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ABSTRACT 
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 The aim of this study is to investigate the unsteady magnetohydrodynamic (MHD) flow of 

Casson nanofluid over an infinite oscillating vertical plate with ramped wall temperature. The 

effects of porosity, thermal radiation and first order chemical reaction have been considered. 

Polyethylene glycol (PEG) is chosen as base fluid which contained molybdenum disulfide

( )2MoS  nanoparticles. The Laplace transform technique is applied to the momentum, energy 

and concentration equations to obtain the closed form solutions. The obtained solutions are for 

both cases ramped and isothermal boundary conditions and compared graphically. From 

graphical analysis, it is observed that for isothermal plate, the magnitude of velocity, 

temperature and concentration profiles are greater than ramped wall temperature. Skin-friction, 

Nusselt number and Sherwood number are evaluated and presented in tabular forms. The 

effects of various embedded parameters on velocity, temperature and concentration profiles 

are discussed graphically. 
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1. INTRODUCTION 

 

The effect of heat and mass transfer phenomena occurs due 

to the differences in temperature and concentration. In modern 

technology heat and mass transfer phenomena plays a key role, 

especially in engineering, due to this reason most of the 

researchers are attracted to further investigate on this topic.  

Moreover, heat and mass transfer have a wide range of 

industrial and practical life applications, like freeze-drying 

phenomena of food [1]. Blums [2], Incropera and De Witt [3] 

discussed in details on heat and mass transfer with several 

thermal and concentration applications. The phenomenon of 

heat and mass transfer, is very important because of many 

physical uses in science and modern technology as discussed 

in the book of Nield and Bejan [4]. 

The thermal conductivity of a fluid is also important in 

modern technology. In the literature, different methods have 

been produced to increase the concentration and temperature 

transfer performance of the fluids.  To improve the thermal 

conductivity of the conventional base fluids like polyethylene 

glycol (PEG), ethylene glycol (EG) and oil mixture by adding 

some microparticles or large-sized particles in the fluid. But, 

the addition of these particles induces additional flow 

resistance and erosion. The type of fluid in which 

nanoparticles are added is called a nanofluid. The addition of 

nanoparticles results in an increase in the thermal performance 

of the base fluid. Choi [5] for the first time discussed nanofluid 

in Argonne National Laboratory. He explained that suspension 

of nanoparticles in the fluid can be considered as heat transfer 

fluids. Furthermore, he also noted that the heat transfer 

performance rate of nanofluid is greater as compared to pure 

liquids. He found that nanofluids have maximum heat transfer 

properties compared to fluids containing micro-sized particles. 

In another paper, Choi et al. [6] discussed the process when 

some nanoparticles are added to the base fluid which increased 

the thermal performance of the fluid approximately, two times. 

Many researchers like Li and Eastman [7], Masuda et al. [8], 

and Xuan and Roetzel [9] examined that the addition of nano-

sized particles increase heat transfer rate more than 20%. The 

thermal performance rate of these fluids depends upon the 

factors like molecule volume species, nanoparticles size, 

nanoparticles shape and other physical properties of the base 

fluid like temperature and concentration of the base fluid 

materials. Nanoparticles which are used in nanofluids can be 

prepared from different materials by using chemical and 

physical synthesis processes. Wakif et al. [10] numerically 

analyzed the onset of longitudinal convective flow of 

nanofluids with an external magnetic field rolls in a porous 

medium. Ali et al. [11] investigated the effect of MHD 

nanofluid with engine oil base fluid and taking Mos2 

nanoparticles in a rotating disk with hall effect. 

There are some non-Newtonian fluids in nature whose 

behavior is that by decreasing viscosity there is an increase in 

velocity gradient e.g. polymer solutions, blood, elastic solid 

etc. that is, with a small shear stress, no flow is occurring. 

Casson fluid is one of those fluids which has distinct features 
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and is very famous in recent research. Casson in 1959 [12] 

modeled and introduced Casson fluid for the prediction of 

pigment oil suspensions of the flow behavior. Casson fluid is 

one of the pseudoplastic that means shear thinning fluids. At 

minimum shear rates, the fluid which is shear thinning is more 

viscous as compare to a Newtonian fluid. Dash et al. [13] 

discussed non-Newtonian Casson fluid in a pipe filled with 

homogeneous porous medium. Akbar [14], Noreen and Butt 

[15] and Nadeem et al. [16-17] investigated Casson fluid flow 

in a plumb duct/asymmetric channel. Saqib et al. [18] 

discussed heat and mass transfer phenomena for the flow of 

non-Newtonian Casson fluid over an infinite oscillating 

vertical plate, taking slip effect on the boundary and first-order 

chemical reaction. The influence of induced magnetic field on 

the flow of Casson fluid is investigated by Raju et al. [19]. 

Recently researchers are interested in studying some non-

Newtonian fluids like Casson fluids etc. These fluids have an 

important role in modern technology. Qing et al. [20] worked 

out on entropy generation taking the effect of MHD Casson 

nanofluid and considered the surface of the flow over a porous 

stretching/shrinking surface. Mustafa and Khan [21], studied 

a model for the flow of Casson nanofluid past over a 

nonlinearly stretching sheet and taking the effect magnetic 

field. Casson nanofluid. Haq et al. [22] published their work 

on Convective heat transfer and MHD effects on Casson 

nanofluid flow over a shrinking sheet. Nadeem et al. [23] 

investigated Casson nanofluid with convective boundary 

conditions. Hussain et al. [24] also studied Casson nanofluid 

with convective conditions and viscous dissipation. 

The study of MHD flow has many practical applications 

especially in engineering problems like nuclear reactors, study 

related to plasma, MHD generators and geothermal energy 

aerodynamics [25]. To study the effects of heat and mass 

transfer in the electrically conducting fluid and the analytical 

solutions for these problems are unique to a great extent. Heat 

and mass transfer MHD flow can be solved by different 

simplifying assumptions [26]. The person who discovered the 

field of MHD was Alfven and got the Nobel Prize for his new 

work in 1970. The MHD flow of heat and mass transfer has 

many industrial applications like preparation of solid plastic 

film and artificial materials plastic fiber etc. Another important 

field of application is propulsion of electromagnetism. This 

system contains a source of power (like a nuclear reactor), 

plasma and instrument that passes plasma by MHD forces. 

In the recent literature, the fluid flow through a porous 

media has become an attractive topic because of extraction of 

the crude oil from the openings of the storage of rocks, and 

more other applications. Furthermore, the theoretical results of 

heat and mass transfer problems through porous media having 

many physical applications, such as underground water 

impurity, geothermal energy reconstruction, thermal storage 

of energy, flow through distillation media and crude oil 

extraction. Recently, Kataria and Patel [27] has considered the 

effect radiation and chemical reaction on MHD Casson fluid 

flow past over an oscillating vertical plate embedded in porous 

medium. Ali et al. [28], considered the effect of MHD flow of 

water-based Brinkman type nanofluid over a vertical plate 

embedded in a porous medium with variable surface velocity, 

temperature and concentration. 

Mass transfer effect is very important in polymer and 

chemical processing equipment [29]. In chemical engineering, 

different processes have done under the chemical reaction 

which takes place between the fluid under discussion and an 

external concentration. There are different chemical processes, 

some of them are known as homogeneous or heterogeneous 

processes. This chemical process depends on the reaction 

occurs at an interface. Cussler [30] investigated the effect of 

homogenous reaction uniformly through a given phase. In 

many physical situations, it is noticed that rate of chemical 

reaction depends on the mass and chemical behavior of the 

species itself. The chemical reactions in which the reaction rate 

is directly proportional to concentration are called first order 

chemical reaction [31]. Rajesh [32] performed an experiment 

to investigate the effect of thermal radiation and first order 

chemical reaction effects and th fluid is flowing past over a 

vertical plate with ramped wall temperature condition. 

All the above studies take the continuous and well-defined 

conditions for velocity and temperature at the wall. But, in 

many physical problems and practical situations, there are 

some non-uniform wall conditions. To investigate such 

problems, it is necessary to introduce the condition of ramped 

wall temperature. In many physical situations, for example, the 

process of different materials, nuclear heat transfer control, 

heat transfer in building, heat transfer in the turbine, and some 

electric circuits etc. has useful applications of ramped 

condition at the wall temperature. Due to this fact researchers 

are focused some problems related to free convection from an 

infinite vertical plate and the condition at the wall is taken as 

ramped wall temperature. Kelleher [33] and Kao [34] earlier 

investigated the flow of free convection with ramped wall 

temperature. Having such kind of motivations, Chandran et al. 

[35] presented their work on the unsteady flow of natural 

convection with ramped condition of a temperature at the wall. 

Seth et al. [36] discussed MHD flow with radiative heat 

transfer and considered the effect of porous medium and 

ramped wall temperature condition at the plate. The effect of 

radiation on the fluid flow, over an infinite vertical plate with 

ramped wall temperature and consider mass diffusion constant 

was discussed by Narahari and Beg [37].  The exact solutions 

for the flow of nanofluids with ramped condition of 

temperature were investigated by Khalid et al. [38]. Khan et al. 

[39] explained MHD free convection flow and consider the 

effect of porous media and ramped wall temperature. 

Nandkeolyar et al. [40] studied the flow of unsteady 

hydromagnetic radiative nanofluid flow over a flat plate and 

consider the motion of the plate with ramped wall temperature. 

In the literature, no work is reported to obtain the closed 

form solutions for the MHD Casson nanofluid flow over an 

infinite vertical plate with the effects of porous media and 

ramped wall temperature condition. Therefore, the objective 

of the study is to fill the gap and to find the exact solutions of 

MHD Casson nanofluid past an infinite vertical plate 

embedded in a porous medium. The effects of thermal 

radiation and chemical reaction of the first order are also 

considered in this problem. Furthermore, we have considered 

molybdenum disulfide (MoS2) nanoparticles suspended in the 

base fluid polyethylene glycol (PEG). The most attractive 

work of the given study is to compare the ramped wall and 

isothermal boundary conditions graphically for velocity, 

temperature and concentration profiles. The parametric study 

of constants like, magnetic parameter M, thermal Grashof 

number Gr, mass Grashof number Gm, Schmidt number Sc, 

radiation parameter, chemical reaction parameter and porous 

medium K are preformed graphically. The effects of various 

embedded parameters on skin-friction, Nusselt number and 

Sherwood number have been shown in tabular form. The exact 

solutions for the above problem have been obtained by using 

Laplace transform technique. 
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2. MATHEMATICAL FORMULATION AND 

SOLUTION OF THE PROBLEM 

 

The free convection flow of radiative heat and mass transfer 

of Casson fluid with nanoparticles, is considered. 
2MoS  

nanoparticles are added to base fluid PEG. It is assumed that 

the fluid is electrically conducting and lies over an infinite 

oscillating vertical plate. The fluid flow will be along the x  

direction in a porous medium parallel to the plate. The fluid 

will occupy the space at positive y axis where y is 

perpendicular to the plate. A uniform magnetic field B of 

strength 𝐵0 is applied in a perpendicular direction to the flow 

of fluid as shown in figure 1. 

 

 
 

Figure 1. Geometry of the problem 

 

The induced magnetic field will be ignored because of very 

small Reynolds number. And assumed the effect of chemical 

reaction of order first, MHD, porosity and ramped wall 

temperature condition. 

Initially, at time t=0, the fluid and plate are stationary with 

ambient temperature and concentration T  and C  

respectively. At time t=0+, the plate starts oscillatory motion 

and the velocity component in x  direction is given by 

 

0( )cos or sin ; 0ou U H t t u U t t = =                         (1) 

 

According to the assumptions, the plate will start oscillatory 

motion in the plane at ( )0y = . Where 0U
 
represents constant 

velocity, ( )H t  shows Heaviside unit step function, i   is the 

unit vector along x -axis which shows the vertical flow 

direction and    is used to represent the symbol of the 

frequency of oscillations of the plate. At the time, 0 ,t += the 

temperature of the plate, as well as concentration, is higher or 

lower to 0( ) /wT T T t t + −  and 0( ) /wC C C t t + −  when 

0t t
,
 respectively. When 0t t , then there is no change in 

temperature and concentration, it maintains constant 

temperature wT  and concentration wC . 

Under assumptions considered in the problem, the 

dimensional governing equations of the problem are given 

below [41]: 

 

( ) ( )2, ,1
1

2

12 ( , ) 1 ( , )
0

1

( ) ( ) ( ) ( ),

u y t u y t

nf nft y

nf
B u y t u y t

nf k

g T T g C C
T nf C nf

 


 




 

  
= + 

   

 
− − + 

 

+ − + −
 

                (2) 

 
2

2

( , ) ( , )
( ) ,r

p nf nf

qT y t T y t
C k

t yy


 
= −

 
                               (3) 

 
2

2

( , ) ( , )
( ).nf

C y t C y t
D K C C

t y


 
= − −

 
                                (4) 

 

Subject to the following initial and boundary conditions: 

 

( ) ( ) ( ),0 0, ,0 , ,0 ,u y T y T C y C = = =   

( ) 0 00, ( )cos( ) sin( ),u t U H t t or U t =   

( )
( ) 0

0

0

0
0, ,

w

w

t
T T T if t t

tT t

T if t t

 


+ +  

= 
 

                

 (5) 

( )
0

0

0

( ) 0 ,
0,

,

w

w

t
C C C if t t

tC t

C if t t

 


+ −  

= 
 

  

( ) ( ) ( ), 0, , , , .u t T t T C t C  =  =  =  

 
  

Here u  represents the velocity of the fluid along x  

direction, T and C  represents temperature and  concentration 

of the fluid, 
nf , 

nf  and
nf  represents the density, dynamic 

viscosity and electrical conductivity of nanofluid respectively, 

 is the Casson fluid parameter, 1(0 1) 0k     where   

is the porous medium and 1k  is the permeability of porous 

medium, ( )T nf
  and ( )C nf

 is the thermal expansion 

coefficient and concentration coefficient of nanofluids 

respectively, ( )p nfC  is the specific heat of nanofluids, 
nfk is 

the thermal conductivity of nanofluids, rq is the radiative heat 

flux,
nfD  is the mass diffusivity and K  is the chemical 

reaction parameter which is known as first order chemical 

reaction.  

Where the following expressions are restricted to spherical 

shape nanoparticles and the effective thermal conductivity of 

nanofluid given by Kakac and Pramuanjaroenkij [42] and 

Oztop and Abu-Nada [43] is given by 

 

2.5
(1 ) , ,

(1 )

f

nf f s nf


    


= − + =

−
      

3( 1)
1 , ,

( 2) ( 1)

s

nf f

f

 
  

   

 −
= + = 

+ − − 
 

( ) ( )( ) ( ) 0

3( 1)
1 , 1

( 2) (
 

1)
T T Tnf f s

a
 

    
  

 −
= − + +

+ − −
= 


  

( ) (1 )( ) ( ) ,C C f C snf
    = − +   
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( )
1 3 ,

2 ( )

f s

nf f

f s f s

k k
k k

k k k k





 −
= − 

+ + −  

 

( )
1 3 , ,

2 ( )

f s nf

nf nf

f s f s f

k k k

k k k k k


 



 −
= − = 

+ + −  

 

( ) (1 )( ) ( ) , (1 ) ,p p f p s nf fnf
C C C D D     = − + = −   

 

where  the volume fraction of nanoparticles, 
f  is the base 

fluid density, s  is the density of the solid particle, 
pC  is the 

specific heat at constant pressure. 

The radiative heat flux rq  is given below: 

 
4

1

3

4
,

3
r

T
q

k y

− 
=


                                         (6) 

where Sefan-Boltzmann constant is 1  and 3k  is the mean 

absorption coefficient. It is assumed that the temperature 

difference during the flow is sufficiently very small and the 

term 
4T can be linearized by Taylor series expansion. 

Neglecting high order terms in ( ),T T−  we get: 

 
4 3 44 3 .T TT T = −                                         (7) 

 

Substituting equation (7) into equation (6) and 

differentiating with respect to y, we get 

 
2

31

2

3

16
.

3

rq T
T

y k y




 
= −

 
                                        (8)  

 

Table 1. Thermo-physical properties of PEG and MoS2 

 

Model 

3( )kgm


−  

1 1( )

pC

Kg K− −
 

1 1( )

k

Wm K− −
 

5

1

10

( )K

 −

−


 ( / )S m


 

( )2 1.m s



−
 

Pr
 

PEG 1128 1500 0.22 60 5.5×10
-6

 2.387 18.358 

MoS2 5.06×10
3
 397.21 904.4 2.8424 2.09×10

-4
 - - 

For dimensional analysis introducing the following 

dimensionless variables 

 

* * *

0 00

, , ,
u y t

u y t
U tt

= = =        

2

3

0, ;
( )w w

T T
t

T T g T T







 

 −
= =   − − 

 

  

    

 

Using dimensionless variables into eqs. (2)- (5), we get the 

following system of equations: 

 
2

1 2 32
,

u u
a Hu Gra Gma

t y


 
= − + + 

 
                            (9) 

 
2

0 2
,P

t y

  
=

 
                                                                     (10) 

2

2

1

1
.

t Sc y


  
= − 

 
                                                     (11) 

 

Dimensionless initial and boundary conditions becomes: 

 

( ) ( ) ( ),0 0, ,0 0, ,0 0,u y y y= =  =   

( ) ( )

( )

0, ( ) cos sin( ),

, 0 1
0, ,

1, 1

u t H t t or t

t t
t

t

 



=

 
= 

                                       

(12) 

( )
, 0 1

0, ,
1, 1

t t
t

t

 
 = 


  

( ) ( ) ( ), 0, , 0, , 0,u t t t =  =   =  

 

During dimensionalization process we get some constants 

which are given below: 

2

0 0 02 0

1 0

( ) ( )
, Pr , ,

f p f T w

f f

a t C g T T t
M Gr

b k U

   


−

= = =   

3
00 1

0 1 3

( ) 161
, , ,

3

fC w

f f

tg C C t T
Gm Nr

U K k k k

  


 

−
= = =   

( )
25 4

0 1 0

0 0

Pr
, , , , ,

fnf

b bSc
P Sc Sc kt H M

D b B KNr





= = = = = +

+
  

0 1 2

( )
(1 ), (1 ) , (1 ) ,

( )

s T s

f T f

b b b
 

    
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= − = − + = − +   

3 4 52.5

0 1

( )( ) 1
(1 ) , , (1 ) ,

( ) ( )

p sC s

C f p f

C
b b b

Cb b


   
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= − + = = − +   

32

1 2 32.5

1 10 1 0

1
, , .

bb
a a a

b bb b B
= = =  

 

 

3. EXACT SOLUTIONS 

 

Applying the Laplace transforms to equations (9)-(11) and 

using the given initial conditions from equation (12), we get 

the following transform equations: 

 
2

32

2

1 1 1

( , )( , )
u( , ) ( , ) ,

Gma y sGra y sd u s H
y s u y s

dy a a a

  +
− = − − 
 

     
(13) 

 
2

02
( , ) 0,

d
sP y s

dy


− =

                                                        

 (14) 

 
2

12
( ) ( , ) 0.

d
Sc s y s

dy



− +  =                                              (15) 

 

After the Laplace Transform initial and boundary 

conditions from equation (12) are: 
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( ) ( ) ( ),0 0, ,0 0, ,0 0,u y y y= =  =   

( )
2 2 2 2

0, ,
s

u s or
s s



 
=

+ +
  

( )
2

1
, 0 1

0, ,
1

, 1

t
s

s

t
s




 

= 
 


                                              (16) 

( )
2

1
, 0 1

0, ,
1

, 1

t
s

s

t
s


 

 = 
 


( ) ( ) ( ), 0, , 0, , 0.u s s s =  =   =     

 

 

Both ramped wall temperature and isothermal solutions of 

Eqs. (14) and (15) using corresponding boundary conditions 

from Eq.(16) are: 

 

0 0

2

1 1
( , ) , ( , ) ,

y P s y P s

ramp isoy s e y s e
ss

 
− −

= =                (17) 

              

1 1( ) ( )

2

1 1
( , ) , ( , ) .

y Sc s y Sc s

ramp isoy s e y s e
ss

 − + − +
 =  =         (18) 

 

The inverse Laplace transforms of Eq. (17) is given below: 

 
2

02

0 0 0 4( , ) ,
2 2

y P

t
ramp

y P P P ty
y t t erfc y e

t




−   
= + −     
     

     (19) 

 

( ) 0, ,
2iso

Py
y t erfc

t


 
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 

                                                  (20) 

                           

where ( , )rampy t  and ( ),
iso

y t  are the solutions of energy 

equation for the ramped and isothermal wall temperature 

respectively.  

where the inverse Laplace transforms of Eq. (18) is given 

below:

  

( )

1

1

1 1

1 1

2 2 4
, ,

2 2 4

y Sc

ramp

y Sc

Sc Scy t y
e erfc t

t
y t
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t











−
   

− −     
   

 =  
   

+ + +     
   

        

(21) 
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where ( ),
ramp

y t  and ( ),
iso

y t  are the solutions of 

concentration equation for the ramped and isothermal wall 

temperature respectively. 

The solution of Eq. (13) with the given initial and boundary 

conditions from Eq. (16) and incorporate equations (17) and 

(18) is given by: 
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Applying partial fraction we get: 
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3.1 Solutions for ramped wall temperature 

 

Solution for cosine oscillation of the plate 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) 1 2 35

4 5 66 1 3

7 8 91 2 1

10 11 123 4 3

, , , ,

, , ,

, , ,

, , , .

c rampu y s u y s u y s d u y s

d u y s d u y s d u y s

d u y s d u y s d u y s

d u y s d u y s d u y s

= + −

+ + +

+ − −

+ − −             (27) 

 

3.2 Solutions for isothermal plate 

 

Solution for cosine oscillation of the plate 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) 1 2 36

5 6 72 4 2

9 10 122 4 4

, , , ,

, , ,

, , , .

c isou y s u y s u y s d u y s

d u y s d u y s d u y s

d u y s d u y s d u y s

= + +

− − −

+ − +                (28) 

( ) ( )
32

0 0 1

0 1 1 1 0 1

0 0 01 1

2 1 2 32 2

1 1 11 2

0

4 5 1 3 6 2 4

2

, , ,
1 1 1

, , , ,
1

, , .

GmaGra H
Gr Gm H

P a Sc a P a

Gr Gr GmSc a H
H d d d

Sc a HH H

Gm
d d d d d d d

H



 
= = =  

− − − 

 −
= = = = 

− 

= = + = +

  

The inverse Laplace transforms of Eq. (27) is given by: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) 1 2 5 3

6 4 1 5 3 6

1 7 2 8 1 9

3 10 4 11 3 12

, , , ,

, , ,

, , ,

, , ,

c rampu y t u y t u y t d u y t

d u y t d u y t d u y t

d u y t d u y t d u y t

d u y t d u y t d u y t

= + −

+ + +

+ − −

+ − −

                   (29) 

 

The inverse Laplace transform of Eq. (28) is given by: 

 

( ) 1 2 6 3

2 5 4 6 2 7

2 9 4 10 4 12

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , ).

c isou y t u y t u y t d u y t

d u y t d u y t d u y t

d u y t d u y t d u y t

= + +

− − −

+ − +

                     (30) 

 

where ( ) ( , )c rampu y t  and 
( ) ( , )c isou y t  are the velocity profiles 

for cosine oscillations for the ramped wall temperature and 

isothermal plate temperature respectively. 

Where ( ) ( ), , , , 1,2,3............,12.i iu y s u y t i =  are mentioned 

in the appendix. 

 

 

4. LIMITING SOLUTIONS 

 

4.1 Newtonian nanofluid, without Thermal radiation and 

chemical reaction 

 

By putting radiation parameter 0Nr = , chemical reaction 

parameter 0 =  and Casson fluid parameter  →  our 

solution reduced to the solution obtained by Kataria and Mittal 

[40]  

Applying these limiting values we get new constant’s which 

are given below: 
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( ) ( ) ( )
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( ) 1 2 35

4 5 66 1 3

7 8 91 2 1

10 11 123 4 3
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c rampu y s u y s u y s d u y s

d u y s d u y s d u y s

d u y s d u y s d u y s

d u y s d u y s d u y s
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) 1 2 36

5 6 72 4 2

9 10 122 4 4

, , , ,

, , ,

, , , .

c isou y s u y s u y s d u y s

d u y s d u y s d u y s

d u y s d u y s d u y s

= + +

− − −

+ − +

             (36) 
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 
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                                                 (38)
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               (41) 

 

( ) 1 2 6 3

2 5 4 6 2 7

2 9 4 10 4 12

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , ),

c isou y t u y t u y t d u y t

d u y t d u y t d u y t

d u y t d u y t d u y t

= + +

− − −

+ − +

                  (42)

  

4.2  Newtonian nanofluid without thermal radiation 

and Mass transfer 

 

By putting radiation parameter 0Nr = ,  →  and

0Gm =  then our solutions reduces to the solutions obtained 

by Khalid et al. [37] 

In the absence of concentration profile our solutions are 

quite identical to.[37] and the constants produces in the 

following form: 
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5. NUSSELT NUMBER, SHERWOOD NUMBER AND 

SKIN FEICTION 

 

5.1 Nusselt number 

 

The Nusselt number Nu s written as: 

 

0

( , )
nf

y

y t
Nu k

y



=

 
= −  
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                                                    (52) 

 

5.2 Sherwood number 

 

The Sherwood number hS  is written as 

 

0

( , )
.h nf

y

y t
S D

y
=

 
= −  

 
                                                    (53) 

 

5.3 Skin friction 

 

The Skin Friction   is written as 

 

2.5

0

1 1 ( , )
1 .

(1 )
y

u y t

y



=

   
= − +   

−   
                                 (54) 

 

 

6. RESULTS AND DISCUSSION 

 

In this section, to understand the physics of the problem, the 

obtained exact solutions are studied numerically and discussed 

the effect of all embedded parameters by graphical analysis. 

During the parametric study the effect of volume friction 

parameter  , permeability of porous medium K , magnetic 

parameter M , Grashop number Gr , mass Grashop number 

Gm , Schmidth number Sc and Casson parameter  , chemical 

reaction parameter  and phase angle t  are described 

graphically in Figs. 2-10 for velocity profile. The effect of 

radiation parameter Nr  Fig.11 for temperature profile. The 

effect of chemical reaction parameter   and Schmidth number 

Sc are described in Figs. 12, 13 for concentration profile. 

Numerical values for skin-friction, Nusselt number and 

Sherwood number are computed and presented in tables for 

different parameters. 
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Geometry of the problem is shown in Figs. 1. Fig. 2 shows 

the effect of volume fraction parameter of nanoparticles on 

the nanofluid velocity. By increasing volume fraction 

parameter the nanofluid velocity decreases for both cases of 

ramped wall temperature and isothermal boundary condition. 

Because increasing the volume fraction parameter the velocity 

of the fluid decreasing because when the volume fraction is 

increases then their exists maximum number of friction forces 

due to this fact velocity decreases. The results are plotted for 

volume fraction parameter for cosine oscillations as shown in 

figure. Fig. 3 depicts the effect of permeability parameter K on 

velocity profile by keeping other parameter fixed. Nanofluid 

velocity increases by increasing permeability parameter 

because it decreases resistance of the fluid. Fig. 4 illustrates 

that nanofluid velocity decreases with the increase in magnetic 

parameter M. By increasing magnetic parameter, it produces 

turbulency in the fluid as a result there exist maximum number 

of friction forces and behavior of the fluid become more 

viscous due to which nanofluid velocity decreases. Fig.5 

exhibits velocity profiles for different values of Grashof 

number Gr and keeping other values constant. Inceasing Gr

results an increase in the buoyancy forces which increase the 

nanofluid velocity. Grashop number of the velocity is known 

as buoyancy forces by increasing these boyancy forces the 

viscosity of the fluid decreases as a result the fluid velocity 

increases with the increase of these forces which is called Gr . 

Fig.6 shows the effect of mass Grashop number Gm on the 

fluid velocity. Velocity of the fluid increases by increasing Gm. 

Fig.7 displays the effect of Schmidth number Sc on the 

nanofluid velocity. It has been observed that by increasing Sc 

deccreases the nanofluid velocity. Fig. 8 shows the effect of 

Casson fluid parameter   on the nanofluid velocity. From this 

figure, it is observed that Casson fluid parameter decreases the 

nanofluid velocity. Fig.9 depicts the effect of chemical 

reaction parameter   on velocity profile. From this figure it 

has been observed that by increasing chemical reaction 

parameter   velocity of the nanofluid decreases. Chemical 

reaction change the behavior of the fluid and make the fluid 

more denser therefore the velocity of the denser fluid is 

minimum.Fig.10 shows the effect of phase angle on the 

nanofluid velocity keeping other values fixed. Fig.11 depicts 

that temperature profile increases by increasing radiation 

parameter Nr by keeping other values constant. The 

temperature of the fluid increases with increase in radiation 

parameter.  This behavior shows that rate of radiation emitted 

from the fluid is directly proportional to temperature. It is 

depicted from Fig.12 that by increasing the value of chemical 

reaction parameter   there is a decrease in concentration of 

the fluid. The species of the fluid is increases there is a 

decrease in the concentration profile due to the reaction in the 

fluid. Fig. 13 shows the effect of Schmidth number on 

concentration profile. When we increase the values of 

Schmidth number the concentration of the fluid is decreased. 

Figure 2-10 explained velocity profile for different parameters. 

All the figures illustrate cosine oscillation for the velocity 

profile. And the behaviors of all parameters are explained for 

ramped wall and isothermal conditions and compare their 

results graphically.    

 
Figure 4. Velocity profiles for magnetic parameter M

keeping other parameter constant 

 

 
 

Figure 2. The velocity profiles for different values of volume 

friction   keeping othervalues constant 

 

 
 

Figure 3. Velocity profiles for different values of porosity 

parameter K  

 

 
 

Figure 5. Velocity profiles for different values of Grashop 

number Gr keeping other parameters fixed 
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Figure 6. Velocity profiles for different values of mass 

Grashof number Gm  

 

 
Figure 7. Velocity profiles for different values of Sc keeping 

other parameters fixed 

 

 
Figure 8. Velocity profiles for different values of Casson 

fluid parameter   

 

 
 

Figure 9. Velocity profiles for different values of chemical 

reaction parameter  taking other values constant 

 

 
Figure 10. Velocity profiles for different values of phase 

angle t  keeping other values constant 

 
 

Figure 11. Temperature profiles for different Values of 

radiation parameter Nr  keeping other values constant 

 

 
 

Figure 12. Concentration profiles for different values of 

Schmidth number Sc  keeping other values fixed 

 

 
 

Figure 13. Concentration profiles for different values of 

chemical reaction  keeping other values fixed 
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Table 2. Skin friction variation for isothermal and ramped wall temperature 

 

Nr    Gr  Gm  Sc  M  t     t  k  0t  
isofC   

ramfC   

2.5 2.5 2 2 0.5 2 𝜋

4
 0.02 0.9 2 1.9 0.302 3.405 

3 2.5 2 2 0.5 2 𝜋

4
 0.02 0.9 2 1.9 0.317 3.439 

2.5 3 2 2 0.5 2 𝜋

4
 0.02 0.9 2 1.9 0.318 3.36 

2.5 2.5 3 2 0.5 2 𝜋

4
 0.02 0.9 2 1.9 0.624 4.245 

2.5 2.5 2 3 0.5 2 𝜋

4
 0.02 0.9 2 1.9 0.433 3.712 

2.5 2.5 2 2 1 2 𝜋

4
 0.02 0.9 2 1.9 0.187 3.318 

2.5 2.5 2 2 0.5 3 𝜋

4
 0.02 0.9 2 1.9 0.095 3.194 

2.5 2.5 2 2 0.5 2 𝝅

𝟑
 

0.02 0.9 2 1.9 0.75 4.424 

2.5 2.5 2 2 0.5 2 𝜋

4
 0.03 0.9 2 1.9 0.242 3.337 

2.5 2.5 2 2 0.5 2 𝜋

4
 0.02 0.8 2 1.9  

    - 

0.024 

2.5 2.5 2 2 0.5 2 𝜋

4
 0.02 0.9 3 1.9 0.275 3.345 

2.5 2.5 2 2 0.5 2 𝜋

4
 0.02 0.9 2 1.8 3.027     - 

Table 3. Nusselt number variation for isothermal and ramped 

wall temperature 

 
    t    

0t     

Nr  

        
isoNu  

ramNu  

0.6 1.6 1 0.02 -0.228 -0.372 

0.7 1.6 1 0.02 -0.228 -0.345 

0.6 1.7 1 0.02 -0.215 -0.372 

0.6 1.6 2 0.02 -0.186 -0.304 

0.6 1.6 1 0.04 -0.234 -0.381 

 

Table 4. Sherwood number variation for isothermal and 

ramped wall temperature 

 
t  

0t  Sc  K    sohiS  
hramS  

0.6 1.6 5 2 0.02 -4.906 -4.295 

0.7 1.6 5 2 0.02 -4.906 -4.4 

0.6 1.8 5 2 0.02 -5.328 -4.641 

0.6 1.6 6 2 0.02 -5.374 -4.705 

0.6 1.6 5 3 0.02 -6.246 -5.593 

0.6 1.6 5 2 0.04 -5.219 -4.569 

 

 

7. CONCLUDING REMARKS 

 

An exact solution is obtained for the unsteady MHD Casson 

nanofluid bounded by an infinite oscillating vertical plate. 

Nanofluid is formed by suspending 2MoS  nanoparticles in 

Polyethylene glycol (PEG) liquid. The problems is solved for 

exact solution and the expressions for velocity, temperature 

and concentration are obtained using Laplace transform 

technique. The obtained solutions satisfy the initial and 

boundary conditions and the governing partial differential 

equations can be reduced to the well-known published results, 

which shows the validity of the present work. Both cases of 

ramped wall temperature and isothermal boundary conditions 

of the plate are discussed. From graphical analysis, it is 

observed that the velocity, temperature and concentration 

profiles are greater for isothermal temperature as compared to 

ramped wall temperature. The numerical values are evaluated 

for skin friction, Nusselt number and Sherwood number and 

presented in tabular forms. The following main results are 

concluded during the solutions of the problem and graphical 

analysis. 

• The effect of volume fraction parameter   are shown in 

velocity profile. By increasing  the temperature of the 

fluid is increasing because the fluid particles volume is 

increases. These particles collide with each other and 

there produce kinetic energy (K.E) in the fluid and by 

increasing kinetic energy (K.E) the temperature of the 

fluid is increases due to this reason the fluid velocity 

decreases. 

• From the whole graphical results we noticed that the 

magnitude of velocity, temperature and concentration 

profiles are smaller for ramped wall temperature and 

greater for isothermal temperature. 

• Increasing porosity K velocity of nanofluid increases. 

When the porosity of the medium is increases the friction 

forces decreases due to which velocity of the fluid is 

increases.  

• Velocity of the fluid increases by increasing the values of 

Sc. 

• The effect of radiation parameter Nr , is directly 

proportional to the temperature by increasing Nr  the 

temperature of the fluid is increases 

• Chemical reaction parameter   and Schmidt number Sc 

decreases the concentration by decreasing their values. 

• Increase in the volume fraction of nanoparticles, increases 

the heat transfer rate.  
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