
An Enhanced Algorithm for Memory Systematic Faults Detection in Multicore

Architectures Suitable for Mixed-Critical Automotive Applications

Abdullah El-Bayoumi1,2

1 Group of Electronic Expertise and Development Services (GEEDS), Valeo, Giza 12577, Egypt
2 Electronics and Electrical Communications Engineering Department, Cairo University, Giza 12613, Egypt

Corresponding Author Email: abdullah.elbayoumi@pg.cu.edu.eg

https://doi.org/10.18280/ijsse.100405 ABSTRACT

Received: 8 May 2020

Accepted: 10 July 2020

Evolution to multicore architectures has been trending, as a result of the shift towards the

nanoscale semiconductor industry. This lets multicore processor challenges arise in a way

limiting their features. In present, mixed safety-critical systems in the automotive industry

utilize multicore processors. These systems include a software code may reach millions

of line-of-code needed for an emerging autonomy level. This implies more design

complexity. Complying with ISO 26262 safety standard increases the complexity. This

work proposes new safety mechanisms that overcome memory interferences that affect

an Automotive Safety Integrity Level (ASIL) multicore architecture. New optimized

double inverse redundant storage algorithms are presented to mitigate systematic memory

data faults. Other safety mechanisms are introduced to overcome random faults in a

memory. The proposed safety mechanisms have been investigated and evaluated for Aurix

Tri-core and Renesas RH850 targets with lots of suggestions to have a fully compliant

architecture with principles and methods of ISO 26262. Monte Carlo analysis has been

performed for the proposed safety mechanisms diagnostic coverage which exceeds 99%

considered as high.

Keywords:

functional safety, real-time operating system,

multicore processor, memory protection,

freedom from memory interference, fault-

tolerance, safety mechanism, reliability

1. INTRODUCTION

Over the decades, functional safety became a crucial aspect

in the development of mixed-critical systems for various

industrial applications that include aerospace applications [1]

complied with DO 178 standard, and automotive applications

[2] complied with ISO 26262 standard for road vehicles [3].

ISO 26262 regulates mixed safety-critical systems with the

Automotive Safety Integrity Level (ASIL), to enhance systems

reliability, modularity, maintainability, portability and

flexibility and for cost-reduction purposes [4]. These critical

systems practically operate on real-time single-core/ multicore

processors, as represented in Figure 1, in which they must

meet their critical deadline tasks, otherwise a hazardous event

would reach the end user. They have been evolving, as a result

of the semiconductor evolution of the gigahertz era to the

nanoscale level for the sake of a desired performance-power

ratio [5].

Mixed safety critical systems have been affecting with the

coexistence, where software components (SWCs), even their

sub-functions, usually have mixed-ASIL. Hence, interferences

from Quality Management (QM) or lower-ASIL SWCs will be

introduced [6-9]. They may corrupt higher-ASIL safety-

related SWCs by means of information exchange interference,

memory interference, real-time interference, and shared

peripheral interference as represented in Figure 2.

Consequently, safety mechanisms as single/ multi order

detection and reaction mechanisms of the safety-critical data,

have been leveraged and trending to prevent interferences that

might lead to a safety goal violation. Their main purpose is for

faults detection and for controlling system failures, enough to

achieve and/ or maintain a safe state at a predefined time, less

than fault time tolerant interval (FTTI) [10]. The unwise

development of such mechanisms leads to a high development

cost, and an overhead on the system performance as well.

Multicore processors face many challenges, presented in the

study [9], to overcome. Optimizing inter-core resource sharing

distributed among SWCs minimizes the computing power by

avoiding wait-states concurrent accesses to the shared

resources with the expense of independent data processing and

parallelization losses [11]. Software applications run with

different criticality such as: scheduling, sharing computation,

concurrent resource sharing, memory inter-core

communication, communication delays, communication links,

and communication resources. These issues become

challenges at an operating system (OS) level in today’s

multicore architectures [12, 13].

Figure 1. Multicore architecture block diagram

International Journal of Safety and Security Engineering
Vol. 10, No. 4, August, 2020, pp. 467-474

Journal homepage: http://iieta.org/journals/ijsse

467

https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.100405&domain=pdf

Figure 2. Example of freedom from interferences due to

information exchange interference, memory interference and

shared peripheral interference

Although multicore processors have clear potentials to

produce real-time efficiently and more parallelized features

with a high return of their investment [11], ISO 26262 arises

functional safety methods and mechanisms at the expense of

the functional system efficiency especially if the examined

system includes a multicore architecture. ISO 26262 provides

many architectural and design requirements methods assure

that the examined system operates in a safe state (i.e. degraded

mode) by aborting various propagation faults, if erroneous

values affect critical signals (even related to calibration data)

[14].

ISO 26262 guarantees Freedom from Interference (FFI), in

which the separation mechanism must always adhere to the

involved highest ASIL SWC. The main goal is that a safety

code execution cannot be corrupted by a non-safety code. This

means assuring the critical signals flow through SWCs with

the desired protection from lower ASIL or QM interfering

SWCs that would affect the data correctness. Software

architectures including communication interfaces must be

developed with this required protection level, accordingly.

In general, there is at least one critical path represents the

data flow of a critical signal, from input conditions to the

output root-cause, in a safety-related software architecture. It

is represented in the critical path analysis of a software design

that also includes mixed-ASIL SWCs interferences. In the

critical path, it is sufficient to have specific ASIL SWCs that

detect and react to means of cascading software/ hardware

failures to mitigate inevitably an undesirable event

propagation that might lead to a safety goal violation. ASIL

SWCs data contain interfering QM SWCs failures. Hence, no

safety efforts are needed in QM SWCs with the expense of a

CPU overhead and an architecture optimization.

Software data faults may corrupt either memory (i.e.

Random Access Memory (RAM), Flash, EEPROM, hardware

registers, Direct Memory Access (DMA)), or initialization

data or calibration data (i.e. in pre-compile, link-time, and

post-build). They may affect logical data processing and data

transmission among SWCs (in inter/ intra Electronic Control

Unit (ECU) communication).

Memory data integrity faults affect present multicore

processor performance capabilities. The memory interference

is illustrated by means of memory faults as:

(1) Non-safe arithmetic pointer performed by lower-

ASIL SWC that may cause unintended modification of critical

data stored in memory; or

(2) Non-safe concurrent access of unions shared among

mixed-ASIL SWCs; or

(3) Non-safe dynamic memory allocation may cause an

unintended modification of critical data stored in the heap area

operated by lower-ASIL SWCs; or

(4) Stack segment overflow resulted from the worst case

consumption of lower-ASIL interrupts/ tasks into the segment/

private data area stack allocated to tasks/ interrupts of higher-

ASIL SWC (i.e. it also exceeds the tolerated margin); or

(5) Shared Non-Volatile Memory (NVM) blocks among

mixed-ASIL SWCs in which a lower-ASIL SWC may delete

its data in a way causes improper erase of NVM area allocated

to higher-ASIL SWCs; or

(6) Out-of-bounds array accesses performed by a lower-

ASIL SWC that may cause corruption of private data of a

higher-ASIL SWC.

Only real-time interferences, due to timing faults, OS faults,

and sequence faults, are discussed in the study [11] with

possible solutions that mitigate the real-time multicore

processor challenges into efficient architectures complied with

ISO 26262. Conventional state-of-the-art memory interference

protection mechanisms have been introduced in the literature

[15]. They examine limited number of memory faults of

single/ multicore processors.

This work is unprecedented and sets the basis for future

development and discussions. The main contribution of this

work is to provide software architecture emphasized with the

compliance to ISO 26262 FFI methods and principals to detect

and react to all possible means of memory corruption failures

for sophisticated and complex multi-layered-cache multicore

architectures, including AUTOSAR [16]. This paper also

provides new algorithms related to safety design mechanisms

implemented and examined on many microcontroller targets

(Aurix, Renesas, and NXP). It also proposes all required

safety-related configuration for memory protection

mechanisms.

The rest of the paper is organized as follows. Section 2

represents means of proposed spatial protection mechanisms

as double inverse redundant storage algorithms. They are

supportive methods for freedom from memory interference

challenges for memory systematic faults. While Section 3

shows the hamming distance for the random faults detection.

Moreover, section 4 introduces measurement results

represented as a Monte Carlo analysis to show the

effectiveness of the proposed mechanisms held on several

platforms. Finally, a conclusion is provided in Section 5.

2. PROPOSED DESIGN ALGORITHM AND ANALYSIS

FOR SYSTEMATIC MEMORY FAULTS PAGE SETUP

Safety is one of the key issues in the development of road

vehicles. Development and integration of automotive

functionalities strengthen the need for functional safety and

the need to provide evidence that functional safety objectives

are satisfied. When considering software driven embedded

systems, such as automotive ECUs, interference can happen at

various levels. The software of a component can access and

manipulate another component by writing faulty data into the

memory allocated to the other component (data flow).

The memory interference section of ISO 26262-6 [3] Annex

D.2.3 illustrates that safety measures such as memory

protection, parity bits, error-correcting code (ECC), cyclic

redundancy check (CRC), redundant storage, restricted access

to memory, static analysis of memory accessing software and

static allocation can be used. However, it lacks of appropriate

468

verification methods as detailed safety analysis to identify

critical memories that protection mechanisms are used for.

This arises the aim of introducing enhanced modified

detection and reaction mechanisms for such memory faults.

In spatial protection, a non-safety code is forbidden to have

authorized access rights on a safety-related data. Such granted

permissions to the non-safety code would interpret many faults

such as: systematic deterministic faults that obligate memory

safety measures to be eliminated, and random faults that reveal

due to hardware abnormal conditions, happen according to the

hardware probability distribution, which produce intermittent,

permanent and transient faulty element. These faults could

produce memory content corruption, an overflow/ underflow

to the memory stack, unauthorized access rights to another

SWC memory and data inconsistency. Various safety

mechanisms are presented to detect the systematic faults,

based on the system ASIL level.

Figure 1 interprets a dual-core architecture with a high-

speed communication path illustrated as Interconnect with a

shared L3 cache. The L3 cache is shared with a memory

controller via the Memory Protection Unit (MPU), and also

with all physical cores and logical cores, if exist for high power

and performance efficiencies. Each physical core has an

individual L2 cache.

For a faster simultaneous multi-threading OS, each core has

its private instruction and data L1 cache, as well as the shared

memory controllers placed among all physical cores.

Moreover, there is no inherited timing interferences among the

cores. Each core has redundant 9 banks of 5 registers (control,

status, address and error information registers) linked to

hardware safety units. Therefore, the architecture includes a

safe hardware error reporting mechanism for: uncorrected

errors, uncorrected recoverable errors, and corrected errors.

All cores are interconnected with buses, crossbars, meshes

and typical routed communication structures. To have a

coherent system, interconnect accesses require arbitration

accesses from the other cores due to the utilized architecture

memory hierarchy defined as (L1, L2 and L3) caches per each

core. Furthermore, additional core communication is required,

since the L1 cache data of a core may be old as this data is

renewed either in the L1 cache of another core, or in the

memory controller.

One of the preferred safety mechanisms for the systematic

faults and shall be applicable for systems with ASIL-A or

higher is the double inverse redundant storage with majority

voting and with error detection codes. The double inverse

storage is a modified multiple copies mechanism, which is

used to compare XORed data copies of stored in different

blocks and fix corruption in critical RAM data of higher-ASIL

SWCs caused by lower-ASIL SWCs.

Although the redundant storage mechanism is not new,

many new modifications are introduced to have an efficient

systematic faults detection and reaction than the conventional

mechanism. This is provided by introducing many layers of

error detection mechanism in a read/ write data algorithms

sufficient to produce an effective diagnostic coverage.

The error detection codes can be used to detect corruption

in NVM data or even communication messages higher-ASIL

SWCs caused by lower-ASIL SWCs. Cyclic Redundancy

Code (CRC), checksum, and parity bits are means of the error

detection codes. This code is calculated and compared with the

error detection code attached with the message/ stored within

NVM block. If they are not identical, this indicates message

data is corrupted.

On top of that, the upper-layered mechanism of the double

inverse storage is also used to detect and recover critical data

corruption that may happen due to unauthorized access write.

Algorithm 1. Enhanced Double Inverse Redundant Storage

Mechanism for a Read Operation.

Input. BlkAdd1, BlkAdd2, BlkAdd3, MemRowCRC[], Data[]

Output. ReadDataFlag

1: while (ECU is power-up) do

2: if (ReadRequest()) then

3: if ((MemRowCRC[BlkAdd1] is invalid) ||

4: (MemRowCRC[BlkAdd2] is invalid) ||

5: (MemRowCRC[BlkAdd3] is invalid)) then

6: /* Validate the CRC of each row memory blo-

7: ck contain aimed data address */

8: NumberOfReadFaultTrials++; /* RamTst

9: SWC is priodically validating this variable */

10: ReadDataFlag = 0x11; /* corresponding

11: fault with hamming distance*/

12: SetRecoveryModeOption(ReadDataFlag);

13: /* recovery mode is based on the read corrup-

14: tion type */

15: break(); /* repeat memory read */

16: else if ((CRC(Data[BlkAdd1]) is invalid) ||

17: (CRC(Data[BlkAdd2]) is invalid) ||

18: (CRC(Data[BlkAdd3]) is invalid)) then

19: /*consistency check of data CRC in each

20: memory block*/

21: NumberOfReadFaultTrials++;

22: ReadDataFlag = 0xEE; /* not verified */

23: SetRecoveryModeOption(ReadDataFlag);

24: break (); /* repeat memory read */

25: else if ((Data[BlkAdd1] != ~Data[BlkAdd2]) ||

26: (Data[BlkAdd1] !=~Data[BlkAdd3]) ||

27: (Data[BlkAdd2] != ~Data[BlkAdd3])) then

28: /* check whether data in each address eq-

29: uals to its redundant double inverse in ot-

30: her memory blocks */

31: NumberOfReadFaultTrials++;

32: ReadDataFlag = 0xDD;

33: SetRecoveryModeOption(ReadDataFlag);

34: break(); /* repeat memory read */

35: else () then

36: Read data from any address in any redundant

37: block nearest to the program counter;

38: ReadDataFlag = 0x22; /*verified data read*/

39: end if

40: end if

41: end while

It should be restricted to very safety-critical data with

following criteria:

(1) A single variable corruption shall lead directly to a

violation of safety goals;

(2) No other plausibility checks available to detect such

data corruptions, and

(3) A variable is updated in event-based style (i.e. no

periodic calculation and update), and

(4) The variable update is very slow (i.e. a not allowed

proper recovery mechanism within FTTI).

In contrast, the multiple copies safety mechanism increases

the RAM consumption, the Flash consumption and the CPU

load. The main reason is that, during the operation, if the

redundancy check is performed not directly before read usage,

then the increased time in between data read and data usage

poses a higher risk of corruption due to a faulty ISR, a task

469

interruption or a RAM memory corruption. Hence, it cannot

be utilized to protect all the data within a software code.

Similarly, it is not preferred to protect the stack area, or large

buffers. In addition, it shall not be used to detect random

hardware faults in RAM.

One or more redundant copies of safety critical variables

should be stored separately in physical memory only in ASIL-

D systems. The selection of proper storage methods to

minimize the probability of damage to all copies is very

important for significantly improving the safety of stored data.

Since this proposed mechanism is not preferred in lower-ASIL

systems due to the high cost of implementation. Thus, it’s fine

to have the data in the same physical memory as long they are

separated logically in the memory with suitable erroneous

detection and reaction mechanisms.

An initial solution is illustrated as follows: a multiple copies

mechanism shall be performed in the main SWC responsible

of invoking the tasks that utilize the aimed data to read/ write.

Besides, a more optimized time solution reveals in checking

the redundant data copies in the OS PreTaskHook protection

capability. The calling ASIL SWC shall validate multiple

copies that belong to each safety-critical task. Then, the

redundant storage mechanism shall be executed from

PreTaskHook for each safety-critical task. Finally, an update

to the multiple copies is held in the OS PostTaskHook

protection capability. In order to optimize the execution time

of the PreTaskHook and to be able to test large complex, CRC

or checksum codes shall be incorporated for critical data

verification all at once, instead of checking individual critical

data separately.

Algorithm 1 and Algorithm 2 represent the double inverse

redundant storage mechanisms for read and write operations,

respectively. They perform multi-layered verifications before

data read and write accordingly. In this enhanced mechanism,

one or more redundant copies of the safety-critical variables

are stored in physically separated memory locations to

minimize the chance in which all copies are corrupted.

Original data and the corresponding copies shall contain the

value and its inverse, accordingly to increase hamming

distance and to decrease the percentage of failure. All copies

of a section that includes critical data, stored in different

memory blocks shall be updated together, if the original data

get updated. Meanwhile, the address of an object with

automatic storage shall not be assigned to another object that

may persist after the first object has ceased to exist.

Thus, data copies shall be checked periodically, to point

usage within the software code so as to minimize the change

for a false detection. In other words, read-back of NVM blocks

can be used by a higher-ASIL SWC to ensure that such blocks

are written correctly by lower-ASIL NVM stack, given that the

calculation of the error detection codes are verified. In addition

to cover hardware/ software faults that may result from lower-

ASIL device drivers, commands feedback shall be read and

compared to the requested commands. This ensures correct

application of critical commands by detecting such deviations

of improper commands requested by lower-ASIL SWCs.

Before using the data copies, a check for consistency occurs.

The read original data with its CRC code placed according to

a specific polynomial equation are compared against the stored

corresponding ones. If the stored data or its CRC are corrupted,

the redundant data are checked with its redundant memory

blocks. In case of inconsistency, a proper recovery action is

activated such as performing a majority voting among

redundant memory sections.

If more data memory blocks are correct (including critical

data and CRC), it will be used to update the minor corrupted

stored data and its CRC. If the majority stored data is corrupted

another possible recovery mechanism as a microcontroller

reset to refresh the corrupted blocks with using default safe

values with their correct generated CRC. If an overlay area is

used, the tasks using this area shall be mutually exclusive.

This reveals there is a need of:

(1) At least 2 copies if the recovery mechanism is

relevant only for reset and restore defaults of a non-safety

original value; and

(2) At least 3 copies shall be stored, in case of a recovery

of safety-related original value.

Static analysis tools (i.e. Polyspace, KlocWork or QAC),

that check software code compliance to MISRA rules, shall be

used to detect possible errors (i.e. a null pointer access, control

pointer handling, out-of-bound array access, division over zero,

variable overflow, wrong bitwise operation, unreachable ASIL

code statements) that may lead to corrupt critical variables. For

corruption reduction, array indexing shall be the only allowed

form of pointer arithmetic. Before the data read-write, the

multi-layer verification shall be performed, but this would

inevitably lead to the reduction of the read-write speed as an

expense of capturing the systematic faults. The fact that

introducing safety mechanisms to have a fully compliant

design with ISO 26262 affects the road vehicle functionality.

In summary, Algorithm 1 behaves as follows:

(1) It verifies if the CRC of the complete row in RAM,

that contains the physical address of the aimed data read of the

original block and the corresponding redundant blocks, is valid;

(2) It verifies if the contained CRC field included in the

aimed data read is valid for all redundant memory blocks; and

(3) It verifies if the redundant data in other memory

blocks stored as double inverse of their original containing

memory block.

If all verifications are performed, then the read operation

shall be performed successfully. If any of those verifications

fail, a corresponding flag status is raised and the recovery

mechanism will be immediately fired, accordingly.

Meanwhile, Algorithm 2 behaves as follows:

(1) It verifies if the CRC of the complete row in RAM,

that contains the physical address of the aimed data read of the

original block and the corresponding redundant blocks, is valid;

(2) It performs the write operation from the DataBuffer

for each redundant memory block;

(3) It verifies whether written data and their containing

CRC equal to the requested data (including CRC) in the

DataBuffer for each block;

(4) It performs the write consistency checks among

redundant blocks after the write operation as it verifies if the

contained CRC field included in the aimed data read is valid

for all redundant memory blocks; and

(5) It verifies if the redundant data in other memory

blocks stored as double inverse of their original containing

memory block.

If all verifications are performed, then the write operation

shall be performed successfully. If any of those verifications

fail, a corresponding flag status is raised and the recovery

mechanism will be immediately fired, accordingly.

One or more redundant copies of safety or security critical

variables should be stored separately in physical memory. The

selection of proper storage methods to minimize the

probability of damage to all copies is very important for

significantly improving the safety or the security of stored data.

470

Algorithm 2. Enhanced Double Inverse Redundant Storage

Mechanism for a Write Operation.

Input. BlkAdd1, BlkAdd2, BlkAdd3, MemRowCRC[], Data[],

DataBuffer[]

Output. WriteDataFlag

1: while (ECU is power-up) do

2: if (WriteRequest(DataBuffer[])) then

3: if ((MemRowCRC[BlkAdd1] is invalid) ||

4: (MemRowCRC[BlkAdd2] is invalid) ||

5: (MemRowCRC[BlkAdd3] is invalid)) then

6: /* Validate the CRC of each row memory blo-

7: ck contain aimed data address */

8: NumberOfWriteFaultTrials++; /* RamTst

9: SWC is priodically validating this variable */

10: WriteDataFlag = 0x11; /* corresponding

11: fault with hamming distance*/

12: SetRecoveryModeOption(WriteDataFlag);

13: /* recovery mode is based on the write corru-

14: ption type */

15: break(); /* repeat memory write */

16: end if

17: Data[BlkAdd1] = DataBuffer[BlkAdd1]);

18: /* write variable on its redundant storage */

19: Data[BlkAdd2] = DataBuffer[BlkAdd2]);

20: Data[BlkAdd3] = DataBuffer[BlkAdd3]);

21: /*verify data read after write to verify back*/

22: if ((Data[BlkAdd1] != DataBuffer[BlkAdd1]) ||

23: (Data[BlkAdd2] != DataBuffer[BlkAdd2]) ||

24: (Data[BlkAdd3] != DataBuffer[BlkAdd3]) then

25: NumberOfWriteFaultTrials++;

26: WriteDataFlag = 0x77;

27: SetRecoveryModeOption(WriteDataFlag);

28: break(); /* repeat memory write */

29: else if ((CRC(Data[BlkAdd1]) !=

30: CRC(DataBuffer[BlkAdd1]) ||

31: (CRC(Data[BlkAdd2]) !=

32: CRC(DataBuffer[BlkAdd2]) ||

33: (CRC(Data[BlkAdd3]) !=

34: CRC(DataBuffer[BlkAdd3])) then

35: NumberOfWriteFaultTrials++;

36: WriteDataFlag = 0x88;

37: SetRecoveryModeOption(WriteDataFlag);

38: break(); /* repeat memory write */

39: else () then

40: Free(DataBuffer[]); /*verified write operation*/

41: end if

42: /* Do as same as Algorithm 1 row#16 to verify

43: write consistency over the memory blocks */

44: if ((CRC(Data[BlkAdd1]) is invalid) ||

45: (CRC(Data[BlkAdd2]) is invalid) ||

25: (CRC(Data[BlkAdd3]) is invalid)) then

26: /*CRC consistency check after write*/

28: NumberOfWriteFaultTrials++;

29: WriteDataFlag = 0xEE; /* not verified */

30: SetRecoveryModeOption(WriteDataFlag);

31: break (); /* perform memory consistency */

32: else if ((Data[BlkAdd1] != ~Data[BlkAdd2]) ||

33: (Data[BlkAdd1] != ~Data[BlkAdd3]) ||

34: (Data[BlkAdd2] != ~Data[BlkAdd3]) then

35: /* check whether data in each address eq-

36: uals to its redundant double inverse in ot-

37: her memory blocks */

38: NumberOfWriteFaultTrials++;

39: WriteDataFlag = 0xDD;

40: SetRecoveryModeOption(WriteDataFlag);

41: break(); /*repeat memory consistency*/

42: else () then

19: WriteDataFlag = 0x22; /*verified data Write*/

20: end if

21: end if

44: end while

3. PROPOSED DESIGN ALGORITHM AND ANALYSIS

FOR RANDOM FAULTS IN RAM

A key issue in designing any error correcting code is making

sure that any two valid code words are sufficiently dissimilar

so that corruption of a single bit (or possibly a small number

of bits) does not turn one valid code word into another. To

measure the distance between two code words, we just count

the number of bits that differ between them. If we are doing

this in hardware or software, we can just XOR the two code

words and count the number of 1 bits in the result. This count

is called the Hamming distance.

Implementing the hamming distance as a safety mechanism

addresses random hardware faults in RAM, undetectable error,

bi-symmetric inversion bit (bit flipping) and burst errors in

systems with ASIL-A criticality or higher. High level of

hamming distance shall be applied to critical data, critical

state-machine, coding with true/ false patterns, enumerator

type declarations, memory blocks CRC, validity flags and

defined constants. In this mechanism, the number of

complementary bits between 2 adjacent states (true, or false)

should be greater than 4. Thus, it is preferred to have the 2

complementary states of a critical variable as: A5, 5A or 69,

96 accordingly. Software tools may be used to detect the

required hamming value if a variable includes higher states.

Although Algorithm 1 and Algorithm 2 target systematic

faults in RAM, random faults might occur in such local

variables in those algorithms. Thus, hamming distance

mechanism is a cost-reduction safety implementation needed

for the variables ReadDataFlag and WriteDataFlag.

In Algorithm 1, ReadDataFlag has 4 states (represent failure

modes), as shown in Table 1, as follows: {0x11, 0xEE, 0xDD,

0x22}. The highest hamming distance is among {0x11, 0xEE},

{0x22, 0xDD} by 8-bit differences. On the other hand, the

lowest hamming distance is among {0x11, 0xDD}, {0x01,

0x22}, {0xEE, 0x22}, {0xEE, 0xDD} by 4-bit differences. In

Algorithm 2, WriteDataFlag has 6 states (represent failure

modes), as shown in Table 2, as follows: {0x11, 0xEE, 0xDD,

0x22, 0x77, 0x88}. The highest hamming distance is among

{0x11, 0xEE}, {0x22, 0xDD}, {0x77, 0x88} by 8-bit

differences. On the other hand, the lowest hamming distance

is among {0x11, 0xDD}, {0x01, 0x22}, {0xEE, 0x22}, {0xEE,

0xDD}, {0x11, 0x77}, {0x11, 0x88}, {0xEE, 0x77}, {0xEE,

0x88}, {0xDD, 0x77}, {0xDD, 0x88} , {0x22, 0x77}, {0x22,

0x88} by 4-bit differences.

Table 1. Algorithm 1 ReadDataFlag hamming distance states

State Failure

mode

Definition

(00010001)b A A fault pre-read operation due to initial

invalid memory blocks CRC

(11101110)b B A fault read-verification operation due

to inconsistent memory blocks CRC

(11011101)b C A fault read-verification operation due

to inconsistent memory blocks data

(00100010)b D A verified data read operation

471

Table 2. Algorithm 2 WriteDataFlag hamming distance

states

State Failure

mode

Definition

(00010001)b

A A fault pre-write operation due to initial

invalid memory blocks CRC

(11101110)b B A fault write-verification operation due

to inconsistent memory blocks CRC

(11011101)b C A fault write-verification operation due

to inconsistent memory blocks data

(00100010)b D A verified data write operation

(01110111)b E A fault write operation due to

inconsistent memory block data after-

write and data buffer

(10001000)b F A fault write operation due to

inconsistent memory block CRC after-

write and data buffer CRC

4. MEASUREMENT RESULTS

The proposed safety mechanisms have been evaluated and

verified for Aurix Tri-core and Renesas RH850 targets to

assess to have a fully compliant architecture with principles

and methods of ISO 26262.

Failure Mode and Effect and Diagnostic Analysis

(FMEDA) and the Fault Tree Analysis (FTA) are

recommended by ISO 26262 Part 5 [3] as they are the most

widely used quantitative safety analysis techniques in the

automotive industry. In any quantitative analysis, “Diagnostic

Coverage (DC)” of the safety mechanisms is a crucial

parameter that affects the final safety metrics. The diagnostic

coverage is a measure of effectiveness of the diagnostics

implemented in the system. Mathematically, it is the ratio of

the failures detected and/or controlled by a safety mechanism

to the total failures) in the element. Failure modes ranged from

A to F as represented in Table 1 and Table 2.

Determining the diagnostic coverage in practice is not

trivial. To simplify the process, ISO 26262 provides a “starting

point” for estimating the DC values of a safety mechanism

based on their applicability to a system. They are classified as

Low (60%), Medium (90%) and High (99%) diagnostic

coverage. The safety mechanisms are classified to these

corresponding levels (low, medium, high) depending on

factors varying from:

(1) Variations in the source of the fault type detected by

the diagnostic.

(2) Specific implementation of a safety mechanism

technologies implemented in the system

(3) The execution timing of the safety mechanism with

respect to the FTTI.

KDC = ∑ (X × KFMC,x) (1)

Eq. (1) represents the diagnostic coverage of the proposed

safety mechanisms (KDC), where X is the failure mode

distribution for a failure mode x. This x equals the values in

range of A ~ D, as per Table 1 and in range of A ~ F, as per

Table 2. KFMC,x is the failure mode coverage of the failure

mode x.

To have an efficient normal distribution, Monte Carlo

analysis has been performed for the proposed designed

diagnostic coverage that is corresponding to all related failure

modes as discussed in Table 1 for the Algorithm 1 and in Table

2 for the Algorithm 2 to assess the proposed design robustness

in case of memory systematic faults and random faults in

RAM variations. Figure 3 shows that the mean diagnostic

coverage which is around > 99% (High) by adding SWC stubs

to simulate each failure mode. Table 3 represents the DC for

both algorithms for the different failure modes to validate the

effectiveness of the proposed mechanisms at 1000 number of

samples of measurement runs held on several platform targets.

Figure 3. Histogram of Monte Carlo analysis for the

proposed safety mechanisms diagnostic coverage for 1000

samples of execution runs

Table 3. Typical diagnostic coverage (DC) including Monte

Carlo mismatches for all failure modes affect Algorithm 1

and Algorithm 2

Failure mode Algorithm 1 DC Algorithm 2 DC

A 99.1043% 98.9736%

B 99.8089% 99.2541%

C 99.6089% 99.2478%

D 99.8702% 99.6311%

E 100% 99.5277%

F 100% 99.5143%

The worst case DC takes place at the failure mode A in

Algorithm 2 by 98.9736%. This means that the Algorithm 2

can detect 989.73 out of possible 1000 potential systematic

faults due to interfered QM or lower-ASIL SWCs to higher-

ASIL SWC.

5. CONCLUSION

In this paper, memory interference challenges of multicore

architectures for autonomous driving applications have been

explored, leveraged, analyzed and mitigated. Furthermore,

various novel solutions design and their relevant configuration

are proposed, to present complex architectures designs to be

compliant with the ISO 26262 methods and principals based

on the examined system architecture ASIL. The proposed

safety mechanisms target memory data integrity faults

detection and immediate reaction mechanisms, enough to let

the system behave in the safe state before the defined FTTI.

Memory faults are categorized as systematic faults, and

random hardware faults that produce intermittent, permanent

and transient faulty element. These faults are represented as a

result of non-safe accesses (of arithmetic pointer, unions,

472

dynamic memory allocation, out-of-bound array, shared NVM,

blocks, stack segment) to the memory area contained by ASIL

SWC. These faults could produce memory content corruption,

an overflow/ underflow to the memory stack, unauthorized

access rights to another SWC memory and data inconsistency.

Stack-monitoring mechanism is recommended to minimize

such critical data failures. Logically related safety data shall

be included in a critical section to ensure consistency data so

as not to be accessed atomically and to be only used by higher-

ASIL SWCs (i.e. senor readings and sensor status shall be read

together, otherwise we can't ensure if sensor readings are

correct).

Multiple copies, and double inverse redundant storage

design mechanisms are presented with new modified

algorithms to mitigate the CPU load and memory consumption.

They are introduced as a means of faults detection, with new

enhanced design configurations, placed in Aurix Tri-core,

NXP Freescale MPC and Renesas RH850 platforms, to

mitigate systematic memory data integrity faults. As they are

considered software configuration to hardware features,

another mechanism is proposed to overcome such limitation.

Diagnostic coverage has been measured with the support of

the failure modes occurrence variations as a result of Monte

Carlo analysis which shows that the DC of the proposed design

mechanisms exceeds 99% as a worst case scenario.

Another safety mechanism, hamming distance, is proposed

to contain random hardware faults in RAM such as. Various

methods of fault reaction are introduced to fulfill the presented

safety detection mechanisms strategy. Refreshment to the

NVM memory blocks if there is a memory corruption. OS

features as the OS protection hooks shall be used to enhance

the reaction efficiency.

From the perspective of vehicle safety, this proposes a new

optimized dual inverse redundant storage algorithm to

alleviate system safety storage data failures, and introduces

other safety mechanisms to deal with random safety failures in

the memory. This has been verified in the practical cases, fully

in line with the ISO26262 safety standard.

ACKNOWLEDGMENT

The work presented here has been partially carried out for

the framework of autonomous driving applications

architectures, which are supported by the Research and

Development Center of Valeo Egypt.

REFERENCES

[1] El-Bayoumi, A., Salem, M., Khalil, A., El-Emam, E.

(2015). A new Checkout-and-Testing Equiment (CTE)

for a satellite telemetry using LabVIEW. 36th IEEE

Aerospace Conference, Big Sky, MT, pp. 1-9.

https://doi.org/10.1109/AERO.2015.7119305

[2] Casarsa, M., Harutyunyan, G. (2019). Case study and

advanced functional safety solution for automotive SoCs.

2018 IEEE International Test Conference (ITC), Phoenix,

AZ, USA, pp. 1-8.

https://doi.org/10.1109/TEST.2018.8624740

[3] ISO 26262:2018- Road Vehicles - Functional Safety –

Part 1–12. https://www.iso.org/standards.html, accessed

on Dec., 2018.

[4] Wei, Y., Le, Y., Xie, G., Zhang, L. (2019). Development

cost optimization for multi-functional mixed-criticality

embedded systems. IEEE Access, 7: 88949-88959.

https://doi.org/10.1109/ACCESS.2019.2925048

[5] El-Bayoumi, A., Mostafa, H., Soliman, A. (2016). A

novel MIM-capacitor based 1-GS/s 14-bit variation-

tolerant fully-differential VTC circuit. World Scientific

Journal of Circuits, Systems and Computers, 26(5): 1-35.

https://doi.org/10.1142/S0218126617500736

[6] Su, F., Goteti, P., Zhang, M. (2019). On freedom from

interference in mixed-criticality systems: A causal

learning approach. 2019 IEEE International Test

Conference (ITC), Washington, DC, USA, pp. 1-10.

https://doi.org/10.1109/ITC44170.2019.9000160

[7] Goebel, A., Mader, R., Tripon, O. (2017). Performance

and freedom from interference - a contradiction in

embedded automotive multi-core applications? 2017

IEEE 30th International Conference on Architecture of

Computing Systems (ARCS), pp. 1-9.

[8] Zimmer, B., Dropmann, C., Hänger, J.U. (2014). A

systematic approach for software interference analysis.

2014 IEEE 25th International Symposium on Software

Reliability Engineering, Naples, pp. 78-87.

https://doi.org/10.1109/ISSRE.2014.12

[9] Xie, G., Zeng, G., Li, R. (2020). Safety enhancement for

real-time parallel applications in distributed automotive

embedded systems: A stable stopping approach. IEEE

Transactions on Parallel and Distributed Systems, 31(9):

2067-2080.

https://doi.org/10.1109/TPDS.2020.2984719

[10] Schliecker, S., Negrean, M., Ernst, R. (2009). Response

time analysis on multicore ECUs with shared resources.

IEEE Transactions on Industrial Informatics, 5(4): 402-

413. https://doi.org/10.1109/TII.2009.2032068

[11] Mutlu, O., Moscibroda, T. (2009). Parallelism-aware

batch scheduling: Enabling high-performance and fair

shared memory controllers. IEEE Micro, 29(1): 22-32.

https://doi.org/10.1109/MM.2009.12

[12] Iturbe, X., Venu, B., Jagst, J., Ozer, E., Harrod, P., Turner,

C. (2018). Addressing functional safety challenges in

autonomous vehicles with the arm TCL S architecture.

IEEE Design & Test Magazine, 35(3): 7-14.

https://doi.org/10.1109/MDAT.2018.2799799

[13] Martin, H., Winkler, B., Grubmüller, S., Watzenig, D.

(2019). Identification of performance limitations of

sensing technologies for automated driving. 2019 IEEE

International Conference on Connected Vehicles and

Expo (ICCVE), Graz, Austria, pp. 1-6.

https://doi.org/10.1109/ICCVE45908.2019.8965181

[14] Sini, J., Violante, M., Dodde, V., Gnaniah, R., Pecorella

L. (2019). A novel simulation-based approach for ISO

26262 hazard analysis and risk assessment. 2019 25th

IEEE International Symposium on On-Line Testing and

Robust System Design (IOLTS), Rhodes, Greece, pp.

253-254. https://doi.org/10.1109/IOLTS.2019.8854385

[15] Koser, E., Berthold, K., Pujari, R.K., Stechele, W. (2016).

A Chip-level Redundant Threading (CRT) scheme for

shared-memory protection. 2016 International

Conference on High Performance Computing &

Simulation (HPCS), Innsbruck, pp. 116-124.

https://doi.org/10.1109/HPCSim.2016.7568324

[16] AUTOSAR Layered Architecture. http://www.autosar.

org/standards/classic-platform/release-40/software-arch-

itecture/general/, accessed on Jul. 2017.

473

NOMENCLATURE

ASIL automotive safety integrity level

OS operating system

SWC

QM

software component

quality management

FTTI fault time tolerant interval

FFI freedom from interference

RAM random access memory

DMA direct memory access

ECU electronic control unit

NVM non-volatile memory

MPU memory protection unit

CRC cyclic redundancy code

DC diagnostic coverage

FTA fault tree analysis

FMEDA failure mode and effect and diagnostic

analysis

474

