝐼2(𝑘)
)

+ (
0

1
𝐶
𝐼2(𝑘 − 1)

𝑘

)] 

= −(
𝐿11 −𝑀12

−𝑀21 𝐿22
)
−1

(
𝑅1𝐼1(𝑘)

𝑅2𝐼2(𝑘) +
1
𝐶
𝐼2(𝑘 − 1)

𝑘

) 

 

Let ∆= 𝐿11𝐿22 −𝑀12𝑀21, then  

 

𝐼1(𝑘 + 1) = −
1

∆
(𝐿22𝑅1𝐼1(𝑘) + 𝑀12𝑅2𝐼2(𝑘)

+
𝑀12

𝐶

𝐼2(𝑘 − 1)

𝑘
) 

𝐼2(𝑘 + 1) = −
1

∆
(𝑀21𝑅1𝐼1(𝑘) + 𝐿11𝑅2𝐼2(𝑘)

+
𝐿11
𝐶

𝐼2(𝑘 − 1)

𝑘
) 

 

Using the recursive relation and the Eq. (8), we obtain  
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{
𝑖1,𝑚(𝑡) = ∑ 𝐼1,𝑚(𝑘)(𝑡 − 𝑡𝑚−1)

𝑘𝑛
𝑘=0

𝑖2,𝑚(𝑡) = ∑ 𝐼2,𝑚(𝑘)(𝑡 − 𝑡𝑚−1)
𝑘𝑛

𝑘=0

𝑓𝑜𝑟 𝑡 ∈ [𝑡𝑚−1, 𝑡𝑚]  (13) 

 

And  

 

∀𝑗 ∈ {0, … ,𝑀 − 1} 𝑎𝑛𝑑 [0, 𝑇] = ⋃ [𝑡𝑗, 𝑡𝑗+1]
𝑀−1
𝑗=0  and for all 

𝑡 ∈ [0, 𝑇], we have  

 

{
𝑖1(𝑡) = ∑ 𝑖1,𝑗(𝑡)𝜒[𝑡𝑗,𝑡𝑗+1](𝑡)

𝑀−1
𝑗=0

𝑖2(𝑡) = ∑ 𝑖2,𝑗(𝑡)𝜒[𝑡𝑗,𝑡𝑗+1](𝑡)
𝑀−1
𝑗=0

                                            (14) 

 

For the numerical results, we compare the proposed 

method to the analytical approximation given in [4] by:  

 

𝑖2(𝑡) = −0.100858𝑒
−0.1𝑡 + 11.1952161𝑒−10𝑡

− 11.094358𝑒−100𝑡𝐴 

 

And for comparison purposes, the numerical method 

mentioned above are tested with different time steps 0.001s, 

0.01s, 0.02s and 0.03s in computation and with order 5. 

 

Table 6. Comparison of the numerical results with reference 

solution [4] with different time steps T 

 

T Reference value PDTM  Absolute error 

0.001 0.9533093 0.9035725 0.0497 

0.005 3.8475817 3.796201 0.0514 

0.01 5.9781937 5.9386937 0.0395 

0.02 7.5751726 7.5345726 0.0406 

0.03 7.6321926 7.5820926 0.0501 

 

 

5. CONCLUSION 

 

In this work, we presented a new approach for applying the 

partitioning differential transform method for solving 

nonlinear integro-differential equations for large time interval. 

In Example 1, we show the effectiveness of this method 

when the classical differential transform method fail or give 

the bad results. The analytical approximations to the 

solutions are reliable, and confirm the power and ability of 

the partitioning DTM methods as an easy device for 

computing the solution of a non-linear system of differential 

or intergo-differential equations. For the considered test, the 

presented technique generated numerical results and is 

effective in solving nonlinear integro-differential equations. 
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