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 To ensure the sustainability of agriculture in China, it is critical to improve the 

agricultural water-use efficiency (AWE) under the constraint of pollution emission. 

Based on the 2011-2015 panel data of the inputs and outputs of provincial AWE in China, 

this paper measures the AWE of each provincial administrative region (hereinafter 

referred to as province) in China under the constraint of pollution emission, using the 

minimum distance to strong efficient frontier (MinDS) model, and analyzes the main 

factors affecting China’s AWE under the constraint of pollution emission with a self-

designed panel Tobit model. The results show that: (1) Under the constraint of pollution 

emission, the AWE in China generally remained on high levels, but with significant inter- 

and intra-regional differences; (2) Under the said constraint, there was a great gap 

between Chinese regions and provinces in pure technical water use and large-scale water 

use; (3) the scarcity of water resources and the level of economic development have 

significant positive impacts on the AWE; the development of crop farming, the 

development of animal husbandry, the construction of farmland water conservancy, crop 

planting structure, and drought have significant negative impacts on the AWE. On this 

basis, several policy suggestions were presented to improve China’s AWE under the 

constraint of pollution emission. 
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1. INTRODUCTION 

 

Water resources and agricultural production are closely 

related. On the one hand, the scarcity of water resources will 

restrict the sustainability of agriculture to a certain extent; on 

the other hand, some undesirable outputs that inevitably exist 

in agricultural production during the water resource utilization 

will pollute the environment, damages the ecosystem to a 

certain extent, and exacerbates the shortage of agricultural 

water resources, thus inhibiting the improvement of the AWE. 

For a long time, China's agricultural water use accounts for 

about 60% of the total water use, indicating a very tense 

supply-demand relationship [1, 2]. China's agricultural non-

point source pollution is an important source of water 

pollution. In 2015, agricultural chemical oxygen demand 

(COD) and ammonia nitrogen emissions accounted for 

48.06% and 31.58% of the total respectively. Also, the 

temporal and spatial distribution of water resources in China 

is extremely uneven. Despite of the huge amount of total water 

resources, the per capita water resources are relatively small, 

with a moderate water shortage in China. Natural factors such 

as climate change affect precipitation and temperature [3, 4], 

and further the total amount of water resources, while human 

factors such as economic growth, population increase, 

urbanization, and the development of secondary and tertiary 

industries, etc. influence water resources consumption and 

exacerbate water pollution problems [5], which both have 

combined to aggravate the shortage of water resources [6]. 

There is a contradiction between the sustainable development 

of agriculture and the scarcity of water resources. The latter 

has an inhibitory effect on the former [7]. Therefore, to ensure 

the sustainable development of China's agriculture, it’s crucial 

to improve the AWE. In addition, China is a major agricultural 

country in the world, and its improvement in AWE plays an 

important role in the sustainability of world agriculture [8]. 

Many researches have been conducted on water-use 

efficiency in China. Deng et al. [9]; Lu and Xu [10]; Yang et 

al. [11] respectively adopted the SBM-DEA model and three-

stage DEA-Malmquist index model, and the CRS-SBM-DEA 

model to study the water-use efficiency in China and achieve 

some useful results, but there is the lack of sufficient research 

on the AWE. The research on China's AWE originated from 

Wang et al. [12]. The measurement of water-use efficiency 

under the total-factor framework was first made by Hu et al. 

[13], i.e., the use of the ratio of target water consumption to 

actual water consumption for measurement with the value of 

water-use efficiency between 0-1. The amount of slack is 

positively correlated with the potential for improving water-

use efficiency. If the slack value is 0, it means that the water-

use efficiency is 1 at the production frontier. Using data 

envelopment analysis (DEA) and stochastic frontier approach 

(SFA), Speelman et al. [14]; Frijia et al. [15]; Njuki et al. [16] 

conducted research on the AWE of different farm types in the 

northwest regions of South Africa, unheated greenhouse farms 

in Tunisia, and major U.S. counties. In addition, lots of 

Chinese scholars, Yang and Jiang [17]; Wang et al. [18] 

respectively adopted DEA-Malmquist method and SFA to 

evaluate and analyze China's inter-provincial AWE. Tang et al. 

International Journal of Design & Nature and Ecodynamics 
Vol. 15, No. 4, August, 2020, pp. 579-585 

 

Journal homepage: http://iieta.org/journals/ijdne 
 

579

https://crossmark.crossref.org/dialog/?doi=10.18280/ijdne.150416&domain=pdf


 

[19]; Wang et al. [20] studied regional AWE by taking 

Guanzhong Plain and Heihe River Basin in China as research 

objects. The researches above have all achieved beneficial 

results, without considering the undesirable output produced 

by agricultural water use, i.e., agricultural pollution emission. 

In recent years, a few scholars have begun to consider it in the 

AWE measurement. For example, Yang and Liu [21] applied 

the DEA method to measure China’s AWE under the 

constraint of agricultural pollution emissions based on the data 

of 2011 and 2012, but the sample data wasn’t sufficient. 

Based on the 2011-2015 input-output panel data of China's 

provincial AWE, the authors applied the MinDS model to 

measure the AWE of China's provinces under the constraint of 

pollution emission, and established a panel Tobit model to 

analyze the key factors affecting the AWE of China under the 

said constraint. Meanwhile, the relationship between China's 

AWE and agricultural economic growth under the constraint 

of pollution emissions was also analyzed. On this basis. 

relevant policy suggestions were proposed accordingly to 

improve China's AWE. 

 

 

2. MEASUREMENT AND ANALYSIS 

 

2.1 Measurement method and data description 

 

2.1.1 Measurement method: MinDS model 

Aparicio et al. [22] introduced the programming equation of 

the MinDS model and its solution method. This method can 

limit all the evaluated DMU reference standards to the same 

hyperplane by adding constraint conditions with no need of 

determining the hyperplanes of all frontiers. After determining 

all the effective DMUs through the SBM model, the planning 

model can use the effective subset as its reference set for 

solving. Aparicio et al. solved the MinDS model as follows: 

(1) Supposing that there are n DMUs, the set of DMUs judged 

to be effective by the SBM model is E, each DMU has m kinds 

of inputs (i=1, 2, ..., m), q types of desirable output (r=1, 2, ..., 

q), and n types of undesirable output (t=1, 2, ..., n); (2) Solve 

the following mixed Integer linear programming to obtain the 

MinDS efficiency value: 
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In the equations above, M is a sufficiently large integer; only 

when all the slack variables are 0, can the evaluated DMU 

achieve the best efficiency; p is the provincial AWE under the 

constraint of pollution emission; for K provinces, the input, the 

desirable output, and undesirable output vectors can be 

denoted as xk, yk, and zk, respectively; λ is the linear 

combination coefficient of DMU; si
- is the slack variable of 

input; sr
+ is the slack variable of desirable output; st

- is the slack 

variable of undesirable output. At bj=0, dj=0, λj≤M, and then 

DMUj is the reference standard of DMUk; at bj=1, then djM, 

λj=0, and DMUj is not the reference standard of DMUk. 

Another very important advantage of the MinDS model is that 

the input or output index can reach the most efficient 

consensus at the least cost while analyzing undesirable output 

index. 

 

2.1.2 Data description 

This paper selects the input-output panel data of AWE in 31 

provinces in China from 2011 to 2015. The relevant data were 

from the 2012-2016 China Statistical Yearbook, China Water 

Resources Bulletin, and China Environmental Statistical 

Yearbook. Among them, the added value of the primary 

industry was reduced to a constant price in 2010. Table 1 lists 

the descriptive statistics of input and output index of the AWE. 

 

2.2 Analysis for measurement results 

 

Using MaxDEA software, the AWE of 31 provinces in 

China was measured according to the 2011-2015 input-output 

indices. The results are shown in Table 2. 

In this paper, 31 provinces were classified into 7 regions, as 

shown in Table 2. It can be clearly seen from the table that the 

AWE is significantly different between various regions and 

between provinces in China. In general, the AWE in different 

regions was ranked from large to small: Qinghai-Tibet 

region>Southwest region>Southern coastal region>Yangtze 

River Basin>Yellow River Basin>Northwest 

region>Northeast region. The Qinghai-Tibet region had the 

highest AWE and the Northeast region had the lowest AWE, 

with a difference of 0.229; the AWE of the southwestern 

region, the southern coastal region, and the Yangtze River 

Basin was higher than the national average, while that of the 

Yellow River Basin and the Northwest region was lower than 

the national average. 

In addition to the inter-regional differences in China's AWE, 

there are also significant intra-regional differences in AWE. 

The AWE in Northeast China was lower than the national 

average, except Liaoning; that of the Yellow River Basin was 

lower than the national average, except Shandong and Shaanxi; 
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that of the Yangtze River Basin was higher than the national 

average, except 4 of the 7 provinces, namely Hunan, Anhui, 

Shanghai, and Jiangxi; that of southern coastal areas was 

higher than the national average, except Guangdong; that of 

Southwest China was higher than the national average, and 

within the region, the AWE in Sichuan and Guizhou was 

relatively low; that of Northwest China was lower than the 

national average, except Inner Mongolia. 

 

Table 1. Descriptive statistics of inputs and outputs 

 

DMU Index type Description 
Observed 

value 
Average 

Standard 

deviation 
Minimum Maximum 

3
1

 p
ro

v
in

ce
s 

in
 C

h
in

a Desirable output 
Added value of primary industry (100 

million yuan) 
155 1558.58 1094.80 72.02 4204.16 

Non-desirable 

output 

Agricultural COD emissions (t) 155 363657.7 328809 3855 1379733 

Agricultural ammonia nitrogen emissions (t) 155 25119.07 20407.86 457 75800 

Input indices 

Total agricultural water (100 million m3) 155 124.45 108.88 6.5 561.7 

Number of employees in the primary 

industry (10,000 people) 
155 908.35 663.69 37.28 2670 

Total sown area of crops (ten thousand m3) 155 5304.17 3704.68 173.7 14425 

Total power of agricultural machinery (ten 

thousand KW) 
155 3381.20 3109.01 105.7 13353 

 

Table 2. The AWE of 31 provinces in China from 2011-2015 

 
Regions 2011 2012 2013 2014 2015 Mean value No. 

Northeast China 

Liaoning 1.0000 1.0000 1.0000 1.0000 0.8031 0.9606 1 

Jilin 0.7418 0.7329 0.7806 0.7069 0.6342 0.7193 2 

Heilongjiang 0.7373 0.6709 0.6485 0.6413 0.5585 0.6513 3 

Regional average 0.8264 0.8013 0.8097 0.7827 0.6653 0.7771 7 

Yellow River Basin 

Beijing 0.6843 0.7355 0.7108 1.0000 1.0000 0.8261 4 

Tianjin 0.6256 0.6134 0.6154 0.6691 0.6274 0.6302 7 

Hebei 0.6627 0.6773 1.0000 0.6836 0.6751 0.7397 5 

Shanxi 0.7067 0.7004 0.7250 0.7103 0.6341 0.6953 6 

Shandong 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 

Henan 0.8769 0.8650 0.8679 0.8481 0.8404 0.8569 3 

Shaanxi 1.0000 1.0000 1.0000 1.0000 0.8297 0.9659 2 

Regional average 0.7937 0.7988 0.8456 0.8444 0.8010 0.8167 5 

Yangtze River Basin 

Shanghai 1.0000 0.5789 1.0000 0.6082 0.6541 0.7683 6 

Jiangsu 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 

Zhejiang 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 

Anhui 0.7678 0.8043 0.8065 0.7595 0.7098 0.7696 5 

Jiangxi 0.7790 0.7581 0.7560 0.7645 0.7738 0.7663 7 

Hubei 0.9210 0.8956 0.9139 0.8952 0.8799 0.9011 3 

Hunan 0.8671 0.8827 0.8593 0.8439 0.8411 0.8588 4 

Regional average 0.9050 0.8457 0.9051 0.8388 0.8370 0.8663 4 

South coastal region 

Fujian 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 

Guangdong 0.8065 0.7858 0.7976 0.7966 0.8223 0.8018 4 

Guangxi 0.9086 0.8843 0.8672 0.8615 0.8318 0.8707 3 

Hainan 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 

Regional average 0.9288 0.9175 0.9162 0.9145 0.9135 0.9181 3 

Southwest region 

Chongqing 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 

Sichuan 0.8836 0.9119 0.8991 0.9012 0.9062 0.9004 4 

Guizhou 0.8037 0.7768 1.0000 1.0000 1.0000 0.9161 3 

Yunnan 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 

Regional average 0.9218 0.9222 0.9748 0.9753 0.9766 0.9543 2 

Northwest region 

Inner Mongolia 1.0000 1.0000 1.0000 1.0000 0.6329 0.9266 1 

Gansu 0.8259 0.8092 0.7401 0.7724 0.7692 0.7834 2 

Ningxia 0.7516 0.6986 0.6964 0.6719 0.5901 0.6817 4 

Xinjiang 1.0000 0.6369 0.7261 0.7378 0.5723 0.7346 3 

Regional average 0.8944 0.7862 0.7907 0.7955 0.6411 0.7816 6 

Qinghai-Tibet region 

Tibet 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 

Qinghai 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 

Regional average 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 

National average 0.8823 0.8522 0.8842 0.8668 0.8254 0.8622 - 

 

Table 3 shows that the national AWE from 2011 to 2015 

was 0.8622, the agricultural pure technical water use was 

0.9126, and the large-scale water use was 0.9489. From the 

regional perspective, the AWE, the agricultural pure technical 

water use, and the large-scale water use in the Qinghai-Tibet 

region were all 1, reaching the highest level. The AWE in 

Northeast and Northwest China was lower mainly due to the 

drag of pure technical water use. The Yellow River Basin, the 

Yangtze River Basin, the southern coastal region, and the 

southwestern region were mainly dragged down by the 

agricultural large-scale water use. From the perspective of 

provinces, in addition to Qinghai and Tibet, the AWE, pure 
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technical water use, and large-scale water use of the five 

provinces of Shandong, Jiangsu, Zhejiang, Fujian and 

Chongqing, were all 1, on the highest level. The AWE of the 

11 provinces such as Tianjin, Shanxi, Jilin, Heilongjiang, 

Anhui, Jiangxi, Hunan, Guangxi, Gansu, Ningxia, and 

Xinjiang were mainly dragged down by the pure technical 

water use. The AWE of the remaining 13 provinces WAS 

mainly dragged down by the large-scale water use (Note: The 

agricultural pure technical water use and large-scale water use 

data of each province are omitted). 

 

Table 3. Average value of agricultural water-use efficiency in various regions in China from 2011 to 2015 

 

Regions 
CRS Agricultural 

water-use efficiency 
Ranking 

VRS Pure technical 

water use 
Ranking 

Large-scale 

water-use 
Ranking 

Northeast China 0.7771 7 0.7882 7 0.9931 2 

Yellow River Basin 0.8167 5 0.9041 5 0.9082 7 

Yangtze River Basin 0.8663 4 0.9267 4 0.9370 6 

South coastal region 0.9181 3 0.9704 3 0.9480 5 

Southwest region 0.9541 2 1.0000 1 0.9541 4 

Northwest region 0.7816 6 0.8075 6 0.9779 3 

Qinghai-Tibet region 1.0000 1 1.0000 1 1.0000 1 

National average 0.8622 - 0.9126 - 0.9489 - 

 

 
3. ANALYSIS FOR INFLUENCING FACTORS 

 

3.1 Model setting and variable interpretation 

 

The random-effects Tobit models were established as: 

Model 1: 𝐸𝑖𝑡 = 𝐶 + ∑ 𝑥𝑏,𝑖𝑡 +𝑏 𝑢𝑖 + 𝑧𝑖𝑡  

Model 2: 𝐸𝑖𝑡 = 𝐶 + ∑ 𝑥𝑏,𝑖𝑡𝑏 + ∑ 𝛽𝑗,𝑖𝑡 + 𝑢𝑖 + 𝑧𝑖𝑡𝑗  

In the above equations, Eit is the AWE in the i-th province 

of China's agriculture in year t; C is a constant term; x is the 

control variable; ui is the standard deviation of individual 

effects (individual error); zit is standard deviation of random 

interference item (random error), i=1, 2, ..., 31, representing 

31 provinces, and t representing the year; b=1, 2, ..., 4, 

representing 4 core explanatory variables; j=1, 2, ..., 8, 

representing 8 control variables. xb,it represents the set of core 

explanatory variables: (1) The level of agricultural economic 

development (x1), expressed by the per capita income of rural 

residents in China (thousand yuan), to verify the 

Environmental Kuznets Curve (EKC) theory [23]; (2) The 

square of the per capita income of rural residents (thousand 

yuan) (x2), also be recorded as (x1
2); (3) Water scarcity (x3), 

expressed by the amount of water resources per capita in each 

province (thousand m3). (4) Economic development level (x4), 

expressed by per capita GDP (ten thousand yuan). βj,it 

represents the set of control variables: (1) Overall industrial 

structure (β1), expressed by the proportion of the added value 

of the primary industry in the GNP; (2) Development of crop 

farming (β2), expressed by the proportion of crop farming 

industry's added value in the primary industry; (3) 

Development of animal husbandry (β3) expressed by the 

proportion of the added value of animal husbandry in the 

primary industry; (4) construction of farmland water 

conservancy (β4) expressed as the ratio of effective irrigation 

area to the total sown area of crops; (5) Popularity of water-

saving agriculture (β5) expressed by the proportion of water-

saving irrigation area to the total sown area of crops; (6) Crop 

planting structure (β6) expressed by the proportion of rice 

sown area to the total crops; (7) Drought (β7) by the proportion 

of drought-affected area to the total sown area of crops; (8) 

Flood disaster (β8), expressed by the proportion of flood 

disaster area to the total sown area of crops. 

 

3.2 Analysis for influencing factors of China's AWE 

 

The regression results of Tobit panel data are shown in 

Table 4. 

 

Table 4. Regression results of panel Tobit data 

 

Variable 
Model 1 Model 2 

Factor z value Factor z value 

x1 -4.3759* -2.39 -1.4271 -0.77 

x2(x1
2) 0.3766 0.55 -0.2160 -0.33 

x3 4.3114** 2.42 3.3067** 2.19 

x4 7.4892** 2.41 3.6095 1.12 

β1   0.8622 0.94 

β2   -1.6875*** -3.94 

β3   -1.7129*** -3.35 

β4   -0.7909*** -3.03 

β5   0.3005 1.48 

β6   -0.5813** -2.15 

β7   -0.2841* -1.80 

β8   -0.3320 -1.16 

C 87.7999*** 7.36 258.62206*** 6.08 

sigma-u 19.4349*** 5.52 14.0709*** 5.30 

Sigma-e 10.4626*** 11.51 9.6835*** 11.47 

p 0.4367  0.6786  

wald 12.74  42.95  

LR 91.52  60.05  
Note: ***, **, * are significant at the level of 1%, 5%, and 10% respectively 

 

(1) The results analysis of core explanatory variables in 

Table 4 found that the regression coefficient of rural residents’ 

per capita income was -4.3759, passing the 10% significance 

level test; meanwhile, the regression coefficient of rural 

residents’ income squared was positive, indicating a 

consistency with the EKC theory, that is, China's AWE and 

agricultural economic growth under the constraint of pollution 

emissions present a U-shaped relationship, but the square of 

rural residents’ income didn’t pass the significance level test. 

This is possibly because the proportion of non-agricultural 

income in the income of rural residents is increasing, while the 

proportion of agricultural operating income in the income of 

rural residents is decreasing. The changes in income structure 

have caused more rural young and middle-aged labor force to 

be no longer engaged in agricultural operations, and the 

elderly to become the main laborer. However, the elderly is 

not good at water-saving concepts and the corresponding 

water-saving technologies, or have certain misunderstandings 

in the agricultural water use. With the further growth of rural 

residents’ non-agricultural income, a large number of farmers 

may abandon their own farming and transfer the farm lands to 
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large households engaged in agricultural production, which 

will help to improve the AWE. Besides, regression coefficient 

of water scarcity was 4.3114 and passed the 5% significance 

level test, indicating that the scarcer the water resources, the 

lower the AWE, which is mainly because China is a country 

with a shortage of water resources, and in years with scarce 

water resources, the priority is given to residential water and 

industrial water, and sometimes the agricultural water isn’t 

available, which will affect the normal production of 

agriculture, and then decrease the AWS. The regression 

coefficient of the economic development level was 7.4892, 

and passed the 5% significance level test, which indicates that 

the higher the level of economic development, the higher the 

AWE. The reason may be that with the continuous 

development of the economic level, the secondary industry 

and the tertiary industry will give more feedback to agriculture, 

e.g., the agricultural infrastructure, etc. have been 

continuously improved, and the level of agricultural science 

and technology has been continuously improved, thereby 

promoting the improvement of the AWE. When considering 

the control variables, the rural residents' per capita income, the 

square of rural residents' per capita income, the degree of water 

scarcity and the level of economic development have a 

decreased impact on the AWE, and only the degree of water 

scarcity passed the significance level test. 

(2) The results analysis of control variables in Table 4 found 

that the regression coefficient of crop farming development 

was -1.6875, and it has passed the 1% significance level test. 

This indicates that the proportion of the added value of the 

crop farming is negatively correlated with the AWE, which is 

mainly because the water use per unit value added of the crop 

farming is higher than that of forestry, animal husbandry and 

fishery (e.g., in 2014, the water use of crop farming in Anhui 

occupied 94.39% of the total agricultural water use, while the 

added value of farming only accounted for 52.66%). The 

regression coefficient of the development of animal husbandry 

was -1.7129, and passed the 1% significance level test, 

indicating that the greater the proportion of the added value of 

animal husbandry, the lower the AWE. The reason may be that 

despite of the low water use of the unit value added in animal 

husbandry (for example, in 2014, the proportion of water use 

of animal husbandry in the total water use of Anhui Province 

was far lower than 5.61%, while the value added of animal 

husbandry accounted for 23.58%), the development of animal 

husbandry will still cause serious environmental pollution [24], 

thereby reducing the AWE under the constraint of pollution 

emissions. The regression coefficient of farmland water 

conservancy construction was -0.7909, and passed the 1% 

significance level test, which indicates that it does not 

significantly promote the AWE. This may be that the main 

purpose of constructing the farmland water conservancy 

infrastructure is to alleviate the problem of agricultural water 

shortage, but it also produces a certain amount of waste of 

agricultural water resources, thus reducing the AWE. The 

regression coefficient of the crop planting structure was -

0.5813, and passed the 5% significance level test. This 

indicates that the proportion of rice sown area to total crop 

sown area has a significantly negative impact on the AWE, 

because rice is a crop that consumes a lot of water, and the unit 

value-added water consumption of rice is large. The regression 

coefficient of drought was -0.2841, and it has passed the 10% 

significance level test. This shows that drought has a 

significant negative impact on the AWE. The reason is that the 

lack of water for crops has a certain degree of impact on the 

yield and quality of crops, and then reduce the added value of 

crops or require more irrigation water due to drought, resulting 

in a decrease in the AWE, which is consistent with the research 

findings of Song and Oxley [25]. 

 

 

4. CONCLUSIONS AND SUGGESTIONS 

 

4.1 Main conclusions 

 

In this paper, the MinDS model was applied to estimate 

China's AWE under the constraints of pollution emissions 

from 2011 to 2015, and a random-effect panel Tobit model 

was used to analyze the factors affecting China's AWE. The 

main conclusions are drawn as follows: (1) The average AWE 

in China was 0.8622 on a high level; (2) There were significant 

inter- and intra- regional differences in the AWE; (3) Under 

the constraint of pollution emissions, China’s AWE and 

agricultural economic growth presented a u-shaped curve 

relationship, conforming to the EKC theory, but this 

conclusion is not robust; (4) The scarcity of water resources 

and the level of economic development have a significant role 

in the improvement of China’s AWE; development of animal 

husbandry, construction of farmland water conservancy, crop 

planting structure, and drought have a significant negative 

impact on China's AWE. 

 

4.2 Policy suggestions 

 

Based on the above research conclusions, the suggestions 

were proposed to improve the AWE under the constraints of 

pollution emissions: (1) Strengthen the intra-regional 

exchange of experiences in agricultural water saving, and 

focus on the provinces with low AWE; (2) Emphasize on 

increasing the income of rural residents and promoting 

economic development, and try to reach the inflection point of 

the EKC as soon as possible; (3) The construction of farmland 

water conservancy should focus on water-saving infrastructure, 

and the alleviation of water use and water conservation 

problems in drought-prone areas; (4) Vigorously promote the 

green development of agriculture, encourage the development 

of combined agriculture and animal husbandry and recycling 

agriculture while controlling the use of pesticides and 

fertilizers, etc., take multiple measures to treat livestock and 

poultry manure in a harmless manner, and strive to achieve 

zero discharge of manure; (5) Optimize the variety structure 

and production model of the crop farming; it is necessary to 

actively cultivate water-saving and high-efficiency crop 

varieties, as well as rationally and appropriately promote the 

co-cultivation mode of rice and fishery, which can not only 

increase the agricultural added value per unit of arable land, 

but also reduce the COD and ammonia nitrogen etc. [26]. 
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