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 A bipedal which resembles humans are programmed for performing specific tasks. The 

proposed work scope was to design, program, and validate RL based algorithms for 

navigation of Bipedal walking. The bipedal navigation implements forgetting mechanism 

in the traditional Q-learning algorithm which results in learning walk without prior learned 

dynamics of the system. Simulations were carried out for all three joints of each leg for 

evaluating the feasibility of the forgetting mechanism algorithm, the optimal policy, and 

the optimal actions for navigation. The reinforcement control algorithms for bipedal had 

been applied to take the self-decision. Bipedal senses the current state and moves to the 

goal state by learning or by using data stored in the lookup table in the execution phase. 

This reduces the learning and execution number of iterations of the bipedal by a 

considerable amount but total learning and execution time remains approximately the 

same. Simulation is done on the MATLAB platform and SimSpace Multibody dynamics 

toolbox to verify results. The bipedal model performs object identification, object 

localization in the dynamic environment, learns through the RL controller then executes 

to reach the object identified. 
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1. INTRODUCTION 

 

Humans have always been fascinated by creating creatures 

like them, which resulted in the designing and development of 

Humanoid/Bipedal Robots. Bipedal along with locomotion 

should also integrate performing tasks associated with 

manipulation, perception, interaction, adaptation, and self-

learning. Bipedal are cross-disciplinary involving advanced 

locomotion and manipulation, biomechanics, AI, machine 

vision, perception, learning, and cognitive development along 

with behavioral studies. Bipedal are best suited till now for 

predefined tasks and cannot perform tasks in an unstructured 

and dynamic environment. Bipedal not only be used as a 

companion. Bipedal can perform tasks which are usually 

critical and life-threatening for humans such as fire rescue 

operation, explosives and can also assist in other complex and 

complicated tasks. Presently, the most basic challenging issue 

is the stable walk of bipedal in an uncertain and dynamic 

environment. Bipedal should learn the dynamics of the 

environment similar to children learn to walk/crawl in a 

dynamic environment which is changing for every go of the 

walk. As the child learns from mistakes and failures, walking 

an unforgettable task of life. Applying appropriate walking 

gaits to biped walking would make the robot walk more stably 

and walking posture would resemble human walking. 

The motivation of this research work is to implement human 

thinking in the bipedal robot so that it can serve for social 

service to society. The dynamics of each humanoid's 

environment are different and so they cannot be trained for a 

static environment. Bipedal should learn to walk on its own as 

the scenario of its path changes. The development of model-

free based reinforcement learning control algorithm for an 

autonomous bipedal robot was the main contribution. Another 

contribution is to train bipedal to walk stably in a dynamic and 

uncertain environment when the position of objects differs in 

the environment 

The methodology used in the development of the 

reinforcement learning controller algorithm, the agent learns 

by the controller and environment model which can be static 

or dynamic. Taking into consideration the current state of the 

agent the action is selected for the possible set of actions which 

helps in determining the next state of the agent and the 

reward/punishment signal [1, 2]. This signal is real-valued 

which acts as a reward if the agent is moving in the correct 

direction and punishment if the agent is moving in the wrong 

or opposite direction. The negative reward (punishment) is not 

considered in the proposed work [3]. The bipedal is considered 

as a multi-agent system (MAS) in which each joint act as a 

system and the coordination and communication between 

these systems is taken into consideration [4, 5]. All the joints 

of the system are learning in a hierarchical manner which 

means hip joint learns first then the knee joint and in the last 

the ankle joint which takes into consideration contact forces 

with the ground. This takes into account the overall stability of 

the bipedal for its gait cycle. Stability is maintained at some 

point by binary classification method which verifies if the 

bipedal has reached its goal state of individual joint or not. If 

not, then multiclass classification method is used which looks 

what should be the most appropriate next stable state for the 

current action. By adjusting the angle positions of the knee, 

hip and ankle joint the zero-moment point is maintained in 

convex hull so that the bipedal has a stable gait with minimum 
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jerks. 

Bipedal is considered a double inverted pendulum model 

with complaint joints. Designed a pattern generator based on 

Zero-Moment Point (ZMP), for dynamic balance of the 

bipedal robot (Figure 1). The bipedal was learning with the RL 

controller after learning it stores the successful and optimal 

cases in a lookup table for the current environment. If the same 

dynamic environment is there in the next run then it executes 

using that lookup table reducing the number of iterations of the 

specific joint of the leg. But the bipedal is not fully reducing 

the iterations as lookup table as only the optimal actions and 

the corresponding next state but the reward/punishment signal 

is calculated on the fly each time (Figure 2). 

The future of the bipedal robots is like an emotional, 

physical companion of human who can help humans in 

household chores, in a hazardous environment, as a 

companion and friend at the workplace. 

 

 
 

Figure 1. ZMP Position of a Biped Walking Sequence 

 

 
 

Figure 2. RL Model of Bipedal Robot 

 

 

2. PROPOSED MODEL OF BIPEDAL ROBOT 

 
The proposed model considers the lower body parts of the 

bipedal robot. The model consists of ten degrees of freedom 

with each leg having five degrees of freedom. Both ends of the 

legs are connected to the torso. The torso is a rigid body on 

which both hip joints are attached and have a vision system. A 

Simulink/SimSpace Multibody Matlab model is designed for 

the bipedal. For designing and developing the lower body of 

bipedal, the anatomy of the human lower limb is taken into 

consideration. (Table 1 and 2) [6, 7]. The lower body system 

of the bipedal robot consists of the left leg, right leg, and torso 

without considering the upper body parts like shoulder, hand, 

and head [8, 9]. The proposed work considers the mechanical 

design parameters of Table 1 and Table 2 for the bipedal robot 

designing. 

In one walking cycle (Figure 1 and Figure 3), different 

walking stages are present - the first stage, when both feet are 

on ground bipedal is stable in this position (Double Support 

Phase (DSP)), the second stage, when the right leg is to be 

lifted from the ground zero moment point (ZMP) shifts 

towards the toe of the right leg (DSP), third stage, the right leg 

swings in air ZMP is now dependent on only left leg as at this 

stage only one leg is on the ground and so called single support 

phase (SSP) and balancing is also a critical task. 

 

Table 1. Lower body parameter 

 
Parameters Dimension in mm 

Foot length 240 

Foot width 90 

Foot height 100 

Lower leg height 380 

Lower leg diameter 370 

Upper leg height 380 

Upper leg diameter 480 

Torso length 330 

Torso width 150 

 

 
Figure 3. Walking cycle 

 

Fourth stage, the next stage right heel touches the ground 

now again ZMP is also on the right leg and DSP stage exist, 

the fifth stage, both the feet are on the ground and bipedal is 

stable. Second, third and fourth stages have stability and 

balancing problems which are critical in bipedal walk and have 

to be maintained online during the walk cycle.  

The starting/initial values considered for the bipedal for the 

first run is ankle joint is at 0°, knee joint is at -25°, and hip join 

is at -15° to hip joint of the right leg and opposite values for 

the left leg. When gyroscope sense these values, the robot 

walks to the goal point. The goal point for ankle joint, knee 

joint, and hip joint are 20°, 20°, and 15° respectively. The legs 

of the bipedal robot are at some position at run time, the RL 

controller has a goal point to reach in along with runtime 

parameters which adds to stability is pelvis swing amplitude 

controller, damping controller, ZMP compensator, and 

landing orientation controller. 

Even after designing the bipedal stability and smooth 

trajectories, online strategies (Table 3) are required for the 

stable landing of the foot on the ground and avoid sudden jerks 

while walking which will harm the bipedal [10-13].  
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Table 2. Joint range degree of freedom and motion 

 

Joint Standard Human Leg (in degree) Proposed Humanoid leg (in degree) 

Torso Pitch -15to 130 -15 to 100 

 Yaw -45 to 50 -45 to 45 

 Roll -30 to 45 0 to 40 

Knee Pitch -10 to 150 0 to 100 

Ankle Pitch -20 to 50 -20 to 30 

 

Table 3. Summary of walking algorithm 

 
Control Parameters  Real-Time Parameters Aim fulfilled 

Balance Controller Damping parameters (Stages 1, 3, SSPs of 2, 

4) 

Reducing oscillations in the upper body in SSP (ankle joints are 

imposed by damping) 

ZMP compensator parameters (Stages 1,3, 

SSPs of 2, 4) 

Maintaining balance dynamically by horizontal movement of the 

pelvis 

Walking Pattern 

Control 

Pelvis swing amplitude controller (Stages 

DSPs of 2, 4) 

The amplitude of ZMP is considered to compensate lateral swing 

amplitude of pelvis 

Motion Control Landing position parameters (Stages 2, 4) Compensate landing position to prevent unstable landing 

The force/ torque sensor at ankle results in sustained 

oscillations in SSP which is overcome by damping oscillator 

parameters. Bipedal is a model of IP with a compliant joint.  

Equation of motion is given by: 

 

𝑇 = 𝑚𝑔𝑙Ѳ − 𝑚𝑙2Ѳ̈ = 𝐾(Ѳ − 𝑢) (1) 

 

where, u - reference joint angle, θ - actual joint angle due to 

compliance. 

Damping control law states: 

 

𝑢𝑐 = 𝑢 − 𝑘𝑑  Ѳ̂̇ (2) 

 

where, u - reference joint angle, kd - damping control gain, and 

uc - joint angle compensation.  

According to ZMP dynamics, ZMP compensator 

parameters stabilize ZMP. Torso moves back and forth and 

side by side. Both torso movement and ZMP are controlled by 

the following equation 

 

𝑌𝑧𝑚𝑝 = 𝑌𝑝𝑒𝑙𝑣𝑖𝑠 −
𝑙

𝑔
�̈�𝑝𝑒𝑙𝑣𝑖𝑠  (3) 

 

where, Ypelvis - lateral displacement of pelvis and YZMP - lateral 

ZMP. 

The landing orientation controller, for comfortable landing, 

coordinates torque estimated after some time and stable 

contact by adjusting ankle joints to ground.  

Landing orientation control law is given as follows: 

 

𝑢𝑐 = 𝑢 +
𝑇(𝑠)

𝐶𝐿 𝑠 + 𝐾𝐿

 (4) 

 

where, CL - damping coefficient, KL - stiffness, u - reference 

angle of ankle and uc - reference ankle angle (compensated). 

The landing timing controller helps in achieving stable 

walking gait of the bipedal by updating the walking pattern 

schedule during landing. This prevents the biped from falling 

and walking unstably in the dynamic environment. The time 

scheduler pauses the motion if the foot does not land on the 

ground, the bipedal sole is not in contact with the ground. 

 

2.1 Simulink model of bipedal 

 

While creating the different parts of the bipedal robot, plane 

consideration had been taken. The torso and the hip joints are 

created in the frontal plane of the sketch command. The rest of 

the part created in the sagittal plane of the sketch (Figure 4). 

Torso also contains the camera mounted on it for object 

identification and the vision-based navigation (Figure 5 and 

Figure 6) [14]. 

In the proposed work the bipedal identifies the object and 

walks towards the object trying not to fall, have jerks and stop 

near the identified object. 

 

 
Figure 4. Simulink model of bipedal robot 
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Figure 5. Simulink model of Bipedal with object localization and navigation in a dynamic environment 

 

 
 

Figure 6. In explorer Simulink model of Bipedal 

 

2.2 Forgetting mechanism incorporated in traditional Q-

learning 

 

The RL agent sometimes attempts to reuse previously 

learned knowledge in the dynamic environment. This 

knowledge may be outdated as the environment is dynamic 

and uncertain. This changes the exploration and exploitation 

dilemma. To restrict the use of previously learned knowledge 

which may be outdated due to change in dynamics of 

environment a forgetting mechanism is incorporated in the Q-

learning algorithm. 

In a dynamic environment, the dynamic reward and the 

optimal action are calculated at the run time, which accounts 

for the total cost associated with being in a given state. The 

optimal Q-values, along with the state to be selected are 

initialized to zero in the learning and execution phase. As RL 

agent first learns by exploration and after some steps, it 

evaluates a tradeoff between the exploitations of new states, 

action pair, and exploitation of choosing actions which have 

previously resulted in near-optimal/optimal policy. The Q-

value function is a two-dimensional lookup table that is 

updated after each time a state is visited [15, 16]. The action 

selection depends on the generation of a random number. The 

exploitation takes place when the value of random number lies 

between (0, ε*ε-decay), select the greedy action and 

exploration when it lies between (ε*ε-decay, 1), selection of 

new action is done. Bipedal is trained not to get stuck at any 

joint while learning and executing. The large value of ε shows 

dependency on the subsequent following state whereas small 

value shows dependency on reward function. If ε →1 little 

forgetting takes place (behaves like traditional Q- learning 

algorithm). If ε→ 0 almost all rewards are forgotten between 

episodes (leads to an exploration of the environment). 

Reward/Penalty given to RL agent depends on the distance 

between the current state and goal state: 

 

𝑟𝑒𝑤𝑎𝑟𝑑
= 𝑒−𝛼(𝐺𝑜𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑅𝐿 𝑎𝑔𝑒𝑛𝑡−𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑅𝐿 𝑎𝑔𝑒𝑛𝑡) 

(5) 

 

Q-learning Algorithm after incorporating the randomness: 

 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎)
+ 𝛼 [𝑟
+ 𝛾 maxa′ 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] 

 

(6) 

 

The RL Algorithm for Incorporating Forgetting Mechanism 

proposed is as follows:  

(1) The environmental parameters are decided: epsilon(ε), 

learning rate(α), epsilon decay, discount factor(λ) 

(2) Q matrix is initialized to zero  

338



 

(3) For every run - 

A. Selection of Initial state is conducted (initially 

received by sensors, at runtime evaluated by an 

algorithm) 

B. Do while target state has not been reached 

a) Select one among the potential actions for present 

state utilizing random value generator (Exploit/ 

Explore) 

b) The random reward is computed, using this 

conceivable action 

c) Moving to the following state is examined, using 

this conceivable action 

d) Maximum Q value for the following state is 

evaluated, which is dependent on all possible 

actions  

e) Process Q(s,a) value  

f) Write intermediate results, current state, action 

selected, following state, the total time for 

execution, immediate reward in an excel file  

g) In lookup/query table store the optimal actions, 

policies and the next state so that can be utilized in 

future  

h) For every run, intermediate results are stored in 

new excel sheet 

end do  

C. Express final Q-matrix, optimal strategy, total reward 

computed, mean random value generated, total time 

taken in another excel file. 

D. For each episode, final results are stored in a new excel 

sheet. 

(4) Store values of each episode and the number of iterations 

required to reach the target state along with the total duration 

for each process in the third excel file. 

(5) Plot graphs for comparison of the number of iterations 

in the learning and execution phase along with total time for 

execution in each episode, total reward awarded in each 

episode, mean random value generated in each episode. 

 

2.3 Reinforcement learning controller 

 

Kinematics and dynamics analysis give real-time 

information to the controller of the bipedal [17, 18]. In the 

reinforcement control algorithm [19, 20], if the magnitude of 

action is too small or too large, excess time is taken to go to 

the next state from the current state then programmed not to 

stick at a specific position for more than 10 second as it affects 

the stability of the bipedal. RL agents are programmed by 

rewards. After observing the current state, the reinforcement 

controller is choosing an action from the available set of finite 

actions. After choosing an action, the corresponding leg joint 

moves to the next stable state. This iteration continues until the 

goal/target point reached by the individual joints of the bipedal. 

This work also considers the fall of bipedal in forward and 

reverse directions. Currently, the reinforcement algorithm is 

developed for the hip, knee, and ankle of bipedal of each leg 

taking into consideration contact forces of the ground. 

The bipedal robot decides on its own just by having 

information about the present state and switches to the next 

state without knowing the kinematics and dynamics of the 

system (Figure 7).  

 

 
 

Figure 7. Locomotion of bipedal robot 

 

When gyroscope senses the current values, helps the bipedal 

to reach to the goal point. The goal point for ankle joint, knee 

joint, and hip joint are 20°, 20°, and 15° respectively. Time 

taken to reach these goal angles depends on processor 

capabilities and not on kinematics and dynamics calculation. 

The reinforcement controller (Figure 8) controls the 

intermediate position of the joint between the start point and 

the target point. 

 

 
Figure 8. Simulink block diagram of RL controller 
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3. EXPERIMENTAL FINDINGS OF FORGETTING Q- 

LEARNING ALGORITHM 

 
The simulation of the bipedal was carried out and while 

learning and execution results are stored for future study. 

Firstly, the bipedal was learning in which exploration was the 

main aim while in execution exploitation was the aim.  

The algorithm is characterized by the following steps: 

(1) Q (s, a) updating rule  

(2) The function which evaluates action to be taken 

(3) Forgetting Mechanism  

(4) Randomness in reward depending on the current state of  

RL agent and goal state. 

The goal of the proposed work is to provide enhanced 

performance in a dynamic environment by utilizing 

exploration and exploitation which can maintain a larger set of 

the possible solution as compared to traditional Q-learning 

algorithm. 

The proposed work is carried out in steps including- object 

identification, object localization, learning by RL controller, 

and execution of the controller data.  

In the learning phase, bipedal is learning was tested for a 

different number of strides - 25, 50, 75, 100. The data obtained 

from learning was stored in two distinct ways: graphs and 

excel files/ lookup tables for future use. By comparing the 

strides, the data of 50, 75, and 100 showed stability in the 

number of iterations to learn for individual joint- hip, knee, 

and ankle of the bipedal.  

The joints started their learning from 51 as the maximum 

number of iterations in those it is exploring more as compared 

to exploiting and reduced the learning phase iterations to 21 as 

a minimum which explains the optimal selection of actions and 

the policy to be followed by the bipedal. This in turn reduces 

the learning time of the bipedal too. During the learning phase, 

the action selection which resulted in optimal/ near-optimal 

policy are stored in the lookup table, which is utilized in the 

execution phase when bipedal come across the same situation 

take the data from a lookup table using exploitation.   

In the execution phase, bipedal is executing from the current 

state for the different number of strides - 25, 50, 75, 100. The 

data obtained from execution was stored in two distinct ways: 

graphs and excel files/lookup tables for future use. By 

comparing the strides, the data of 50, 75, and 100 showed 

stability in the number of iterations to learn for individual 

joint- hip, knee, and ankle of the bipedal.  

The maximum number of iterations in the execution phase 

is 18 and minimum as 2 for each joint which reveals that the 

bipedal is using the learned data stored in the lookup tables 

and the excel files. The execution is jerk-free and is smooth 

and seems that the bipedal is walking fast. The execution time 

is not reduced as the time is utilized in searching in the table 

the current condition and if exist then reading and using that 

data in execution. The number of iterations is reducing but the 

execution time is almost the same as the learning time. For 

each run of the learning and execution phase, the mean random 

values are evaluated by taking the mean of the random values 

generated in each episode of all strides. For each run of the 

learning and execution phase, the total rewards are evaluated 

by summing up the rewards generated in each episode of all 

strides. 

The following figures reveal the above-stated points in 

graphical comparison.  

Figures 9, 10, 11 show a remarkable decrease in the number 

of iterations in the execution phase of the ankle, knee, and hip 

joint as compared to the number of iterations in the learning 

phase of the bipedal. 

 

 
 

Figure 9. Comparison of Ankle for 25, 50, 75, 100 strides 

 

 
 

Figure 10. Comparison of Knee for 25, 50, 75, 100 strides 

 

 
 

Figure 11. Comparison of Hip for 25, 50, 75, 100 strides 
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Figure 12. Comparison of ankle learning for 25, 50, 75, 100 

strides 

 

 
 

Figure 13. Comparison of ankle execution for 25, 50, 75, 

100 strides 

 

 
 

Figure 14. Comparison of hip learning for 25, 50, 75, 100 

strides 

 

 
 

Figure 15. Comparison of hip execution for 25, 50, 75, 100 

strides 

 

 
 

Figure 16. Comparison of knee learning for 25, 50, 75, 100 

strides 

 

 
 

Figure 17. Comparison of Knee execution for 25, 50, 75, 100 

strides 
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Figure 12 and 13 show the total time taken by the learning 

and execution phase of the ankle joint. As the graph reveals 

the number of strides increases the curves differ because of 

more time required to store optimal data in the lookup table in 

the learning phase and for searching and reading if required 

data exist in the lookup table in the execution phase. 

Figure 14 and 15 show the total time taken by the learning 

and the execution phase of the hip joint. As the graph reveals 

the number of strides increases the curves differ because of 

more time required to store optimal data in the lookup table in 

the learning phase and for searching and reading if required 

data exist in the lookup table in the execution phase. The 

maximum variations are in 100 stride case and some in 50 

stride execution phases as compared to the learning phase. 

Figure 16 and 17 show the total time taken by the learning 

and execution phase of the knee joint. As the graph reveals the 

number of strides increases the curves differ because of more 

time required to store optimal data in the lookup table in the 

learning phase and for searching and reading if required data 

exist in the lookup table in the execution phase. The maximum 

variations are in 50 strides and 100 strides. This irregular 

variation as compared to hip and ankle joint is due to the 

reason that the knee joint has maximum negative and positive 

values it can take (-45 to 45). The variation in the angle of the 

knee is maximum as compared to the hip and ankle while 

walking.  

 

 
 

Figure 18. Comparison of the learning phase of all three 

joints 

 

Figure 18 above and 19 below show the comparison of the 

learning phase and the execution phase of all the three joints 

simultaneously. In the learning phase, the variation in the three 

joints is more when the strides are 25 and 50 and mostly 

coincides when they reach 75 and 100 strides. This reveals as 

the stride increases the bipedal first explores the dynamic 

environment then after some strides start exploiting the 

optimal actions and policies for getting maximum rewards. 

The execution phase is using the lookup data which has the 

optimal action and policy stored but the variations are more 

sometimes for some abrupt cases. But for most of the cases, 

they are within the limit taking the minimum value to be 2 in 

the execution phase. These random nesses cannot be 

controlled in this work as the values are taken from the lookup 

table at the runtime which is not predefined. This shows that 

the reinforcement learning controller executes the step of gait 

by using data from the lookup table on the fly depending upon 

the random number of generations and the random reward 

generation. These values are calculated on the fly when the 

execution phase is in progress. 

 

 
 

Figure 19. Comparison of the execution phase of all three 

joints 

 

 

4. CONCLUSIONS 

 

The reinforcement controller is implemented to switch the 

bipedal robot from the current state to the next state, controller 

trains hip joint first then the knee joint is trained then training 

of ankle joint is carried out.  

The previous knowledge is not used to train the joints of 

biped as the knowledge is outdated as the environment is 

dynamic and uncertain. The training of biped depends on the 

dynamics of the system. Biped is trained and knowledge 

gained is used for exploration or exploitation steps which 

depends on the random value which is incorporated in the 

algorithm then after that the forgetting mechanism is also 

implemented by setting the value of variable large so that it 

forgets the old information and gains new states which depend 

on dynamics of the current system. The reward function is also 

not predefined or has constant value but it is calculated on the 

fly by evaluating the distance between the goal and the current 

state and doing some algebraic and exponential operations. 

The bipedal is trained not to stick in any position for more than 
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specific iterations of the training algorithm ie should be off the 

struck position in few seconds and also trained not to change 

its value drastically so that it would harm the hardware of the 

bipedal system like servomotor, sensors, etc by passing too 

high or too low values to the individual parts and should not 

stop abruptly that is standing still or fall.  

The bipedal has a limitation of the degree of freedom not 

considering the upper part (hand and shoulder joint) of the 

body which also plays an important role in the gait of bipedal. 

The execution phase is sometimes executing 18 iterations 

which require a considerable amount of time and show 

variations in the graph of rewards generation. This can be 

minimized more as in some cases it reached 2 iterations but 

not always.  
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