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The prevention of water inrush is of great significance to the work safety in coalmines. 

However, the existing prediction models for coalmine water inrush cannot achieve 

desirable speed, accuracy, or generalization ability, owing to the complexity and diversity 

of causes of this accident. Therefore, this paper develops an artificial intelligence (AI)-

based coalmine water inrush safety prediction model, making coalmine water inrush 

prediction more accurate, real-time, and robust. Firstly, the causes of coalmine water 

inrush were combed, and used to build a reasonable evaluation index system. Next, the 

extreme learning machine (ELM) was optimized with particle swarm optimization (PSO) 

algorithm and ant colony optimization (ACO) algorithm, and developed into a coalmine 

water inrush safety prediction model. The dimensionality reduction in subset 

classification was introduced in great details. Finally, the effectiveness of our model was 

proved through experiments. The research results provide the basis for the application of 

combinatory optimized learning machines in hazard prediction of other fields. 
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1. INTRODUCTION

China boasts a wealth of coal resources. All varieties of coal 

have been detected in mines across the country. The supply of 

coal, the leading primary energy source, directly affects 

industrial development and even social stability [1-6]. Many 

coalmines in China face complex hydrogeological conditions. 

If a water inrush occurs, the roadway will be quickly flooded 

if the accident is not handled properly, posing a serious threat 

to the lives of workers and the safety of coalmine properties 

[7-9]. Therefore, the prevention of water inrush is recognized 

as the key to the work safety in coalmines. An effective way 

to prevent water inrush is to build a water inrush safety model 

for the target coalmine [10-12]. 

The causes of water inrush vary from mine to mine, because 

each coalmine has unique hydrogeological and storage 

conditions. Considering the variation, many scholars have 

explored the mechanism of coalmine water inrush, constructed 

evaluation index system of coalmine water inrush safety, and 

introduced artificial intelligence (AI) into the analysis and 

prediction of coalmine water inrush [13-16]. 

From the perspective of physics, Winkler [17] considered 

the defect and local instability of the rock floor as the main 

causes of coalmine water inrush, and proposed to judge the 

rock floor instability by detecting whether the stress of the 

water barrier is imbalanced. Kumari and Om [18] combined 

mathematics with structural mechanics, and systematically 

analyzed the causes of water inrush fault in coalmines, based 

on catastrophe theory and limit bending moment theory. Based 

on some coalmine water inrush samples, Henriques and 

Malekian [19] discretized the continuous water inrush 

prediction information with support vector machine (SVM), 

and solved the local minimum problem of traditional neural 

networks (NNs). Zhang et al. [20] combined the genetic 

algorithm (GA) with backpropagation (BP) algorithm into a 

coalmine water inrush prediction model based on artificial 

neural network (ANN); the model has a high training accuracy, 

but consumes too much time in adjusting the network 

parameters. 

The prediction of coalmine water inrush must be rapid, 

accurate, and effective. Hence, it is important to improve the 

operating speed of the prediction model, while ensuring the 

prediction accuracy [21-23]. Bhattacharjee et al. [24] 

developed a hybrid prediction model based on extreme 

learning machine (ELM) and the principal component analysis 

(PCA), and proved that the hybrid model is more accurate and 

faster than the least squares (LS) SVM and traditional BP 

model. Liu et al. [25] constructed a real-time monitoring 

system for water inrush from coalmine floor, and optimized 

the input weights and hidden layer bias, which are assigned 

randomly by the ELM, with the adaptive difference algorithm. 

Traditionally, the evaluation index systems for coalmine 

water inrush overlook the fact that the causes of water inrush 

might change in real time with external forces in coalmining. 

Moreover, the existing ELM-based prediction algorithms 

cannot achieve desirable classification accuracy or 

generalization, despite their rapid prediction. To solve these 

problems, this paper develops an AI-based coalmine water 

inrush safety prediction model, making coalmine water inrush 

prediction more accurate, real-time, and robust. Firstly, the 

causes of coalmine water inrush were combed, and a 

reasonable evaluation index system was established. Next, the 

feasibility of optimizing the ELM with particle swarm 

optimization (PSO) algorithm and ant colony optimization 
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(ACO) algorithm was demonstrated, and the coalmine water 

inrush safety prediction model was created based on the ELM 

optimized by the PSO and ACO. The dimensionality reduction 

in subset classification was introduced in great details. Finally, 

the effectiveness and real-time performance of our model were 

proved through experiments. 

 

 

2. CAUSE ANALYSIS FOR COALMINE WATER 

INRUSH 

 

Coalmine water inrush is the combined result of multiple 

factors, including but not limited to hydrogeological 

conditions, and human intervention. The cause of water inrush 

will change continuously, under the effect of the external 

forces in coalmining and single influencing factors.  

Referring to the existing evaluation index systems, this 

paper summarizes the factors affecting coalmine water inrush, 

and selects three primary indices for coalmine water inrush 

safety: water source factors, water channel factors, and factors 

of water-proof and drainage (WP&D) facilities. Specifically, 

the water source factors include three secondary indices: 

aquifer indices (thickness, water pressure, and distance from 

the ground), water barrier indices (e.g. thickness), and 

flooding in subsidence area or goaf (Yes/No); the water 

channel factors include three secondary indices: regular 

discharge of water (Yes/No), coal seam thickness and water 

content, and mining conditions and type of mining activities; 

the WP&D facility factors include six secondary indices: 

blocking of sump (Yes/No), installation of waterproof valve 

(Yes/No), installation of waterproof gate (Yes/No), failure of 

drainage pump (Yes/No), failure of drainage pipeline 

(Yes/No), and failure of drainage equipment (Yes/No). The 

proposed evaluation index system for coalmine water inrush 

safety is presented in Figure 1. 

The complex influencing factors complicate the prediction 

of water inrush in coalmines. Fortunately, the correlations 

between these factors can be identified through AI 

technologies. Based on the proposed two-layer evaluation 

index system, this paper decides to build an ELM model to 

predict coalmine water inrush. 

 

 
 

Figure 1. The proposed evaluation index system for coalmine water inrush safety 

 

 

3. COMBINATORY OPTIMIZED ELM PREDICTION 

MODEL 

 

3.1 The ELM algorithm 

 

The ELM algorithm is a learning algorithm based on a 

feedforward NN with a single hidden layer (Figure 2). The 

most notable advantage of the algorithm is its fast speed, 

which arises from the fact that the algorithm can find the 

unique optimal solution from the generalized reverse by 

adjusting the number of nodes, without needing to change the 

input weights or biases of the hidden layer. The structure of 

the feedforward NN with a single hidden layer is shown in 

Figure 2 below. 

For a dataset of N random samples, suppose the input matrix 

is Xi=[xi1, xi2, …, xin]TRn×N, where ωi=[ωi1, ωi2, …, ωin] is the 

connection weight between input layer and hidden layer, βi is 

the connection weight between hidden layer and output layer, 

bi is the bias of the i-th hidden layer node, and g(x) be the 

activation function of the hidden layer. Then, the j-th element 

in the output matrix T of the ELM network with M hidden layer 

nodes can be expressed as: 
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Figure 2. The structure of the feedforward NN with a single 

hidden layer 

 

If the activation function g(x) is infinitely differentiable, ωi 

and bi can remain unchanged during the training after being 

randomly initialized. The value of βi can be obtained by 

solving the following system of linear equations: 
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where, H is the output matrix of the hidden layer; TT is the 

transposed matrix of T. The above formula is equivalent to a 

minimal loss function: 
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(3) 

 

In the traditional gradient descent method, a set of 

parameter values are randomly initialized, and updated 

constantly in the solving process, such that the loss function is 

reduced iteratively to the minimum. In the ELM algorithm, 

once the input and output values of the objective function are 

given, the parameters can be viewed as independent variables, 

while reducing the original value of the objective function. In 

this way, the loss function can be minimized. Since H remains 

the same through the training, the generalized inverse matrix 

of H can be denoted as H-1. Then, βi can be uniquely 

determined as the least squares solution of formula (2): 

 
T

i TH 1-ˆ =
 

(4) 

 

3.2 Combinatory optimization of the ELM  

 

In coalmines, water inrush may be induced by various 

complex factors. That is why a dozen of secondary indices 

were selected in our evaluation index system. The more the 

variables used in prediction, the higher the dimensionality of 

the ELM parameters. However, the traditional way to explore 

the correlations between influencing factors, that is, updating 

ELM parameters through gradient descent, could easily fall 

into the local minimum trap, and even leads to an incorrect 

prediction model. Here, the classification performance and 

running speed are optimized by the PSO algorithm, drawing 

on the metaheuristic search method. The workflow of the 

PSO-optimization of the ELM algorithm is explained in Figure 

3. 

 

 
 

Figure 3. The workflow of the PSO-optimization of the ELM algorithm 
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Let P=(P1, P2, …, Pn) be a particle swarm in a D-

dimensional space, and Pi=(pi1, pi2, …, piD) and Vi=(vi1, vi2, …, 

viD) be the position and velocity of the i-th particle, 

respectively. The particles in the swarm iteratively share 

information with each other, in search of the optimal solution. 

During the iteration, the i-th particle updates its position and 

velocity constantly based on the best-known individual 

position pBest, which is expressed as a matrix Pi=(pi1, pi2, …, 

piD), and the best-known global position gBest, which is 

expressed as another matrix Pg=(pg1, pg2, …, pgD):  
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where, d=1, 2, …, D is the dimension of the optimal solution 

obtained through iterations; t is the number of iterations 

needed to find the optimal solution; δ is the inertia weight that 

balances the individual extreme with the global extreme by 

adjusting the search range; ε1 and ε2 are two random numbers 

in [0, 1] designed to increase the randomness of the search; a1 

and a2 are two acceleration factors that balances the individual 

extreme with the global extreme by adjusting the number of 

iterations adaptively in real time. To make the iterative search 

more pertinent, the particle position and velocity were limited 

within [-Pmax, Pmax] and [-Vmax, Vmax], respectively. The 

acceleration factors a1 and a2 can be respectively updated by:  
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where, a1h, a2h, a1h, and a2h are constants; t is the current 

number of iterations; tmax is the maximum number of iterations. 

During the feature extraction of coalmine water inrush, 

most evaluation indies can be characterized by Yes or No. The 

eigenvalues of such indices can be defined as 0 or 1. In this 

case, the particle velocity can be updated by formula (5), while 

the particle position can be updated based on the probability 

that the velocity is mapped to 1 in the interval of [0, 1]. In this 

way, each evaluation index can be represented by continuous 

numerical values. Then, corresponding particle velocity can be 

updated by the sigmoid function: 
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The particle position can be updated by: 
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For better computing power and operating efficiency, the 

ELM algorithm was further improved by the ACO algorithm, 

which is based on distributed computing. Since the coalmine 

water inrush prediction involves multiple evaluation indices, 

the input weights and hidden layer biases were ranked as the 

nodes of the path traversed by each ant, according to the 

importance of each evaluation index. 

It is assumed that there are R nodes and A ants, and every 

two adjacent nodes are connected by two paths. Then, an ant 

faces two path options after arriving at a node: Yes (1) or No 

(0). Hence, the probability Pi,j for an ant at the i-th node to 

choose the j-th node can be calculated by: 
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where, τij pheromone concentration between the i-th node and 

the j-th node; i=1, 2, …, R; j=0 or 1. 

Taking the path of each ant as a feasible solution to 

coalmine water inrush prediction, the paths of the entire ant 

colony constitute the solution space of the problem to be 

optimized. Then, the fitness of the path traversed by an ant, i.e. 

the absolute error between the ideal output and the real output, 

can be computed by: 
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Then, the obtained solutions are ranked by fitness. The paths 

corresponding to the optimal solution (optimal paths) are 

allocated into set O. After that, the path of each ant in the next 

cycle can be adjusted by formulas (13) and (14), and the 

pheromone concentration corresponding to the optimal paths, 

as well as the increment of pheromone concentration, can be 

updated by the enhancement coefficient ρ: 
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where, fitnessmax and fitnessmin are the maximum fitness and 

minimum fitness, respectively; μ is the proportion of the ants 

traversing the optimal paths in the colony. The iteration is 

terminated at the maximum number of iterations tmax, and the 

maximum fitness in the iteration process can be obtained:  

 

( )maxmax −= tfitnessfitness
 (15) 

 

where, t=1, 2, …, tmax. The paths corresponding to the 

maximum paths are recorded to obtain the optimal input 

weights and hidden layer biases of the ELM algorithm. 

So far, this paper relies on combinatory optimization to 

improve the computing power and operating efficiency of the 

ELM algorithm. If there are many evaluation indices for 

coalmine water inrush prediction, there will be a huge number 

of candidate solutions. In this case, the fitness function should 

be properly optimized to enhance the generalization ability 

and classification accuracy of the ELM through training.  

To reveal the generalization ability and classification 

accuracy of each sub-classifier, the original dataset was split 

into multiple subsets, without changing the properties of the 

classifier. The last subset was taken as the test subset, and the 

other subsets as the training subsets. For each subset, the L2-

norm of the connection weight β between the hidden layer and 

the output layer in the ELM network was calculated. Then, the 
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fitness function for the w-th subset can be adjusted into: 
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where, Accuracyw is the mean classification accuracy of the w-

th subset; the denominator is the mean L2-norm ratio between 

the weight of each subset and the output weights of all subsets 

of the ELM network. It can be seen that, with the growing 

mean classification accuracy of each subset, the L2-norm will 

decrease, and the fitness will increase. The workflow of the 

ACO-optimization of the ELM algorithm is explained in 

Figure 4. 

 

 
 

Figure 4. The workflow of the ACO-optimization of the 

ELM algorithm 

 

 

4. COALMINE WATER INRUSH PREDICTION 

MODEL BASED ON COMBINATORY OPTIMIZED 

ELM 

 

In the previous section, the ELM algorithm was subject to 

combinatory optimization by the PSO and ACO algorithms. 

The input weights and hidden layer biases of the ELM 

algorithm were processed in a distributed manner, enhancing 

the computing power and operating efficiency of the algorithm. 

Based on the combinatory optimized ELM, a coalmine water 

inrush prediction model was established in the following steps: 

Step 1. The activation function g(x) is determined based on 

N coalmine water inrush evaluation indices. The ωi and bi are 

randomly initialized. 

Step 2. For the evaluation indices whose values are logical 

data, the eigenvalues are set to 0 or 1. For those whose values 

are numerical data, the numerical values are normalized by: 
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where, xi is the normalized value of the inputted evaluation 

index xi; xi-min and xi-max are the minimum and maximum of the 

i-th evaluation index, respectively. 

Step 3. The normalized dataset is decomposed into several 

subsets, followed by the definition of the training subsets and 

test subset. Then, the number of iterations, the range of inertia 

weight, acceleration factors, and random numbers of the PSO 

algorithm are configured, as well as the termination conditions. 

Step 4. A directed node swarm of R nodes is generated, in 

which each node vector corresponds to a set of input weights 

and hidden layer biases of the ELM algorithm. 

Step 5. Each node is treated as a particle for position and 

velocity updates, and viewed as a node to be traversed by the 

ant colony. Then, the nodes are ranked by the importance of 

evaluation indices. 

Step 6. The fitness values of each particle and subset are 

calculated by the ELM algorithm. On this basis, the set of 

individual extremes, the set of global extremes, and the set of 

optimal paths are established for the particle swarm. 

Step 7. The fitness values are updated through iterative 

optimization. Meanwhile, the set of individual extremes, the 

set of global extremes, and the pheromone concentrations of 

the ant colony, are all updated. 

Step 8. The iterative optimization is terminated if the 

optimal fitness or the maximum number of iterations is 

reached. Then, the input weights and hidden layer biases are 

obtained for the ELM algorithm. Otherwise, Steps 4-8 need to 

be implemented again. 

To reduce the dimension of input samples and improve the 

training speed of the prediction model, the data on the 

evaluation indices collected from the coalmine need to be 

filtered. Therefore, dimensionality reduction was introduced 

to the subset division process. As shown in Figure 5, the 

coalmine water inrush prediction with dimensionality 

reduction can be implemented in the following steps: 

Step 1. The evaluation index dataset is numbered, creating 

19-dimensional subsets including the original dataset U0: U0, 

U1, U2, …, U19. 

Step 2. The index subsets are imported in turn to the ELM 

model for training. To analyze the error of the prediction 

model, the mean error of the ELM model on each test subset 

is calculated through ten-fold cross-validation. The mean 

errors corresponding to Ug(g=1, 2, …, 19) are denoted as 

eg(g=1, 2, …, 19). Comparing e0 with each item in eg(g=1, 

2, …, 19), the removal of the corresponding evaluation index 

does not affect the prediction accuracy of coalmine water 

inrush, if e0 is the smaller item. 

Step 3. Steps 1-2 are repeatedly executed until the number 

of subsets and mean error on test set are both desirable. 

Through the above steps, five indices were removed, 

including aquifer thickness, coal seam thickness, mining 

direction, oblique length of working face, and geo-stress. Then, 

the original dataset was reduced to 14 dimensions. Through 

dimensionality reduction, the training time of the ELM model 

was shortened, owing to the decline in the volume of input data, 

and the training efficiency was effectively improved. 
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Figure 5. The workflow of coalmine water inrush prediction 

with dimensionality reduction  

 

 

5. EXPERIMENTS AND RESULTS ANALYSIS 

 

To verify its effectiveness, the proposed combinatory 

optimized ELM prediction model was tested on 150 sets of 

data collected from the working face in a typical coalmine in 

Shanxi province, northern China.  

 

 
 

Figure 6. The error change curve of our model 

 

 
 

Figure 7. The comparison of prediction errors 

 
 

Figure 8. The comparison of MSEs 

 

Figure 6 provides the error change curve of our model. It 

can be seen that, with the growing number of iterations, the 

mean squared error (MSE) of our model gradually decreased 

from 0.01246 to 0.08432. 

Figures 7 and 8 compare the errors and MSEs of our 

algorithm and those of the traditional ELM algorithm in 

predicting water inrush of the said coalmine. The comparison 

shows that the mean prediction error and MSE of the 

traditional ELM algorithm were 15.56 and 2.85, respectively; 

those of our algorithm were 11.47 and 0.67, respectively. 

Hence, the proposed algorithm has better prediction accuracy 

than the traditional ELM algorithm. 

 

Table 1. The comparison of prediction errors and training 

durations of different algorithms  

 

Algorithms 

Mean 

absolute 

errors 

MSEs 
Standard 

deviations 

Mean 

training 

durations 

BP 5.1246 7.5747 8.9362 110 

GA-BP 4.9852 6.8747 7.7283 107 

LSTM 4.7548 6.5797 8.7813 94 

ELM 2.7584 3.9514 4.6326 45 

PSO-ELM 2.4742 3.7548 3.8547 69 

ACO-ELM 2.7136 3.9364 4.1567 46 

Our 

algorithm 
1.3649 2.2159 3.2798 71 

 

Table 1 compares the prediction errors and training 

durations of our algorithm with the BP algorithm, the GA-BP 

algorithm, the long short-term memory (LSTM) algorithm, the 

traditional ELM algorithm, the PSO-ELM algorithm, and the 

ACO-ELM algorithm.  

It is obvious that our algorithm, as a combinatory optimized 

algorithm, consumed slightly more time than the traditional 

ELM algorithm, the PSO-ELM algorithm, and the ACO-ELM 

algorithm in training, but achieved faster speed than BP, GA-

BP, and LSTM algorithms. 

Figure 9 compares the prediction accuracies before and after 

the dimensionality reduction in subset division. It is clear that 

the dimensionality reduction improves the prediction effect of 

our model by removing the redundant evaluation indices for 

coalmine water inrush.  
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Figure 9. The comparison of the prediction accuracies before 

and after the dimensionality reduction 

 

 

6. CONCLUSIONS 

 

To improve the accuracy, real-time performance and 

robustness of coalmine water inrush prediction, this paper puts 

forward an AI-based prediction model for the safety of 

coalmine water inrush. Firstly, the causes of coalmine water 

inrush were identified, and used to create a reasonable 

evaluation index system. Then, the PSO algorithm was 

combined with the ACO algorithm to optimize the ELM 

reduction model, and the dimensionality reduction was 

introduced to subset division. Experimental results show that 

the proposed combinatory optimized ELM algorithm greatly 

outperforms other NN algorithms in prediction accuracy and 

operating speed, and the dimensionality reduction in subset 

division enhances the prediction effect of our model. 

 

 

REFERENCES  

 

[1] Santana, M.A.D., Pereira, J.M.S., Silva, F.L.D., Lima, N. 

M.D., Sousa, F.N.D., Arruda, G.M.S.D., Santos, W.P.D. 

(2018). Breast cancer diagnosis based on mammary 

thermography and extreme learning machines. Research 

on Biomedical Engineering, 34(1): 45-53. 

https://doi.org/10.1590/2446-4740.05217 

[2] Mohanty, F., Rup, S., Dash, B., Majhi, B., Swamy, 

M.N.S. (2019). A computer-aided diagnosis system 

using Tchebichef features and improved grey wolf 

optimized extreme learning machine. Applied 

Intelligence, 49(3): 983-1001. 

https://doi.org/10.1007/s10489-018-1294-z 

[3] Kuppili, V., Biswas, M., Sreekumar, A., Suri, H.S., Saba, 

L., Edla, D.R., Suri, J.S. (2017). Extreme learning 

machine framework for risk stratification of fatty liver 

disease using ultrasound tissue characterization. Journal 

of Medical Systems, 41(10): 152. 

https://doi.org/10.1007/s10916-017-0797-1 

[4] Preethi, J. (2018). A bio inspired hybrid krill herd-

extreme learning machine network based on LBP and 

GLCM for brain cancer tissue taxonomy. In 2018 3rd 

International Conference on Computational Intelligence 

and Applications (ICCIA), pp. 140-144. 

https://doi.org/10.1109/ICCIA.2018.00033 

[5] Gumaei, A., Hassan, M.M., Hassan, M.R., Alelaiwi, A., 

Fortino, G. (2019). A hybrid feature extraction method 

with regularized extreme learning machine for brain 

tumor classification. IEEE Access, 7: 36266-36273. 

https://doi.org/10.1109/ACCESS.2019.2904145 

[6] Pashaei, A., Sajedi, H., Jazayeri, N. (2018). Brain tumor 

classification via convolutional neural network and 

extreme learning machines. In 2018 8th International 

Conference on Computer and Knowledge Engineering 

(ICCKE), pp. 314-319. 

https://doi.org/10.1109/ICCKE.2018.8566571 

[7] Malik, A., Iqbal, J. (2016). Extreme learning machine 

based approach for diagnosis and analysis of breast 

cancer. Journal of the Chinese Institute of Engineers, 

39(1): 74-78. 

https://doi.org/10.1080/02533839.2015.1082934 

[8] Toprak, A. (2018). Extreme learning machine (elm)-

based classification of benign and malignant cells in 

breast cancer. Medical Science Monitor: International 

Medical Journal of Experimental and Clinical Research, 

24: 6537. https://doi.org/10.12659/MSM.910520 

[9] Salaken, S.M., Khosravi, A., Nguyen, T., Nahavandi, S. 

(2017). Extreme learning machine based transfer 

learning algorithms: A survey. Neurocomputing, 267: 

516-524. https://doi.org/10.1016/j.neucom.2017.06.037 

[10] Xu, Z., Yao, M., Wu, Z., Dai, W. (2016). Incremental 

regularized extreme learning machine and it׳ s 

enhancement. Neurocomputing, 174: 134-142. 

https://doi.org/10.1016/j.neucom.2015.01.097 

[11] Geng, Z., Dong, J., Chen, J., Han, Y. (2017). A new self-

organizing extreme learning machine soft sensor model 

and its applications in complicated chemical processes. 

Engineering Applications of Artificial Intelligence, 62: 

38-50. https://doi.org/10.1016/j.engappai.2017.03.011 

[12] Chen, C., Jin, X., Jiang, B., Li, L. (2019). Optimizing 

extreme learning machine via generalized hebbian 

learning and intrinsic plasticity learning. Neural 

Processing Letters, 49(3): 1593-1609. 

https://doi.org/10.1007/s11063-018-9869-6 

[13] Zhu, W., Huang, W., Lin, Z., Yang, Y., Huang, S., Zhou, 

J. (2016). Data and feature mixed ensemble based 

extreme learning machine for medical object detection 

and segmentation. Multimedia Tools and Applications, 

75(5): 2815-2837. https://doi.org/10.1007%2Fs11042-

015-2582-9 

[14] Hu, F., Zhou, M., Yan, P., Li, D., Lai, W., Zhu, S., Wang, 

Y. (2019). Selection of characteristic wavelengths using 

SPA for laser induced fluorescence spectroscopy of mine 

water inrush. Spectrochimica Acta Part A: Molecular and 

Biomolecular Spectroscopy, 219: 367-374. 

https://doi.org/10.1016/j.saa.2019.04.045 

[15] Yang, Y., Yang, J.H., Li, J., Zhang, H.R. (2019). Online 

discrimination model for mine water inrush source based 

CNN and fluorescence spectrum. SPECTROSCOPY 

AND SPECTRAL ANALYSIS, 39(8): 2425-2430.  

[16] Han, S., Chen, H., Long, R. (2017). Game analysis of 

evolution of coal mine safety group behavior based on 

PT-MA theory. Operations Research and Management. 

[17] Winkler, M., Perlman, Y., Westreich, S. (2019). 

Reporting near-miss safety events: Impacts and decision-

making analysis. Safety Science, 117: 365-374. 

https://doi.org/10.1016/j.ssci.2019.04.029 

[18] Kumari, S., Om, H. (2016). Authentication protocol for 

507

https://doi.org/10.1109/ICCIA.2018.00033
https://doi.org/10.1109/ACCESS.2019.2904145
https://doi.org/10.1109/ICCKE.2018.8566571
https://doi.org/10.1080/02533839.2015.1082934
https://dx.doi.org/10.12659%2FMSM.910520
https://doi.org/10.1016/j.neucom.2017.06.037
https://doi.org/10.1016/j.neucom.2015.01.097
https://doi.org/10.1016/j.engappai.2017.03.011
https://doi.org/10.1016/j.saa.2019.04.045
https://doi.org/10.1016/j.ssci.2019.04.029


 

wireless sensor networks applications like safety 

monitoring in coal mines. Computer Networks, 104: 137-

154. https://doi.org/10.1016/j.comnet.2016.05.007 

[19] Henriques, V., Malekian, R. (2016). Mine safety system 

using wireless sensor network. IEEE Access, 4: 3511-

3521. https://doi.org/10.1109/ACCESS.2016.2581844 

[20] Zhang, Y., Jing, L., Bai, Q., Liu, T., Feng, Y. (2019). A 

systems approach to extraordinarily major coal mine 

accidents in China from 1997 to 2011: An application of 

the HFACS approach. International Journal of 

Occupational Safety and Ergonomics, 25(2): 181-193. 

https://doi.org/10.1080/10803548.2017.1415404 

[21] Taylor, P.D., Chen, K., Jonker, L.B., Zhang, M. (2017). 

Research on coal mine safety supervision mechanism 

design under managers' overconfidence. Operations 

Research and Management, 26(11): 182-189.  

[22] Ma, Y., Zhao, Q. (2018). Decision-making in safety 

efforts: Role of the government in reducing the 

probability of workplace accidents in China. Safety 

Science, 104: 81-90. 

https://doi.org/10.1016/j.ssci.2017.12.038 

[23] Yu, K., Cao, Q., Xie, C., Qu, N., Zhou, L. (2019). 

Analysis of intervention strategies for coal miners' unsafe 

behaviors based on analytic network process and system 

dynamics. Safety Science, 118: 145-157. 

https://doi.org/10.1016/j.ssci.2019.05.002 

[24] Wu, Y., Chen, M., Wang, K., Fu, G. (2019). A dynamic 

information platform for underground coal mine safety 

based on internet of things. Safety Science, 113: 9-18. 

https://doi.org/10.1016/j.ssci.2018.11.003 

[25] Liu, Q., Li, X., Meng, X. (2019). Effectiveness research 

on the multi-player evolutionary game of coal-mine 

safety regulation in China based on system dynamics. 

Safety Science, 111: 224-233. 

https://doi.org/10.1016/j.ssci.2018.07.014 

 

508

https://doi.org/10.1016/j.comnet.2016.05.007
https://doi.org/10.1109/ACCESS.2016.2581844
https://doi.org/10.1080/10803548.2017.1415404
https://doi.org/10.1016/j.ssci.2017.12.038
https://doi.org/10.1016/j.ssci.2019.05.002
https://doi.org/10.1016/j.ssci.2018.11.003
https://doi.org/10.1016/j.ssci.2018.07.014



