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A deterministic approach was used in this work to assess the PM2.5 pollutant dispersion 

in the air during a fire event. The pollution data were recorded with high time resolution 

by a monitoring station located 4 km South-West from the fire. The pollutant emission 

due to the fire was described as an equivalent stack having the height of the observed 

cloud of generated smoke. The pollutant dispersion was modelled by means of a Gaussian 

plume dispersion model. To this purpose, the unknown equivalent emission mass flow 

rate at the stack in the model was found out using the available experimental data of PM2.5 

measured on the ground far away, considering the changing of the air stability between 

nighttime and daytime and the variable wind direction. Model results highlighted that the 

predicted maximum pollutant concentration was larger of an order of magnitude than the 

data value recorded at the monitoring station and exceeded the law limit value. A 

sensitivity analysis on the wind speed and the atmospheric stability conditions was 

performed as well to identify the worst case scenarios in case of a fire event. The main 

conclusion is that a dense network of measurement stations with high time resolution is 

necessary to properly monitor an area or to provide validation data for any predicting 

dispersion model in case of a pollutant release. 
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1. INTRODUCTION

Fires are accidental events determined by different causes, 

produced by natural events, such as accumulation of gases due 

to the decomposition of organic matters exposed to high 

temperatures, lightning, etc. or by human actions for 

unexpected, legitimate or illicit reasons.  

Gases, smoke and vapors that develop during the non-

controlled combustion occurring in a fire can also be 

responsible for significant damages to both humans and the 

environment. Smoke is perhaps the most visible part of the 

product of a fire. It can be made of very fine solid particles 

suspended in the gas phase, as well as of condensed vapors. 

Gases produced in a fire are able to maintain their state also 

when cooling at ambient temperature. Vapors leaving the fire 

can become solid or liquid at ambient temperature and, when 

they move away from the flame, may condense and adhere to 

cold surfaces or form particles (aerosols) that remain 

suspended and moved by wind. Gases and vapors produced in 

a fire and coming in contact with humans can cause discomfort 

to breathe, irritation, interact with skin or internal tissues, such 

as nasal mucous membranes, lungs, organs, and internal 

organs, producing dangerous effects due to long exposures [1]. 

Smoke, gases and vapors developed in a fire in an industrial 

site may be more or less dangerous in relation to the kind of 

materials involved, especially if they include potential sources 

of toxic compounds such as it happens for paints and 

polymeric materials. When such compounds are released in a 

fire, they can spread in the air to the ground and to the 

waterways of the areas surrounding the fire. The main gas and 

vapor compounds produced as a result of a fire which are 

responsible of pathological effects are: carbon monoxide (CO); 

carbon dioxide (CO2); hydrogen cyanide (HCN); hydrochloric 

acid (HCl); nitrogen oxides (nitrous oxide - N2O -, nitric - NO 

-, and two forms of dioxide - NO2 and N2O4 -); dioxins and 

furans. For most of these compounds both the amount released 

in a fire and the spatial extent of the contamination produced 

can be evaluated by using different models which make use of 

the composition of the burnt material, the fire conditions and 

the transport and dispersion in the air. For these compounds 

the toxic effect, mainly linked to the presence of the cloud 

released by the fire, often ceases with the dissolution of the 

cloud. However, dioxins can deposit on the plants, on the soil, 

in the water courses and can be ingested by the fauna that 

populates these areas, accumulating in their organisms [2]. 

Such situation has determined the need to study the possible 

mechanisms of dioxin formation in order to assess the effects 

of contamination. The type of smoke produced in a fire 

depends on the type and on the state of aggregation of the fire 

fuel, of the type of ignition and the mode of combustion that 

develops in relation to the ventilation conditions of the fire 

itself. The state of air quality in a town, especially after 

important events such as fires, is the result of a complex 

combination of a multitude of physical and chemical 

transformations.  Physical transformations are mostly related 

to transport processes determined by air motion, which tends 

to disperse, convey and deposit the chemical species directly 

emitted by pollution sources, the so called primary pollutants. 
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Chemical-physical transformations, instead, can be 

responsible of the formation of new polluting species, called 

secondary pollutants. The dispersion of pollutants, caused by 

air instability (vertical dispersion) and transport of air masses 

(horizontal convection and dispersion), as well as their 

chemical transformation or deposits are strictly dependent on 

the dynamic behavior of the lower layers of the atmosphere. 

Therefore, in order to draw a clear picture of the extent of the 

local pollution related to a fire and its impact in the 

surrounding areas, it is important to know both the point of 

origin of a fire and the environmental parameters which allow 

to integrate the space and time distribution of the pollutants.  

Due to the accidental nature of a fire, environmental 

monitoring related to a fire cannot be scheduled. Furthermore, 

given the variety of substances that can be potentially burned 

in a fire and the different territorial characteristics of the areas 

that may be affected, it is not possible to define in advance a 

standardized monitoring protocol to be applied in case of fire. 

Even if it is always possible to identify some recurring phases 

of the monitoring activity connected to the evolution of the fire, 

the measurement campaign will still have to be designed based 

on the event, the materials and substances affected by the fire, 

the place and its environmental characteristics and sensitivity. 

In order to have a complete view of the environmental 

situation, it is recommended to install in urban areas air quality 

monitoring networks, which, beside fixed monitoring stations 

[3], could also include mobile monitoring stations of the new 

generations, like Real-time on-road monitoring stations [4]. 

Such kind of network ensures high space-time resolution of air 

quality measurements, which can be used not only to define 

the levels of pollution but also to trace back the pollution and 

define its sources [5]. Furthermore, in case of environmental 

accidents such as fires, the above-mentioned networks allow 

to instantaneously evaluate the effects of the event on the air 

quality and help the authorities and the citizens to better 

understand the actual environmental situation. In case of 

everyday air monitoring, the immediate knowledge of 

pollution levels and their origins can lead to the definition of 

the most appropriate strategies for their reduction, with 

reference to mitigation strategies that involve the 

decarbonization of the energy sources. In fact, these latter 

combine the reduction of environmental pollution with social 

benefits [6].  

Monitoring of air pollution is also important for purposes 

related to environmental protection, that is one of the most 

discussed topics in the recent years. There are many 

approaches to propose strategies leading to the reduction of 

pollution. Most of the existing industrial plants are converting 

to the application of environmental policies that aim at zero 

emissions and low impacts in general. The industrial plants 

that use biomass as feedstock should be placed in this 

perspective. Cherubini [7] proposed the definition of the 

biorefinery concept intended as the use of most of the potential 

of biomass by minimizing the wastes and the emissions 

connected with the production of bioenergy products. One of 

the most fruitful feedstock is the residual lignocellulosic 

biomass that, if used, can lead to both the reduction of CO2 

emissions and the production of green electricity [8].  

Modelling has been often used to evaluate concentration 

and dispersion process of pollutants in air [9], water [10] and 

ground [11]. In the modeling field there are various 

mathematical approaches to describe reality and to define the 

behavior of solid particles such as particulates, such as discrete 

element method (DEM) [12]. Dispersion models are useful 

tools to determine long-term health impacts of the smoke 

exposures of the local populations [13]. For example, during 

accidents like fires, the correct modelling of the pollutant 

distribution in space and time is fundamental for the definition 

of the human exposure to pollution. In addition to this, the 

application of dispersion models can have an important role in 

providing air quality data to promote the social acceptance to 

reassure of industrial plants with controlled pollutant 

emissions [14]. 

As reported by the recent literature survey [15], the 

dispersion of air pollutants in the atmosphere has been 

modelled by means of three different approaches: Gaussian 

dispersion models, Lagrangian models and Eulerian models. 

Recent studies using the Gaussian dispersion modelling 

approach were focused on improving the plume rise 

mechanisms description by means of semi-empirical equations 

or by more sophisticate models accounting for cloud 

microphysics and transport [16-18]. Models coupling fire 

plume dynamics and weather forecast were also developed 

mainly to forecast the fire plume dispersion [19]. Daly et al. 

[16] estimated the ground-level exposure in the neighborhood 

of a fire in a warehouse, by means of two plume dispersion 

modeling techniques. In particular, in this study the air quality 

impact of large fires was assessed by assuming the smoke 

plume as a combination of a hot upper-part staying aloft and a 

cooler lower-part impacting the ground. Mallia et al. [18] 

highlighted that emissions injection schemes corresponding to 

the assumption of both no plume rise and plume-top 

configurations could not predict satisfactorily the vertical 

distribution of smoke. 

The Lagrangian particle model approach was used by 

several recent studies [20-22]. Ferrero et al. [21] modelled 

different schemes of plume rise of smoke emitted from 

controlled burns without any a priori assumption on the 

dynamics of the plume or on the atmospheric conditions. Good 

agreement was obtained by Thakur et al. [22] between model 

predictions of vertical profiles of CO concentration and 

satellite observations over the burned areas. Results 

highlighted a significant increase of CO concentration at 

altitudes about 3 km height above mean sea level during the 

fire event. Zhu et al. [20] combined a Lagrangian Flexible 

Particle dispersion model (FLEXPART) [23] with the 

Weather Research and Forecasting (WRF) model output [24] 

to derive the smoke aerosols transported from forest fires. 

Some recent works on fires [25, 26] used the TAPM model 

[27] based on fundamental equations of atmospheric flow, 

thermodynamics, moisture conservation, turbulence and 

dispersion, combining different sub module approaches 

(integrated plume rise, Lagrangian particle, building wake, 

and Eulerian grid modules). A chemical transport model was 

also combined with a Dispersive Apportionment of Source 

Impacts (DASI) by Huang et al. [28] to forecast the air quality 

impact of prescribed fires. 

The availability of a model validated with direct 

experimental measurements of pollutants concentrations is of 

paramount importance to predict the impact on air quality in 

the surrounding of prolonged fires and to implement 

precautionary measures for the population. However, few 

published studies have validated model predictions with direct 

measurement of the spatial distribution of pollutant 

concentration over the time [29].  

This work aims at using a modelling approach to derive the 

dispersion of pollutants emitted by an accidental fire 

validating the results with measured data regarding air 
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pollution. The Gaussian plume dispersion approach is 

followed in order to evaluate the mass flow rate of particulate 

matter originating from a fire by using a limited number of 

PM2.5 concentration values measured by an air quality 

monitoring station placed 4 km downwind of the fire starting 

point. 

 

 

2. METHODOLOGY 

 
2.1 Equipment  

 
The data used to feed the modeling procedure are provided 

by a fixed monitoring station installed in the city of Avellino 

(Italy). Avellino is a medium sized town located in the 

Campania region of southern Italy and placed in a wide planar 

region surrounded by mountains. The city suffers one of the 

worst air quality of southern Italy due to the intense industrial 

activity and the local orography that are responsible of 

atmospheric conditions hindering the dispersion of pollutants. 

In order to demonstrate the potential of a wider high space and 

time resolution network, a single monitoring station able of 

high frequency measurements of the air quality was installed 

in the city. The station is composed of different air quality 

sensors and it is based on IoT (Internet of Things) technology. 

The sensors placed inside the control unit (Figure 1) are able 

to monitor, among other parameters, concentration of fine 

particulate solids, the so called PM2.5. In the measurement 

unit, a weather station can also measure temperature, pressure, 

relative humidity, wind intensity and direction. All the data are 

taken every three minutes and are recorded by sending them in 

real time to a database server. Dedicated software allows to 

make these data available on the world wide web and to be 

directly accessed by smartphone. 

The measurement system includes an air suction part where 

specific airflow is conveyed inside the measurement chamber. 

The measuring chamber is heated and designed to minimize 

the effects of humidity on the measurement. The sensors inside 

the system measure the concentrations. In particular, the 

sensor used to measure the particulate concentrations is based 

on the principle of laser scattering. The response is processed 

in the same monitoring station by implementing an algorithm 

capable of analyzing the sensors' responses in a differential. 

The data are sent to the central server, which provides for the 

storage of the information. The sensor arrangement in the 

measuring device was purposely designed and patented [30] 

and can be easily modified to be implemented in both a fixed 

or mobile network. In case of structured network an algorithm 

for the definition of the optimal sampling positions was 

implemented [31]. 

 

 
 

Figure 1. Measuring device 

2.2 Modeling 

 

The Gaussian models have been the reference tools for the 

studies of the pollutant diffusion into the atmosphere and still 

continue to be valid supports for the assessment of emission 

scenarios. Their simplicity and immediacy of use and the 

reliability of the solutions adopted to model the effects of 

interaction of the plume emitted with the external environment, 

makes them the most used in the description of pollutant 

emissions. The emission description within the area studied 

takes place by associating to each meteorological condition 

inserted in the Gaussian plume input (values of wind speed and 

direction, temperature and atmospheric stability) whose shape 

is modulated by atmospheric conditions. The ease of use of the 

Gaussian models is linked to the fact that the model requires a 

type of standard data easily available in the literature both as 

regards the structural aspect of the emissive sources and the 

meteorological or geophysical one. The immediacy of use is 

linked to the rapid response of the model in returning the 

concentration results. The Gaussian model, implementing an 

already defined solution of the diffusion equation, does not 

require its numerical resolution, thus resulting in extremely 

fast execution even of rather long time intervals. 

The simplicity and immediacy of use in addition to the 

conservative parametric choices used in its calculation 

algorithms make it a very effective screening tool applicable 

to the analysis of the diffusion of non-reactive pollutants. 

Finally, since the quality of the results provided by the 

Gaussian models is closely linked to compliance with the 

conditions of applicability and the quality of the 

meteorological data that are used as input, compliance with 

these characteristics makes them very effective tools both in 

the quantitative control phase and as analysis and 

interpretation tool for the results obtained. 

The Gaussian plume dispersion is therefore, the one that 

better describes the case studied in this work. The fire can be 

similar to the pollutant emissions from a punctual source. 

The application of the model includes some implementation 

steps that lead to the final results. The definition of the 

diffusion equation and the boundary conditions are the first 

implementation step. Then, since the diffusion equation 

includes dispersion parameters that depends on air stability 

conditions. So, it is necessary the definition of the wind field 

characteristics like wind intensity and wind stability class. 

Then, knowing the height of the stack and the position of the 

source, the concentration in the point measured, it is possible 

to obtain the fire mass flow rate. 

The Gaussian dispersion model approach was adopted in 

this study for its simplicity and ease of application. 

In order to describe the transport of particulates, which are 

scarcely affected by chemical transformations in the 

atmosphere, the advection-diffusion equation describing the 

mass balance of pollutants in atmosphere does not consider 

any reaction term [32]: 

 
𝜕𝐶

𝜕𝑡
+

𝜕𝑢𝐶

𝜕𝑥
+

𝜕𝑣𝐶

𝜕𝑦
+

𝜕𝑤𝐶

𝜕𝑧

= 𝐾𝑥

𝜕2𝐶

𝜕𝑥2
+ 𝐾𝑦

𝜕2𝐶

𝜕𝑦2
+ 𝐾𝑧

𝜕2𝐶

𝜕𝑧2
 

(1) 

 

where, C is the pollutant concentration, t is time, x is the 

horizontal spatial coordinate in the wind direction, y is the 

horizontal spatial coordinate orthogonal to the wind direction, 

z is the vertical spatial coordinate, u and w are the horizontal 
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and vertical components of the wind velocity, Kx, Ky and Kz 

are the dispersion coefficients in the three coordinate direction. 

According to the assumption that advection is the dominant 

term in the wind direction, it is possible to neglect other terms 

describing transport in the same direction. Furthermore, it can 

be assumed that the prevailing wind speed is horizontal, 

uniform and constant for a sufficiently long timespan, so that 

the stationary conditions can be applied. Therefore, Eq. (1) 

reduces to: 

 

𝑢
𝜕𝐶

𝜕𝑥
= 𝐾𝑦

𝜕2𝐶

𝜕𝑦2
+ 𝐾𝑧

𝜕2𝐶

𝜕𝑧2
 (2) 

 

Eq. (2) can be solved with the boundary conditions of a 

continuous point source and the solution is the following [33]: 

 

𝐶(𝑥, 𝑦, 𝑧)

=
𝑄

2𝜋𝜎𝑦𝜎𝑧

𝑒𝑥𝑝 (−
𝑦2

2𝜎𝑦
2

) [𝑒𝑥𝑝 (−
(𝑧 − 𝐻)2

2𝜎𝑧
2

)

+ 𝑒𝑥𝑝 (−
(𝑧 + 𝐻)2

2𝜎𝑧
2

)] 

(3) 

 

where, 𝑄  is the pollutant mass flow rate coming out of the 

source, 𝐻 is the source height above the ground and the mirror 

source term (a virtual source located at a height −𝐻 ) is 

introduced to model the worst possible case of air pollution 

corresponding to a reflection boundary conditions on the 

ground. σy and σz are defined according the Pasquill-Gifford 

correlation [34]: 

 

𝜎𝑦
2 =

2𝐾𝑦𝑥

𝑢
      𝜎𝑧

2 =
2𝐾𝑧𝑥

𝑢
 (4) 

 

i.e. the width and the thickness of the plume described by 

y and z, both increase proportionally with the space time 

(x⁄u), that is the time taken by the pollutant to reach a certain 

position x since it was emitted from the source point. The 

values of the proportionality constants Ky and Kz between the 

space time and the standard deviation, depend on the tendency 

of the atmosphere to repress vertical convection, the so-called 

atmospheric stability. In fact, according to the model, the 

atmosphere stability affects the parameters Ky and Kz so that 

unstable conditions have standard deviations that more rapidly 

increase in the wind direction while stable conditions have 

standard deviations that less rapidly in the wind direction. 

Hence, in stable conditions the pollutant may travel longer 

distances before dispersing. Figure 2 illustrates the situation 

being modelled.  

At a certain downwind distance x, the maximum 

concentration lies on the plume axis of symmetry and is Cmax: 

 

𝐶𝑚𝑎𝑥  (𝑥) =
𝑄

2𝜋𝜎𝑦𝜎𝑧𝑢
 (5) 

 

Therefore, the cloud smoke concentration downwind the 

stack and at the ground level is calculated as follows:  

 

𝐶(𝑥, 0,0) =
𝑄

𝜋𝜎𝑦𝜎𝑧𝑢
𝑒𝑥𝑝 (−

𝐻2

2𝜎𝑧
2

) (6) 

 

The implementation of the Gaussian Plume model was 

obtained using a MATLAB code derived from the one freely 

available from the University of Manchester [35]. The code 

allows to customize several parameters to combine in the 

model more stack such the one reported above in Eq. (3) by 

defining the different stack positions on the ground plane, 

called stack x, stack y, the mass flow rate Q and the height of 

the stack H. 

The values of the vertical stability parameter were set 

according to the Pasquill atmospheric stability classes [21], 

which is the most commonly used method of classification of 

the turbulence in the atmosphere. According to this 

classification, there are six stability classes named A, B, C, D, 

E and F with class A being the most unstable or most turbulent 

class, and class F the most stable or least turbulent class. Each 

class is defined by meteorological conditions that are the 

surface wind speed, daytime incoming solar radiation and, 

night-time cloud cover. Solar radiation increases atmospheric 

instability through warming of the Earth surface so that warm 

air finds itself below cooler (and therefore denser) air, a 

situation that promotes vertical mixing. Clear nights push 

conditions towards stable as the ground cools faster 

establishing more stable conditions and inversions. Wind 

increases vertical mixing, breaking down any type of 

stratification and pushing the stability class towards neutral 

(D) [36]. Incoming solar radiation is classified as follows: 

strong (> 700 W/m2), moderate (350-700 W/m2), slight (< 350 

W/m2) [36]. 

In order to carry out a pollution dispersion analysis, firstly 

it is necessary to investigate the effects that the assumptions 

about wind direction have on dispersion of pollutants. Usually, 

the wind speed and the wind direction would be fed to the 

model after being determined by either observational data or 

from weather forecast. Then, it is possible to generate a 

synthetic dataset by either: (1) having the wind come from a 

constant direction; (2) having the wind come from a 

completely random direction and (3) having the wind come 

from a prevailing direction, with some variation either side.  

In the model in this study, a different approach was followed 

to describe the change of the standard deviations describing 

the plume thickness and width. Using a common approach, it 

is: 

 

𝜎𝑦 = 𝑎 ∗ 𝑥𝑏 (7) 

 

𝜎𝑧 = 𝑐 ∗ 𝑥𝑑 + 𝑓 (8) 

 

where, the a, b, c, d, e and f constants depend on the stability 

class and on the distance, i.e. they may be different for x values 

smaller or greater than 1 km [37]. 

 

2.3 The case study 

 

In this work the migration of pollutants from a real 

accidental fire occurred in Avellino on 13/09/2019 was studied 

with the dispersion stack model. 

The fire broke out in a company producing plastic 

containers for automotive batteries. A small part of 

polypropylene plastic components and many wooden pallets 

were burned. The starting point of the fire is inside the 

Avellino industrial development area (F in Figure 2). 

Aerosol particles originating from wood burning are 

predominantly in fine particle mode (PM2.5) [38] while the 

combustion of PP determines the presence of Pb, Cd and, Zn 

[39] in the fire smoke. In the model, however, it is assumed 

that the fire smoke is made of CO2 for 95% in mass and of 

PM2.5 for the remaining 5% and the corresponding value of 
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the emission factor e is assumed equal to 0.05 [40]. In fact, 

PM2.5 generally includes all the metals delivered by smoke 

fires. Concentrations of PM2.5 was measured by a fixed 

monitoring station (S1 in Figure 2) located at 4 km South-West 

from the fire. 
 

 
 

Figure 2. View of the area around Avellino (Italy) with the 

fire position (F) and the fixed monitoring stations (S1, A1, 

A2) 
 

This concentration data was used to evaluate the mass flow 

of the smoke cloud at its origin in the fire. In Avellino there 

are also two fixed monitoring stations (A1 and A2 in Figure 2) 

of the Regional Agency for the Environmental Protection 

(ARPAC) network providing data of the daily average 

concentrations. These data were used to verify the model 

predictions. 

 

 

3. RESULTS 

 
Time-series of the PM2.5 concentrations measured by the 

S1 station are reported in Figure 3. Inspection of the figure 

reveals a neat increase of PM2.5 after six hours from the fire 

start (at 1.45 pm), showing a peak of 41 µg/m3. During the 

night, from 18h to 6h of the next day the PM2.5 concentration 

fluctuates between 41-12 µg/m3. The instantaneous PM2.5 

values measured in the S1 station exceeded the threshold of 25 

µg/m3.  However, according to Table 1, the regulatory daily 

average limit, set to the same value by the Italian Law (D.Lgs. 

155/2010), was never exceeded. 

The PM2.5 concentration measured in real-time by the air 

quality monitoring station S1 after 12 hours was used as a 

reference value to infer the fire mass flow rate by applying the 

Gaussian Plume dispersion model. Subsequently, the best 

fitting value of the mass flow rate was used as an input to 

derive ta more complete concentration map at the ground for 

the Gaussian Plume dispersion model. The resulting model 

prediction values were compared with the values measured by 

the monitoring station A1 and A2. Then, to investigate the 

effect of the wind speed and the wind stability class on the 

pollutant dispersion, the Gaussian Plume model was applied 

for different conditions. 

In particular, the data used to calculate the average value 

after 12 hours are provided by the monitoring station every 3 

minutes. Data analysis of the distribution of measured values 

revealed that the interquartile range is 6 μg/m3 (the first 

quartile is 21 μg/m3, the median is 24 μg/m3, the third quartile 

is 27 μg/m3). As a result, due to the narrow range and the 

symmetric distribution during the 12 hours interval, the 

reference average value for the model was set equal to the 

median value of 24 μg/m3. 

 
 

Figure 3. Instantaneous concentrations of PM2.5 measured 

by S1 and PM2.5. Law limit follows the Italian Law, DLgs. 

155/2010 

 

Table 1. Daily average concentrations measured from 

13/09/2019 to 15/09/2019 in A1, A2, S1 

 

 PM2.5 daily average concentrations 

µg / m3 

Station\date 13/09/2019 14/09/2019 15/09/2019 

Arpac - Sc. V 

Circolo (A1) 
19.0 13.5 11 

Arpac - Scuola 

Alighieri (A2) 
17.6 10 10.4 

Sense Square (S1) 23.7 14.5 5.5 

 

To evaluate the mass of each of the two combustible 

materials burned, aerial pictures of the fire site were analysed. 

In fact, the fire occurred in the open-air deposit of the factory, 

where the materials were stocked. The number of wood pallets 

stocked in the area investigated was 1300. Considering that the 

weight of a single standard Epal pallet (UNI-EN 13698-1) is 

25 kg, the total weight of wood pallet burned was 3.2·104 kg.  

The amount of PP stocked was evaluated from the area 

occupied by the batteries containers that equals to about 2200 

m2. Considering a pile height of about 3 m, and the bulk 

density of the PP around 906 kg/m3 () and a void fraction of 

0.9, the total mass of the PP stocked is of 5.0·105 kg. As a 

result, a total of 5.3·105 kg of fuel burned during the fire for a 

period of about 12 h, corresponding to an average rate of 12 

kg/s. The equivalent stack height of the plume H was estimated 

equal to 75m, from visual inspection of pictures taken of the 

smoke column above the fire. 

During the fire the wind was blowing from North East and, 

therefore, moving towards South-West (225°), at 7 m/s. 

Therefore, in the case study, the position of the air sampling 

station S1, placed at 4000 m from the fire was on the northern 

side of the developed smoke plume at about 500 m from the 

plume axis. 

The experimentally measured mean concentration of 24 

µg/m3 was used in Eq. (6) to infer the mass flow rate of the 

pollutant to be used within the model. Considering that the 

latter value of particulate concentration was mainly measured 

during the night and that the measured wind speed was about 

7 m/s, the D stability class was assumed as a reasonable guess. 

A first order of magnitude estimate of the flow rate, to be used 

as a first guess for the subsequent steps was obtained by using 

Eq. (6). Afterwards, the best fitting mass flow rate value was 

obtained by minimizing the discrepancy between the measured 

value at the monitoring station S1. For this purpose, a 

numerical optimization algorithm was adopted. It was 

introduced a fixed orthogonal space reference system oriented 

with the 𝜉 axis in the north direction and the 𝜂 axis in the east 
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direction and with the origin at the fire place. Following this 

reference system, the coordinates of the S1 monitoring station 

are (- 4000, - 2200).  

The mass flow rate producing the best fitting concentration 

at the monitoring station is 665 g/s. Comparing this value with 

the burning rate of 12 kg/s above reported, we estimate an 

emission factor to particulate matter 𝑒 slightly larger than 5%. 

This value agrees with literature data [40]. 

Figure 4 reports the model results in terms of the 

distribution at the ground level of PM2.5 concentrations. At 

the monitoring station's position S1, the PM2.5 concentration 

evaluated by the model is 24.36 µg/m3, with an error of 1.5% 

respect to the measured value of 24 µg/m3. The maximum of 

the dust concentration is 950 µg/m3, and it is found at a 

distance of about 1800 m downwind the fire. Considering the 

other experimental measurement points (A1 and A2 in Figure 

4), it can be seen that the values estimated by the model are in 

agreement with those measured (average concentration of 

PM2.5 calculated as for station S1 and described above). In 

particular, at points A1 and A2, the estimated PM2.5 

concentration value differs from the measured one (19.6 µg/m3 

for A1 and 14.1 µg/m3 for A2) by 1.5% and 5.2%, respectively. 

The consistency of the experimental measurements with the 

values estimated by the model represents a further 

confirmation of the assumptions' validity.  

Figure 5 reports the ground level concentrations of PM2.5 

estimated with the model in other stability classes. These 

provide a picture of what might have happened in different 

times of the day. It appears that, for increasing air stability, the 

dispersion along the distance decreases, the ground level 

values tend to increase and the position with the highest 

pollutant concentration moves away from the fire. The 

interdependent play between decreased vertical and horizontal 

dispersion indicated that the conditions corresponding to an 

intermediate stability class would have provided the highest 

pollution concentration at the sampling station position. 

In order to assess the effect of the fire under different 

possible meteorological scenarios, by keeping constant the fire 

rate, the maximum PM2.5 concentrations and their 

corresponding positions were calculated for all three air 

stability conditions (A, C, E) and with different wind speeds 

of 3 and 15 m/s.  

 

 
 

Figure 4. PM2.5 concentrations at the ground level 

according to the Gaussian model for the neutral stability class 

 
Figure 5. PM2.5 plume dispersion in prevailing wind 

conditions at 7 m/s for: a) very unstable (A), b) slightly 

unstable (C), c) slightly stable (E) wind field 
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The results of these calculations, together with those of the 

base case reported above, are summarized in Table 2 and in 

Figure 6. Inspection of the tables and figures confirms that 

increasing the wind speed, the dispersion increases, as 

expected.  

At low speeds (3 m/s) (Figure 6a, 6b, 6c), the pollutant 

dispersion is limited, and the maximum concentration 

increases with increasing wind stability and is located at 

progressively greater distances. The pollutant dispersion is 

favoured by increasing the wind speed (15 m/s) (Figure 6d, 6e, 

6f). In fact, with the same wind stability, the maximum 

concentration decreases. In the model (e.g., see Eqns. (3) and 

(5)), the wind speed is at the denominator of the pre-

exponential factor; therefore, the ground concentration 

decreases with increasing speed considering similar conditions. 

It is questionable; however, if increasing the wind speed, the 

fire rate could have been kept constant, or instead, it would 

have increased, perhaps producing particulate matter at higher 

rates and, therefore, worsening the picture. The condition of 

atmospheric instability is characterized by low wind intensity, 

so the pollutants tend to disperse along the vertical direction 

and close to the source. Therefore, there is a significant 

vertical dilution and a poor lateral dispersion; the opposite 

phenomenon occurs with stable atmospheric conditions.  

 
Figure 6. PM2.5 plume dispersion in prevailing wind conditions at different wind intensity and stability classes: 3 m/s wind 

intensity for a) very unstable (A), b) slightly unstable (C), c) slightly stable (E) wind field; 15 m/s wind intensity for d) very 

unstable (A), e) slightly unstable (C), f) slightly stable (E) wind field 

437



Table 2. Maximum PM2.5 concentrations and corresponding 

position at variable wind speed and air stability 

 

WIND SPEED 

m/s 
3 7 15 

Stability class 
max  

µg/m3 

xmax 

m 

max  

µg/m3 

xmax 

m 

max  

µg/m3 

xmax 

m 

A 3.4e3 400 1.5e3 400 0.7e3 400 

B 3.4e3 600 1.4e3 600 6.7e2 400 

C 3.3e3 1000 1.4e3 1000 6.5e2 1000 

D 2.2e3 1800 9.5e2 1800 4.4e2 1800 

E 1.2e3 3600 0.5e2 3600 0.2e2 3600 

F 0.5e2 6000 0.2e2 6000 0.1e2 6000 

 

 

4. CONCLUSIONS 

 

A high time resolution monitoring station, located 4 km 

from a fire occurring in the industrial area of Avellino (Italy) 

on 13/09/2019, and 500 m aside from the downwind direction, 

collected air pollution data during the event. Results indicated 

that the fire did not negatively affect the air quality of the city 

centre. In fact, the daily average values of PM2.5 were never 

above the law limit. The fire was extinguished after many 

hours of work and its effect in the city centre were observed 

after a few hours from the fire beginning, with the measured 

concentration of PM2.5 in the range between 12 and 41 µg/m3. 

A single stack Gaussian Plume model approach was applied 

and validated with the available measurements to calculate the 

PM2.5 concentrations on the ground in a wide area downwind 

the fire location. Model results indicated that much higher 

ground level concentrations were produced during the fire, as 

high as 500 µg/m3. Different wind and air stability conditions 

could have worsened the fire effects. In particular, lower wind 

speed and greater air stability could have induced a potentially 

more significant danger for the population living in the area. 

This result highlight that a few pollutant measurement stations 

are insufficient to properly monitor an area or to provide 

validation data for any predicting model. For a better 

protection of the population exposed, installation of a denser 

network of high time resolution monitoring devices would 

allow a timely and a reliable report on the ground level for any 

fire position. 
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