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Evolution to multicore architectures has been trending, as a result of the shift towards the 

nanoscale semiconductor industry. This lets multicore processor challenges arise in a way 

limiting their features. In present, mixed safety-critical systems in the automotive industry 

utilize multicore processors. These systems include a software code may reach millions 

of line-of-code needed for an emerging autonomy level. This implies more design 

complexity. Complying with ISO 26262 safety standard increases the complexity. This 

work proposes new safety mechanisms that overcome memory interferences that affect 

an Automotive Safety Integrity Level (ASIL) multicore architecture. New optimized 

double inverse redundant storage algorithms are presented to mitigate systematic memory 

data faults. Other safety mechanisms are introduced to overcome random faults in a 

memory. The proposed safety mechanisms have been investigated and evaluated for Aurix 

Tri-core and Renesas RH850 targets with lots of suggestions to have a fully compliant 

architecture with principles and methods of ISO 26262. Monte Carlo analysis has been 

performed for the proposed safety mechanisms diagnostic coverage which exceeds 99% 

considered as high. 
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1. INTRODUCTION

Over the decades, functional safety became a crucial aspect 

in the development of mixed-critical systems for various 

industrial applications that include aerospace applications [1] 

complied with DO 178 standard, and automotive applications 

[2] complied with ISO 26262 standard for road vehicles [3].

ISO 26262 regulates mixed safety-critical systems with the

Automotive Safety Integrity Level (ASIL), to enhance systems

reliability, modularity, maintainability, portability and

flexibility and for cost-reduction purposes [4]. These critical

systems practically operate on real-time single-core/ multicore

processors, as represented in Figure 1, in which they must

meet their critical deadline tasks, otherwise a hazardous event

would reach the end user. They have been evolving, as a result

of the semiconductor evolution of the gigahertz era to the

nanoscale level for the sake of a desired performance-power

ratio [5].

Mixed safety critical systems have been affecting with the 

coexistence, where software components (SWCs), even their 

sub-functions, usually have mixed-ASIL. Hence, interferences 

from Quality Management (QM) or lower-ASIL SWCs will be 

introduced [6-9]. They may corrupt higher-ASIL safety-

related SWCs by means of information exchange interference, 

memory interference, real-time interference, and shared 

peripheral interference as represented in Figure 2.  

Consequently, safety mechanisms as single/ multi order 

detection and reaction mechanisms of the safety-critical data, 

have been leveraged and trending to prevent interferences that 

might lead to a safety goal violation. Their main purpose is for 

faults detection and for controlling system failures, enough to 

achieve and/ or maintain a safe state at a predefined time, less 

than fault time tolerant interval (FTTI) [10]. The unwise 

development of such mechanisms leads to a high development 

cost, and an overhead on the system performance as well.  

Multicore processors face many challenges, presented in the 

study [9], to overcome. Optimizing inter-core resource sharing 

distributed among SWCs minimizes the computing power by 

avoiding wait-states concurrent accesses to the shared 

resources with the expense of independent data processing and 

parallelization losses [11]. Software applications run with 

different criticality such as: scheduling, sharing computation, 

concurrent resource sharing, memory inter-core 

communication, communication delays, communication links, 

and communication resources. These issues become 

challenges at an operating system (OS) level in today’s 

multicore architectures [12, 13]. 

Figure 1. Multicore architecture block diagram 
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Figure 2. Example of freedom from interferences due to 

information exchange interference, memory interference and 

shared peripheral interference 

 

Although multicore processors have clear potentials to 

produce real-time efficiently and more parallelized features 

with a high return of their investment [11], ISO 26262 arises 

functional safety methods and mechanisms at the expense of 

the functional system efficiency especially if the examined 

system includes a multicore architecture. ISO 26262 provides 

many architectural and design requirements methods assure 

that the examined system operates in a safe state (i.e. degraded 

mode) by aborting various propagation faults, if erroneous 

values affect critical signals (even related to calibration data) 

[14].  

ISO 26262 guarantees Freedom from Interference (FFI), in 

which the separation mechanism must always adhere to the 

involved highest ASIL SWC. The main goal is that a safety 

code execution cannot be corrupted by a non-safety code. This 

means assuring the critical signals flow through SWCs with 

the desired protection from lower ASIL or QM interfering 

SWCs that would affect the data correctness. Software 

architectures including communication interfaces must be 

developed with this required protection level, accordingly. 

In general, there is at least one critical path represents the 

data flow of a critical signal, from input conditions to the 

output root-cause, in a safety-related software architecture. It 

is represented in the critical path analysis of a software design 

that also includes mixed-ASIL SWCs interferences. In the 

critical path, it is sufficient to have specific ASIL SWCs that 

detect and react to means of cascading software/ hardware 

failures to mitigate inevitably an undesirable event 

propagation that might lead to a safety goal violation. ASIL 

SWCs data contain interfering QM SWCs failures. Hence, no 

safety efforts are needed in QM SWCs with the expense of a 

CPU overhead and an architecture optimization.  

Software data faults may corrupt either memory (i.e. 

Random Access Memory (RAM), Flash, EEPROM, hardware 

registers, Direct Memory Access (DMA)), or initialization 

data or calibration data (i.e. in pre-compile, link-time, and 

post-build). They may affect logical data processing and data 

transmission among SWCs (in inter/ intra Electronic Control 

Unit (ECU) communication).  

Memory data integrity faults affect present multicore 

processor performance capabilities. The memory interference 

is illustrated by means of memory faults as: 

(1) Non-safe arithmetic pointer performed by lower-

ASIL SWC that may cause unintended modification of critical 

data stored in memory; or  

(2) Non-safe concurrent access of unions shared among 

mixed-ASIL SWCs; or  

(3) Non-safe dynamic memory allocation may cause an 

unintended modification of critical data stored in the heap area 

operated by lower-ASIL SWCs; or 

(4) Stack segment overflow resulted from the worst case 

consumption of lower-ASIL interrupts/ tasks into the segment/ 

private data area stack allocated to tasks/ interrupts of higher-

ASIL SWC (i.e. it also exceeds the tolerated margin); or 

(5) Shared Non-Volatile Memory (NVM) blocks among 

mixed-ASIL SWCs in which a lower-ASIL SWC may delete 

its data in a way causes improper erase of NVM area allocated 

to higher-ASIL SWCs; or  

(6) Out-of-bounds array accesses performed by a lower-

ASIL SWC that may cause corruption of private data of a 

higher-ASIL SWC. 

Only real-time interferences, due to timing faults, OS faults, 

and sequence faults, are discussed in the study [11] with 

possible solutions that mitigate the real-time multicore 

processor challenges into efficient architectures complied with 

ISO 26262. Conventional state-of-the-art memory interference 

protection mechanisms have been introduced in the literature 

[15]. They examine limited number of memory faults of 

single/ multicore processors.  

This work is unprecedented and sets the basis for future 

development and discussions. The main contribution of this 

work is to provide software architecture emphasized with the 

compliance to ISO 26262 FFI methods and principals to detect 

and react to all possible means of memory corruption failures 

for sophisticated and complex multi-layered-cache multicore 

architectures, including AUTOSAR [16]. This paper also 

provides new algorithms related to safety design mechanisms 

implemented and examined on many microcontroller targets 

(Aurix, Renesas, and NXP). It also proposes all required 

safety-related configuration for memory protection 

mechanisms. 

The rest of the paper is organized as follows. Section 2 

represents means of proposed spatial protection mechanisms 

as double inverse redundant storage algorithms. They are 

supportive methods for freedom from memory interference 

challenges for memory systematic faults. While Section 3 

shows the hamming distance for the random faults detection. 

Moreover, section 4 introduces measurement results 

represented as a Monte Carlo analysis to show the 

effectiveness of the proposed mechanisms held on several 

platforms. Finally, a conclusion is provided in Section 5. 

 

 

2. PROPOSED DESIGN ALGORITHM AND ANALYSIS 

FOR SYSTEMATIC MEMORY FAULTS PAGE SETUP 

 
Safety is one of the key issues in the development of road 

vehicles. Development and integration of automotive 

functionalities strengthen the need for functional safety and 

the need to provide evidence that functional safety objectives 

are satisfied. When considering software driven embedded 

systems, such as automotive ECUs, interference can happen at 

various levels. The software of a component can access and 

manipulate another component by writing faulty data into the 

memory allocated to the other component (data flow).  

The memory interference section of ISO 26262-6 [3] Annex 

D.2.3 illustrates that safety measures such as memory 

protection, parity bits, error-correcting code (ECC), cyclic 

redundancy check (CRC), redundant storage, restricted access 

to memory, static analysis of memory accessing software and 

static allocation can be used. However, it lacks of appropriate 
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verification methods as detailed safety analysis to identify 

critical memories that protection mechanisms are used for. 

This arises the aim of introducing enhanced modified 

detection and reaction mechanisms for such memory faults. 

In spatial protection, a non-safety code is forbidden to have 

authorized access rights on a safety-related data. Such granted 

permissions to the non-safety code would interpret many faults 

such as: systematic deterministic faults that obligate memory 

safety measures to be eliminated, and random faults that reveal 

due to hardware abnormal conditions, happen according to the 

hardware probability distribution, which produce intermittent, 

permanent and transient faulty element. These faults could 

produce memory content corruption, an overflow/ underflow 

to the memory stack, unauthorized access rights to another 

SWC memory and data inconsistency. Various safety 

mechanisms are presented to detect the systematic faults, 

based on the system ASIL level. 

Figure 1 interprets a dual-core architecture with a high-

speed communication path illustrated as Interconnect with a 

shared L3 cache. The L3 cache is shared with a memory 

controller via the Memory Protection Unit (MPU), and also 

with all physical cores and logical cores, if exist for high power 

and performance efficiencies. Each physical core has an 

individual L2 cache.  

For a faster simultaneous multi-threading OS, each core has 

its private instruction and data L1 cache, as well as the shared 

memory controllers placed among all physical cores. 

Moreover, there is no inherited timing interferences among the 

cores. Each core has redundant 9 banks of 5 registers (control, 

status, address and error information registers) linked to 

hardware safety units. Therefore, the architecture includes a 

safe hardware error reporting mechanism for: uncorrected 

errors, uncorrected recoverable errors, and corrected errors. 

All cores are interconnected with buses, crossbars, meshes 

and typical routed communication structures. To have a 

coherent system, interconnect accesses require arbitration 

accesses from the other cores due to the utilized architecture 

memory hierarchy defined as (L1, L2 and L3) caches per each 

core. Furthermore, additional core communication is required, 

since the L1 cache data of a core may be old as this data is 

renewed either in the L1 cache of another core, or in the 

memory controller. 

One of the preferred safety mechanisms for the systematic 

faults and shall be applicable for systems with ASIL-A or 

higher is the double inverse redundant storage with majority 

voting and with error detection codes. The double inverse 

storage is a modified multiple copies mechanism, which is 

used to compare XORed data copies of stored in different 

blocks and fix corruption in critical RAM data of higher-ASIL 

SWCs caused by lower-ASIL SWCs.  

Although the redundant storage mechanism is not new, 

many new modifications are introduced to have an efficient 

systematic faults detection and reaction than the conventional 

mechanism. This is provided by introducing many layers of 

error detection mechanism in a read/ write data algorithms 

sufficient to produce an effective diagnostic coverage. 

The error detection codes can be used to detect corruption 

in NVM data or even communication messages higher-ASIL 

SWCs caused by lower-ASIL SWCs. Cyclic Redundancy 

Code (CRC), checksum, and parity bits are means of the error 

detection codes. This code is calculated and compared with the 

error detection code attached with the message/ stored within 

NVM block. If they are not identical, this indicates message 

data is corrupted.  

On top of that, the upper-layered mechanism of the double 

inverse storage is also used to detect and recover critical data 

corruption that may happen due to unauthorized access write.  

 
Algorithm 1. Enhanced Double Inverse Redundant Storage 

Mechanism for a Read Operation. 
 

Input. BlkAdd1, BlkAdd2, BlkAdd3, MemRowCRC[], Data[] 

 

Output. ReadDataFlag 

1:    while (ECU is power-up) do 

2:      if (ReadRequest()) then 

3:         if ((MemRowCRC[BlkAdd1] is invalid) ||                   

4:              (MemRowCRC[BlkAdd2] is invalid) || 

5:              (MemRowCRC[BlkAdd3] is invalid)) then 

6:              /* Validate the CRC of each row memory blo- 

7:              ck contain aimed data address */ 

8:              NumberOfReadFaultTrials++;  /* RamTst  

9:              SWC is priodically validating this variable */ 

10:              ReadDataFlag = 0x11; /* corresponding  

11:              fault with hamming distance*/ 

12:              SetRecoveryModeOption(ReadDataFlag);  

13:              /* recovery mode is based on the read corrup- 

14:                   tion type */   

15:              break(); /* repeat memory read */ 

16:         else if ((CRC(Data[BlkAdd1]) is invalid) ||   

17:                      (CRC(Data[BlkAdd2]) is invalid) ||       

18:                      (CRC(Data[BlkAdd3]) is invalid)) then  

19:                      /*consistency check of data CRC in each  

20:                          memory block*/ 

21:                     NumberOfReadFaultTrials++;  

22:                     ReadDataFlag = 0xEE; /* not verified */ 

23:                     SetRecoveryModeOption(ReadDataFlag);  

24:                     break (); /* repeat memory read */ 

25:         else if ((Data[BlkAdd1] != ~Data[BlkAdd2]) || 

26:                      (Data[BlkAdd1] !=~Data[BlkAdd3]) ||                  

27:                     (Data[BlkAdd2] != ~Data[BlkAdd3])) then               

28:                     /* check whether data in each address eq- 

29:                     uals to its redundant double inverse in ot- 

30:                     her memory blocks */ 

31:                     NumberOfReadFaultTrials++; 

32:                     ReadDataFlag = 0xDD; 

33:                     SetRecoveryModeOption(ReadDataFlag);  

34:                     break(); /* repeat memory read */ 

35:         else () then  

36:           Read data from any address in any redundant  

37:           block nearest to the program counter;  

38:           ReadDataFlag = 0x22; /*verified data read*/ 

39:         end if 

40:      end if    

41:    end while 

 

It should be restricted to very safety-critical data with 

following criteria:  

(1) A single variable corruption shall lead directly to a 

violation of safety goals;  

(2) No other plausibility checks available to detect such 

data corruptions, and  

(3)  A variable is updated in event-based style (i.e. no 

periodic calculation and update), and  

(4) The variable update is very slow (i.e. a not allowed 

proper recovery mechanism within FTTI).  

In contrast, the multiple copies safety mechanism increases 

the RAM consumption, the Flash consumption and the CPU 

load. The main reason is that, during the operation, if the 

redundancy check is performed not directly before read usage, 

then the increased time in between data read and data usage 

poses a higher risk of corruption due to a faulty ISR, a task 

469



 

interruption or a RAM memory corruption. Hence, it cannot 

be utilized to protect all the data within a software code. 

Similarly, it is not preferred to protect the stack area, or large 

buffers. In addition, it shall not be used to detect random 

hardware faults in RAM. 

One or more redundant copies of safety critical variables 

should be stored separately in physical memory only in ASIL-

D systems. The selection of proper storage methods to 

minimize the probability of damage to all copies is very 

important for significantly improving the safety of stored data. 

Since this proposed mechanism is not preferred in lower-ASIL 

systems due to the high cost of implementation. Thus, it’s fine 

to have the data in the same physical memory as long they are 

separated logically in the memory with suitable erroneous 

detection and reaction mechanisms.  

An initial solution is illustrated as follows: a multiple copies 

mechanism shall be performed in the main SWC responsible 

of invoking the tasks that utilize the aimed data to read/ write.  

Besides, a more optimized time solution reveals in checking 

the redundant data copies in the OS PreTaskHook protection 

capability. The calling ASIL SWC shall validate multiple 

copies that belong to each safety-critical task. Then, the 

redundant storage mechanism shall be executed from 

PreTaskHook for each safety-critical task. Finally, an update 

to the multiple copies is held in the OS PostTaskHook 

protection capability. In order to optimize the execution time 

of the PreTaskHook and to be able to test large complex, CRC 

or checksum codes shall be incorporated for critical data 

verification all at once, instead of checking individual critical 

data separately. 

Algorithm 1 and Algorithm 2 represent the double inverse 

redundant storage mechanisms for read and write operations, 

respectively. They perform multi-layered verifications before 

data read and write accordingly. In this enhanced mechanism, 

one or more redundant copies of the safety-critical variables 

are stored in physically separated memory locations to 

minimize the chance in which all copies are corrupted. 

Original data and the corresponding copies shall contain the 

value and its inverse, accordingly to increase hamming 

distance and to decrease the percentage of failure. All copies 

of a section that includes critical data, stored in different 

memory blocks shall be updated together, if the original data 

get updated. Meanwhile, the address of an object with 

automatic storage shall not be assigned to another object that 

may persist after the first object has ceased to exist. 

Thus, data copies shall be checked periodically, to point 

usage within the software code so as to minimize the change 

for a false detection. In other words, read-back of NVM blocks 

can be used by a higher-ASIL SWC to ensure that such blocks 

are written correctly by lower-ASIL NVM stack, given that the 

calculation of the error detection codes are verified. In addition 

to cover hardware/ software faults that may result from lower-

ASIL device drivers, commands feedback shall be read and 

compared to the requested commands. This ensures correct 

application of critical commands by detecting such deviations 

of improper commands requested by lower-ASIL SWCs. 

Before using the data copies, a check for consistency occurs. 

The read original data with its CRC code placed according to 

a specific polynomial equation are compared against the stored 

corresponding ones. If the stored data or its CRC are corrupted, 

the redundant data are checked with its redundant memory 

blocks. In case of inconsistency, a proper recovery action is 

activated such as performing a majority voting among 

redundant memory sections.  

If more data memory blocks are correct (including critical 

data and CRC), it will be used to update the minor corrupted 

stored data and its CRC. If the majority stored data is corrupted 

another possible recovery mechanism as a microcontroller 

reset to refresh the corrupted blocks with using default safe 

values with their correct generated CRC. If an overlay area is 

used, the tasks using this area shall be mutually exclusive.  

This reveals there is a need of: 

(1) At least 2 copies if the recovery mechanism is 

relevant only for reset and restore defaults of a non-safety 

original value; and  

(2) At least 3 copies shall be stored, in case of a recovery 

of safety-related original value.  

Static analysis tools (i.e. Polyspace, KlocWork or QAC), 

that check software code compliance to MISRA rules, shall be 

used to detect possible errors (i.e. a null pointer access, control 

pointer handling, out-of-bound array access, division over zero, 

variable overflow, wrong bitwise operation, unreachable ASIL 

code statements) that may lead to corrupt critical variables. For 

corruption reduction, array indexing shall be the only allowed 

form of pointer arithmetic. Before the data read-write, the 

multi-layer verification shall be performed, but this would 

inevitably lead to the reduction of the read-write speed as an 

expense of capturing the systematic faults. The fact that 

introducing safety mechanisms to have a fully compliant 

design with ISO 26262 affects the road vehicle functionality. 

In summary, Algorithm 1 behaves as follows:  

(1) It verifies if the CRC of the complete row in RAM, 

that contains the physical address of the aimed data read of the 

original block and the corresponding redundant blocks, is valid;  

(2) It verifies if the contained CRC field included in the 

aimed data read is valid for all redundant memory blocks; and  

(3) It verifies if the redundant data in other memory 

blocks stored as double inverse of their original containing 

memory block.  

If all verifications are performed, then the read operation 

shall be performed successfully. If any of those verifications 

fail, a corresponding flag status is raised and the recovery 

mechanism will be immediately fired, accordingly. 

Meanwhile, Algorithm 2 behaves as follows:  

(1) It verifies if the CRC of the complete row in RAM, 

that contains the physical address of the aimed data read of the 

original block and the corresponding redundant blocks, is valid;  

(2) It performs the write operation from the DataBuffer 

for each redundant memory block; 

(3) It verifies whether written data and their containing 

CRC equal to the requested data (including CRC) in the 

DataBuffer for each block;  

(4) It performs the write consistency checks among 

redundant blocks after the write operation as it verifies if the 

contained CRC field included in the aimed data read is valid 

for all redundant memory blocks; and  

(5) It verifies if the redundant data in other memory 

blocks stored as double inverse of their original containing 

memory block.  

If all verifications are performed, then the write operation 

shall be performed successfully. If any of those verifications 

fail, a corresponding flag status is raised and the recovery 

mechanism will be immediately fired, accordingly.  

One or more redundant copies of safety or security critical 

variables should be stored separately in physical memory. The 

selection of proper storage methods to minimize the 

probability of damage to all copies is very important for 

significantly improving the safety or the security of stored data. 
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Algorithm 2. Enhanced Double Inverse Redundant Storage 

Mechanism for a Write Operation. 
 

Input. BlkAdd1, BlkAdd2, BlkAdd3, MemRowCRC[], Data[],         

DataBuffer[] 

 

Output. WriteDataFlag  

 

1:    while (ECU is power-up) do 

2:      if (WriteRequest(DataBuffer[])) then 

3:         if ((MemRowCRC[BlkAdd1] is invalid) ||                   

4:              (MemRowCRC[BlkAdd2] is invalid) || 

5:              (MemRowCRC[BlkAdd3] is invalid)) then 

6:              /* Validate the CRC of each row memory blo- 

7:              ck contain aimed data address */ 

8:              NumberOfWriteFaultTrials++;  /* RamTst  

9:              SWC is priodically validating this variable */ 

10:              WriteDataFlag = 0x11; /* corresponding  

11:              fault with hamming distance*/ 

12:              SetRecoveryModeOption(WriteDataFlag);  

13:              /* recovery mode is based on the write corru- 

14:                   ption type */   

15:              break(); /* repeat memory write */ 

16:         end if 

17:         Data[BlkAdd1] = DataBuffer[BlkAdd1]); 

18:         /* write variable on its redundant storage */ 

19:         Data[BlkAdd2] = DataBuffer[BlkAdd2]); 

20:         Data[BlkAdd3] = DataBuffer[BlkAdd3]); 

21:         /*verify data read after write to verify back*/ 

22:         if ((Data[BlkAdd1] != DataBuffer[BlkAdd1]) || 

23:            (Data[BlkAdd2] != DataBuffer[BlkAdd2]) || 

24:            (Data[BlkAdd3] != DataBuffer[BlkAdd3]) then 

25:              NumberOfWriteFaultTrials++;   

26:              WriteDataFlag = 0x77;  

27:              SetRecoveryModeOption(WriteDataFlag);  

28:              break(); /* repeat memory write */ 

29:         else if ((CRC(Data[BlkAdd1]) !=  

30:                        CRC(DataBuffer[BlkAdd1]) || 

31:                      (CRC(Data[BlkAdd2]) !=  

32:                       CRC(DataBuffer[BlkAdd2]) || 

33:                      (CRC(Data[BlkAdd3]) !=  

34:                       CRC(DataBuffer[BlkAdd3])) then 

35:                      NumberOfWriteFaultTrials++;   

36:                     WriteDataFlag = 0x88;  

37:                     SetRecoveryModeOption(WriteDataFlag);  

38:                     break(); /* repeat memory write */ 

39:         else () then 

40:         Free(DataBuffer[]); /*verified write operation*/ 

41:         end if      

42:         /* Do as same as Algorithm 1 row#16 to verify  

43:         write consistency over the memory blocks */  

44:         if ((CRC(Data[BlkAdd1]) is invalid) ||   

45:              (CRC(Data[BlkAdd2]) is invalid) ||       

25:              (CRC(Data[BlkAdd3]) is invalid)) then  

26:              /*CRC consistency check after write*/ 

28:              NumberOfWriteFaultTrials++;  

29:              WriteDataFlag = 0xEE; /* not verified */ 

30:              SetRecoveryModeOption(WriteDataFlag);  

31:              break (); /* perform memory consistency */ 

32:         else if ((Data[BlkAdd1] != ~Data[BlkAdd2]) ||  

33:                      (Data[BlkAdd1] != ~Data[BlkAdd3]) ||                  

34:                     (Data[BlkAdd2] != ~Data[BlkAdd3]) then                

35:                     /* check whether data in each address eq- 

36:                     uals to its redundant double inverse in ot- 

37:                     her memory blocks */ 

38:                     NumberOfWriteFaultTrials++; 

39:                     WriteDataFlag = 0xDD; 

40:                     SetRecoveryModeOption(WriteDataFlag);  

41:                     break(); /*repeat memory consistency*/ 

42:         else () then  

19:           WriteDataFlag = 0x22; /*verified data Write*/ 

20:         end if 

21:      end if    

44:    end while 

 

 

3. PROPOSED DESIGN ALGORITHM AND ANALYSIS 

FOR RANDOM FAULTS IN RAM 

 
A key issue in designing any error correcting code is making 

sure that any two valid code words are sufficiently dissimilar 

so that corruption of a single bit (or possibly a small number 

of bits) does not turn one valid code word into another. To 

measure the distance between two code words, we just count 

the number of bits that differ between them. If we are doing 

this in hardware or software, we can just XOR the two code 

words and count the number of 1 bits in the result. This count 

is called the Hamming distance. 

Implementing the hamming distance as a safety mechanism 

addresses random hardware faults in RAM, undetectable error, 

bi-symmetric inversion bit (bit flipping) and burst errors in 

systems with ASIL-A criticality or higher. High level of 

hamming distance shall be applied to critical data, critical 

state-machine, coding with true/ false patterns, enumerator 

type declarations, memory blocks CRC, validity flags and 

defined constants. In this mechanism, the number of 

complementary bits between 2 adjacent states (true, or false) 

should be greater than 4. Thus, it is preferred to have the 2 

complementary states of a critical variable as: A5, 5A or 69, 

96 accordingly. Software tools may be used to detect the 

required hamming value if a variable includes higher states.  

Although Algorithm 1 and Algorithm 2 target systematic 

faults in RAM, random faults might occur in such local 

variables in those algorithms. Thus, hamming distance 

mechanism is a cost-reduction safety implementation needed 

for the variables ReadDataFlag and WriteDataFlag. 

In Algorithm 1, ReadDataFlag has 4 states (represent failure 

modes), as shown in Table 1, as follows: {0x11, 0xEE, 0xDD, 

0x22}. The highest hamming distance is among {0x11, 0xEE}, 

{0x22, 0xDD} by 8-bit differences. On the other hand, the 

lowest hamming distance is among {0x11, 0xDD}, {0x01, 

0x22}, {0xEE, 0x22}, {0xEE, 0xDD} by 4-bit differences. In 

Algorithm 2, WriteDataFlag has 6 states (represent failure 

modes), as shown in Table 2, as follows: {0x11, 0xEE, 0xDD, 

0x22, 0x77, 0x88}. The highest hamming distance is among 

{0x11, 0xEE}, {0x22, 0xDD}, {0x77, 0x88} by 8-bit 

differences. On the other hand, the lowest hamming distance 

is among {0x11, 0xDD}, {0x01, 0x22}, {0xEE, 0x22}, {0xEE, 

0xDD}, {0x11, 0x77}, {0x11, 0x88}, {0xEE, 0x77}, {0xEE, 

0x88}, {0xDD, 0x77}, {0xDD, 0x88} , {0x22, 0x77}, {0x22, 

0x88} by 4-bit differences. 

 

Table 1. Algorithm 1 ReadDataFlag hamming distance states 

 
State Failure  

mode 

Definition 

(00010001)b A A fault pre-read operation due to initial 

invalid memory blocks CRC 

(11101110)b B A fault read-verification operation due 

to inconsistent memory blocks CRC 

(11011101)b C A fault read-verification operation due 

to inconsistent memory blocks data 

(00100010)b D A verified data read operation 
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Table 2. Algorithm 2 WriteDataFlag hamming distance 

states 

 
State Failure  

mode 

Definition 

(00010001)b 

 

A A fault pre-write operation due to initial 

invalid memory blocks CRC 

(11101110)b B A fault write-verification operation due 

to inconsistent memory blocks CRC 

(11011101)b C A fault write-verification operation due 

to inconsistent memory blocks data 

(00100010)b D A verified data write operation 

(01110111)b E A fault write operation due to 

inconsistent memory block data after-

write and data buffer 

(10001000)b F A fault write operation due to 

inconsistent memory block CRC after-

write and data buffer CRC 

 

 

4. MEASUREMENT RESULTS 

 

The proposed safety mechanisms have been evaluated and 

verified for Aurix Tri-core and Renesas RH850 targets to 

assess to have a fully compliant architecture with principles 

and methods of ISO 26262.  

Failure Mode and Effect and Diagnostic Analysis 

(FMEDA) and the Fault Tree Analysis (FTA) are 

recommended by ISO 26262 Part 5 [3] as they are the most 

widely used quantitative safety analysis techniques in the 

automotive industry. In any quantitative analysis, “Diagnostic 

Coverage (DC)” of the safety mechanisms is a crucial 

parameter that affects the final safety metrics. The diagnostic 

coverage is a measure of effectiveness of the diagnostics 

implemented in the system. Mathematically, it is the ratio of 

the failures detected and/or controlled by a safety mechanism 

to the total failures) in the element. Failure modes ranged from 

A to F as represented in Table 1 and Table 2. 

Determining the diagnostic coverage in practice is not 

trivial. To simplify the process, ISO 26262 provides a “starting 

point” for estimating the DC values of a safety mechanism 

based on their applicability to a system. They are classified as 

Low (60%), Medium (90%) and High (99%) diagnostic 

coverage. The safety mechanisms are classified to these 

corresponding levels (low, medium, high) depending on 

factors varying from: 

(1)  Variations in the source of the fault type detected by 

the diagnostic. 

(2) Specific implementation of a safety mechanism 

technologies implemented in the system  

(3) The execution timing of the safety mechanism with 

respect to the FTTI. 

 

KDC = ∑ (X × KFMC,x) (1) 

 

Eq. (1) represents the diagnostic coverage of the proposed 

safety mechanisms (KDC), where X is the failure mode 

distribution for a failure mode x. This x equals the values in 

range of A ~ D, as per Table 1 and in range of A ~ F, as per 

Table 2. KFMC,x is the failure mode coverage of the failure 

mode x. 

To have an efficient normal distribution, Monte Carlo 

analysis has been performed for the proposed designed 

diagnostic coverage that is corresponding to all related failure 

modes as discussed in Table 1 for the Algorithm 1 and in Table 

2 for the Algorithm 2 to assess the proposed design robustness 

in case of memory systematic faults and random faults in 

RAM variations. Figure 3 shows that the mean diagnostic 

coverage which is around > 99% (High) by adding SWC stubs 

to simulate each failure mode. Table 3 represents the DC for 

both algorithms for the different failure modes to validate the 

effectiveness of the proposed mechanisms at 1000 number of 

samples of measurement runs held on several platform targets.  

 

 
 

Figure 3. Histogram of Monte Carlo analysis for the 

proposed safety mechanisms diagnostic coverage for 1000 

samples of execution runs 

 

Table 3. Typical diagnostic coverage (DC) including Monte 

Carlo mismatches for all failure modes affect Algorithm 1 

and Algorithm 2 

 
Failure mode Algorithm 1 DC Algorithm 2 DC 

A 99.1043% 98.9736% 

B 99.8089% 99.2541% 

C 99.6089% 99.2478% 

D 99.8702% 99.6311% 

E 100% 99.5277% 

F 100% 99.5143% 

 

The worst case DC takes place at the failure mode A in 

Algorithm 2 by 98.9736%. This means that the Algorithm 2 

can detect 989.73 out of possible 1000 potential systematic 

faults due to interfered QM or lower-ASIL SWCs to higher-

ASIL SWC. 

 

 
5. CONCLUSION 

 

In this paper, memory interference challenges of multicore 

architectures for autonomous driving applications have been 

explored, leveraged, analyzed and mitigated. Furthermore, 

various novel solutions design and their relevant configuration 

are proposed, to present complex architectures designs to be 

compliant with the ISO 26262 methods and principals based 

on the examined system architecture ASIL. The proposed 

safety mechanisms target memory data integrity faults 

detection and immediate reaction mechanisms, enough to let 

the system behave in the safe state before the defined FTTI.  

Memory faults are categorized as systematic faults, and 

random hardware faults that produce intermittent, permanent 

and transient faulty element. These faults are represented as a 

result of non-safe accesses (of arithmetic pointer, unions, 
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dynamic memory allocation, out-of-bound array, shared NVM, 

blocks, stack segment) to the memory area contained by ASIL 

SWC. These faults could produce memory content corruption, 

an overflow/ underflow to the memory stack, unauthorized 

access rights to another SWC memory and data inconsistency.  

Stack-monitoring mechanism is recommended to minimize 

such critical data failures. Logically related safety data shall 

be included in a critical section to ensure consistency data so 

as not to be accessed atomically and to be only used by higher-

ASIL SWCs (i.e. senor readings and sensor status shall be read 

together, otherwise we can't ensure if sensor readings are 

correct). 

Multiple copies, and double inverse redundant storage 

design mechanisms are presented with new modified 

algorithms to mitigate the CPU load and memory consumption. 

They are introduced as a means of faults detection, with new 

enhanced design configurations, placed in Aurix Tri-core, 

NXP Freescale MPC and Renesas RH850 platforms, to 

mitigate systematic memory data integrity faults. As they are 

considered software configuration to hardware features, 

another mechanism is proposed to overcome such limitation. 

Diagnostic coverage has been measured with the support of 

the failure modes occurrence variations as a result of Monte 

Carlo analysis which shows that the DC of the proposed design 

mechanisms exceeds 99% as a worst case scenario.  

Another safety mechanism, hamming distance, is proposed 

to contain random hardware faults in RAM such as. Various 

methods of fault reaction are introduced to fulfill the presented 

safety detection mechanisms strategy. Refreshment to the 

NVM memory blocks if there is a memory corruption. OS 

features as the OS protection hooks shall be used to enhance 

the reaction efficiency.  

From the perspective of vehicle safety, this proposes a new 

optimized dual inverse redundant storage algorithm to 

alleviate system safety storage data failures, and introduces 

other safety mechanisms to deal with random safety failures in 

the memory. This has been verified in the practical cases, fully 

in line with the ISO26262 safety standard. 
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NOMENCLATURE 

 

ASIL automotive safety integrity level 

OS operating system 

SWC 

QM 

software component 

quality management 

FTTI fault time tolerant interval 

FFI freedom from interference 

RAM random access memory 

DMA direct memory access 

ECU electronic control unit 

NVM non-volatile memory 

MPU memory protection unit 

CRC cyclic redundancy code 

DC diagnostic coverage 

FTA fault tree analysis 

FMEDA failure mode and effect and diagnostic 

analysis 
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