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 In recent years, many studies have been carried out to solve scheduling problems with 

dedicated machines. But, few of them have considered the case of more than two stages. 

This paper aims at filling this gap by addressing the three-stage hybrid flow shop 

scheduling problem with two dedicated machines in stage 3. The objective is to minimize 

the maximum completion time (makespan). Since the genetic algorithm is very effective 

at finding optimal solutions to a wide variety of problems, this paper proposes an improved 

genetic algorithm (IGA). It uses more than one crossover operator and is based on a local 

search method (2-opt). The impact of different control parameters and operators on the 

outcomes of the basic genetic algorithm has been firstly tested by means of computational 

experiments, which can help us to undertake some observed shortages when developing 

our improved genetic algorithm. The results with different problem configurations 

demonstrate the effectiveness of IGA for solving the three-stage scheduling problem with 

dedicated machines, with a mean percentage deviation from the lower bound that did not 

exceed 0.5% and a very reasonable computational time. Besides, the simulation results 

show that our improved GA model outperforms an existing heuristic approach that has 

been previously proposed in the academic literature to deal with the same problem. 
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1. INTRODUCTION 

 

The hybrid flow shop (HFS) scheduling problem may arise 

in a large class of real manufacturing environments. It is a 

combination of the flow shop where all products flow 

successively from one stage to the next, and the parallel shop 

where several machines are present in at least one stage to 

complete the associate manufacturing phase. The HFS 

problem consists in assigning jobs to parallel machines and 

sequencing the jobs assigned to the same machine. Scheduling 

in such an environment with two or more stages is NP -hard, 

even when there is one machine in the first stage and two 

identical machines in the second stage [1]. 

In this paper, we consider a special type of HFS scheduling 

problem: the hybrid flow shop with dedicated machines, where 

a machine is said to be dedicated to a specific job type if this 

job can be processed only on the corresponding machine that 

is dedicated to that job. 

In several industrial applications, dedicated machines 

consist to produce different types of a same basic product. For 

example, various types of products go through the same main 

operations of the production process, and then, they are 

processed on dedicated machines specific to each product type, 

such as in pharmaceutical industry, label sticker 

manufacturing [2], pottery production, furniture assembly [3], 

mass customization [3] and global manufacturing firms [4].  

In these real manufacturing environments, the most of 

organizations with dedicated machines are composed of at 

least three stages of production. And, the HFS with dedicated 

machines with two or more stages is NP-hard in the strong 

sense [5, 6]. 

Several studies have considered this particular type of 

problem. But, the majority of these studies have focused on the 

two-stage configurations. The first study in the HFS problem 

with dedicated machines was done by Herrmann and Lee [5]. 

They considered a two-stage HFS with one single machine in 

the first stage and two dedicated machines in the second stage 

and proved the NP-hardness of the problem for three objective 

functions: the makespan, the total completion time and the 

number of tardy jobs. Following their work, other studies 

considering two-stage configurations, are reported in the 

literature: 

Some studies have proposed exact methods [7-9]. Riane et 

al. [7] developed a dynamic program in order to solve a two-

stage hybrid flow shop problem with two dedicated machines 

in the second stage. Huang et al. [10] considered the same 

problem with constant setup times in the first stage. They 

examined the case where processing sequences of the two 

types of jobs are given and they proposed a dynamic 

programming algorithm. Hadda et al. [9] introduced a branch 

and bound method and presented a new dominance rule for 

this problem. Mosheiov et al. [8] proposed a linear integer 

program that minimizes the weighted number of tardy jobs in 

a two-stage HFS with m dedicated machines in the second 

stage.  

For the case of several dedicated machines in stage 1, a set 

of dominance rules are presented and different polynomial 

cases are proposed by Yang et al. [11, 12]. 

Other studies have proposed heuristic approaches [13-15]. 

For the case of two dedicated machines in the first stage, Oguz 
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et al. [15] considered the objective of minimizing the 

makespan and developed a heuristic approach based on the 

Johnson’s algorithm [16]. Yang [17] investigated the same 

problem with respect to the total completion time 

minimization. The author proposed an optimal solution for the 

case where the processing times on the single machine of stage 

2 are identical. Lin and Liao [2] studied the case of two-stage 

HFS with setup times and due dates in a label sticker 

manufacturing company. The aim was to minimize the 

weighted maximum tardiness of jobs. To solve the problem, 

the authors proposed a heuristic approach with combined rules.  

For more than two dedicated machines in the second stage, 

many heuristic approaches are developed in the papers [14, 15]. 

For the case of more than two stages, Riane et al. [18] 

considered a three-stage HFS with two dedicated machines in 

the second stage and one single machine in stages 1 and 3. 

They developed a dynamic programming-based heuristic and 

a branch and bound based heuristic. Ouled Bedhief et al. [19] 

studied the case of three-stage HFS with dedicated machines 

in stage 3. The authors studied a set of particular cases and 

proposed a heuristic approach for the general problem that is 

denoted by IH-DP.  

The literature review shows that the scheduling problem 

with dedicated machines with more than two stages is not 

widely studied. Thus, the lack of studies considering three 

stages represents a step that can be taken to obtain a more 

thorough view on the problem. Furthermore, the most of 

research on HFS with dedicated machines focus on the 

development of heuristics, and optimal solutions for particular 

cases of the problem. To the best of our knowledge, there is no 

report on metaheuristics for the three-stage HFS problem with 

dedicated machines.  

In this paper, we investigate the problem of minimizing the 

makespan in a three-stage hybrid flow shop with dedicated 

machines. It can be defined as follows: We consider a set 

J={1,2…n} of n jobs to be executed in a three-stage HFS 

where there is one single machine in each of stages 1 and 2, 

denoted as Mj, j={1,2} and two dedicated machines Dk, k={1,2} 

in stage 3. Each job i must be processed consecutively on M1, 

and M2, with a processing time pij,j={1,2} and depending on 

its type, it will be further processed on a dedicated machine Dk, 

with a processing time dpik, k={1,2}. The objective is to find a 

feasible schedule  𝜋 = (𝜋1, 𝜋2, … , 𝜋𝑛)  that minimizes the 

makespan (the maximum completion time) denoted by Cmax. 

For this problem, the set of permutation schedules is dominant 

[19]. Following the notation of 𝛼|𝛽|𝛾 proposed by Graham et 

al. [20], we denote this problem as 3FHD|1,1,2|Cmax. 

This problem appears from a real-life application that can 

be found in a liquid detergent industry. Figure 1 shows the 

schematic of its production process: The shop produces two 

types of products, which are sold in a local market or an export 

market. The products undergo three different operations: blow 

molding, filling and labeling.  

The workshop is composed of a unique blow molding 

machine. Then, the resulting bottles are transferred to the 

liquid filling machine in stage 2. The last operation consists on 

labeling. There are two dedicated machines able to label 

bottles sold in local and export markets (Figure 1).  

Due to the NP-hardness of the 3FHD|1,1,2|Cmax problem, it 

is more difficult to solve it using exact methods when the 

number of jobs increases. Thus, we need to develop efficient 

heuristics or metaheuristics to find good approximate 

solutions in a very reasonable computational time. In this 

paper, we propose a genetic algorithm, since this later is 

successfully applied for scheduling problems. 

The rest of the paper is organized as follows: 

Section 2 describes the implementation details of our basic 

genetic algorithm. Section 3 presents a set of computational 

experiments employed for evaluating the effects of control 

parameters and operators on the outcomes of this genetic 

algorithm. Based on these experiments, we propose in Section 

4, an improved genetic algorithm (IGA) to solve the problem. 

We further evaluate its performance to minimize the makespan. 

Finally, Section 5 concludes the paper. 

 

 
 

Figure 1. Schematic of the production process in a liquid 

detergent industry 

 

 

2. BASIC GENETIC ALGORITHM 

 

The genetic algorithm was originally proposed by Holland 

[21] and since, it was usually applied to solve many 

combinatorial optimization problems. This metaheuristic uses 

a set of solutions called a population that can be changed using 

different operators such as selection, crossover, mutation and 

insertion, to provide a high-quality solution.  

A solution is referred to as an individual or a chromosome. 

Each chromosome is composed of many genes, and a gene can 

also be identified as an allele. The process of a genetic 

algorithm begins with an initial population of a fixed number 

(population size) of individuals. Each individual of the 

population is evaluated by its fitness value which is related to 

the objective function of the problem. Then, using a selection 

method, the most fitted individuals in the population are 

selected as parents to create new individuals called offspring, 

according to crossover and mutation operators. These 

offspring are, next, reinserted into the current population based 

on their fitness and by keeping the population size. Such a 

process is reiterated until a stopping criterion is reached.  

In this paper, we use this general structure to construct our 

genetic algorithm. In the following, we present, in detail, the 

implementation of our basic genetic algorithm proposed for 

the 3FHD|1,1,2|Cmax problem.  

 

2.1 Solution encoding  

 

Many encoding approaches exist in the literature for solving 

scheduling problems. We distinguish between a direct and 

indirect representation. In this work, we consider a direct 

encoding representation, where a solution is directly encoded 

into the chromosome. Thus, a chromosome is a sequence (a 

permutation) of n jobs (1, 2 … n) corresponding to the job 

order in the three stages (See Figure 2). 
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Figure 2. A direct encoding representation  

 

2.2 Initial population 

 

The performance of a genetic algorithm depends on the 

initial population, which can be generated with different 

methods. In our genetic algorithm, the initial population is 

produced randomly to generate 𝑃𝑠𝑖𝑧𝑒  individuals, where the 

population size, 𝑃𝑠𝑖𝑧𝑒 , is one of the control parameters to be 

kept constant through the generations. In this work, we 

consider two population size values: 50 and 100, representing 

respectively a small population and a large population.  

 

2.3 Fitness 

 

The fitness value is related to the objective function of an 

individual. In this work, the fitness of an individual is defined 

by the makespan value (𝐶𝑚𝑎𝑥) of the corresponding schedule. 

 

2.4 Selection 

 

In the selection step, a set of individuals are selected from 

the current population to produce the offspring. Many 

selection methods are used in the literature for scheduling 

problems. In this study, we will focus on random, roulette 

wheel and tournament selection. 

- Random selection: It consists in selecting randomly the 

individuals (as parents) from the current population. 

- Roulette wheel selection: In this method, a roulette wheel 

with slots is used. Each slot is assigned to an individual of the 

population and sized proportional to its fitness value. Figure 3 

describes in detail the different steps of the roulette wheel 

selection. 

 

 
 

Figure 3. Steps of the roulette wheel selection 

 
 

Figure 4. Steps of the tournament selection 

 

-Tournament selection: This method has been introduced 

by Goldberg [22]. We select randomly k individuals from the 

current population and we select the best one to become a 

parent (Figure 4).  

In this study, we select 
𝑃𝑠𝑖𝑧𝑒

2
 individuals from the current 

population using one of these selection methods.  

The selected individuals form a population that we denote 

as 𝑃𝑜𝑝𝑠𝑒𝑙𝑒𝑐𝑡. Once the individuals are selected, the crossover 

and mutation operators are used to generate new offspring.  

 

2.5 Crossover 

 

Typically, the crossover is the main genetic operator on 

which the performance of a genetic algorithm is very 

dependent. The crossover operator recombines two selected 

individuals (parents) called Parent1 and Parent2 to produce 

two new individuals (offspring) called Child1 and Child2, 

according to a crossover probability Pcross.  

Several crossover operators have been proposed in the 

literature for scheduling problems. In this study, we choose 

four crossover operators, namely the One-Point Crossover 

(1X), Two-Point Crossover (2X), Order Crossover (OX) and 

Linear Order Crossover (LOX).  

Furthermore, we introduce a new crossover operator which 

is denoted by NOX (New Order Crossover). 

 

- One-point Crossover (1X):  

Given two parent chromosomes, a random cut point is 

selected partitioning them into left and right portions. The left 

section of Parent1 (Parent2) is transferred to Child1 (Child2), 

and its right section is completed with the missing jobs in the 

same order that they appear in Parent2 (Parent1). (See Figure 

5) 

 

- Two-point Crossover (2X):  

Given two parent chromosomes, two random cut points are 

selected partitioning them into a left, middle and right portions. 

The left and right sections of Parent1 (Parent2) are copied in 

Child1 (Child2), and its middle section is completed with the 

missing jobs in the same order that they appear in Parent2 

(Parent1). (See Figure 6) 

 

 
 

Figure 5. Crossover operator (1X) 
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Figure 6. Crossover operator (2X) 

 

 
 

Figure 7. Crossover operator (OX) 

 

  
 

Figure 8. Crossover operator (LOX) 

 

 
 

Figure 9. Crossover operator (NOX) 

 

- Order Crossover (OX):  

Given two parent chromosomes, two random cut points are 

selected partitioning them into left, middle and right portions. 

The middle section is copied from Parent1 (Parent2) into 

Child1 (Child2). The left and right sections are completed with 

the remaining jobs in the relative order of Parent2 (Parent1) 

starting after the second cut point. (See Figure 7) 

 

- Linear Order Crossover (LOX): 

Its procedure is similar to that of OX, with a slight 

modification: Once the substring between the two cut points is 

transferred from Parent1 (Parent2) to Child1 (Child2), this 

new job sequence genes is completed with the remaining jobs 

in the relative order of Parent2 (Parent1) starting from left to 

right. (See Figure 8) 

 

- New Order Crossover (NOX):  

The proposed crossover operator NOX combines the ideas 

of both OX and LOX.  

It determines randomly two cut points, and for generating 

an offspring, the substring between these two points is 

transferred from Parent1 (Parent2) to Child1 (Child2). Then, 

starting after the second cut point of Child1 (Child2), (as in 

OX), the empty genes are filled with the missing jobs in the 

relative order of Parent2 (Parent1) scanning from left to right 

(as in LOX). (See Figure 9) 

 

In this study, we consider two crossover probability values 

Pcross: 0.7 and 0.9, since similar values are usually used in 

genetic algorithms for HFS scheduling problems [23, 24]. All 

generated offspring form a population that we denote as 

POPchild. 

 

2.6 Mutation 

 

The use of a mutation helps the genetic algorithm to escape 

from a local minimum and prevents its premature convergence. 

The mutation is commonly used as a simple search operator 

which introduces a random gene or a chromosome change, 

according to a mutation probability 𝑃𝑚𝑢𝑡 .  

In this study, we consider two mutation operators: insertion 

and swap that are widely used in the literature for HFS 

scheduling problems [25]. 

 

- Insertion-mutation: This operator consists in selecting 

randomly a gene from the individual and inserting it in a 

random position. (See Figure 10) 

 

 
Figure 10. Mutation operator (Insertion) 

 

- Swap-mutation: This operator consists in selecting 

randomly two genes from the individual and exchanging their 

relative positions. (See Figure 11) 

 

 
 

Figure 11. Mutation operator (Swap) 

 

The mutation probability 𝑃𝑚𝑢𝑡 is frequently small and often 

is mentioned (0.01 ≤ 𝑃𝑚𝑢𝑡 ≤ 0.1). Hence, we tested, in this 

study, Pmut=0.05 and 0.1. 

 

2.7 Reinsertion method 

 

In many proposed genetic algorithms, the new populations 

can include both parents and generated offspring and the 

population size is kept constant through the generations. In this 

study, offspring are inserted into the current population based 

on their fitness value. All individuals (parents and offspring) 

should be ranged in increasing order of their fitness value and 

the best 𝑃𝑠𝑖𝑧𝑒  individuals are considered as the new population 

of the next generation. 

 

2.8 Stopping criterion 

 

Several stopping criteria are considered in the literature 

such as maximum time limit, maximum number of iterations 

(generations), and no improvement in the best objective 

function value.  

In this study, our genetic algorithm stops once the iteration 

number reaches the maximum number 𝐼𝑡𝑒𝑟𝑚𝑎𝑥, chosen as 200 

and 800.  

The control parameters and operators of our basic genetic 

algorithm and their modalities that will be used later are 

summarized in Table 1. 

The steps of our basic genetic algorithm can be described in 

the Figure 12 bellow. 
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Table 1. The parameters and operators used 

 
P

a
ra

m
et

er
s 

 

Population size: 𝑃𝑠𝑖𝑧𝑒 50; 100 

Crossover probability: 𝑃𝑐𝑟𝑜𝑠𝑠 0.7; 0.9 

Mutation probability: 𝑃𝑚𝑢𝑡 0.05; 0.1 

Maximum number of 

iterations: 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 
200; 800 

O
p

er
a

to
rs

  

Selection 
random, roulette wheel, 

tournament 

Crossover 1X; 2X; LOX; OX; NOX 

Mutation insertion; swap 

 

 
 

Figure 12. Steps of the basic genetic algorithm 

 

 

3. COMPUTATIONAL EXPERIMENTS 

 
In order to provide an efficient version of the genetic 

algorithm to the 3FHD|1,1,2|Cmax problem, we conduct many 

experiments.   

On one hand, we evaluate, separately, the effects of five 

crossover operators and two mutation operators on the 

outcomes of the basic genetic algorithm. We compare, for each 

selection method, the crossover operators without the mutation 

step, and we compare the mutation operators without the 

crossover step. In this case, the population size and the 

maximum number of iterations are fixed respectively at 100 

and 800.  

On the other hand, we study the interactive effects of the 

crossover and mutation operators on the performance of the 

genetic algorithm. We test several combinations of crossover 

and mutation operators under different problem sizes. Each 

combination is a version of the genetic algorithm. In this case, 

a preliminary computational test with factorial experiments 

design is performed to set the best values of the control 

parameters for each version of the genetic algorithm.  

Our genetic algorithm is implemented using C++ and 

obtained in a personal computer with an Intel 2.50 GHz CPU 

and 1.96 GB RAM. 

The results are presented in terms of mean percentage 

deviation MPD of the makespan from the lower bound.  

The MPD of an algorithm is defined as:  

 

𝑀𝑃𝐷 = ∑
𝑃𝐷(𝑖)

20

20

𝑖=1

 (1) 

 

where, PD(i) is the percentage deviation of instance i such as: 

 

𝑃𝐷(𝑖) =
[𝐶𝑚𝑎𝑥(𝑖)−𝐿𝐵(𝑖)]

𝐿𝐵(𝑖)
∗ 100  (2) 

 

We note that 𝐶𝑚𝑎𝑥(𝑖)  represents the makespan value 

obtained by the genetic algorithm for a problem instance i and 

LB(i) denotes the lower bound value of instance i, which is 

calculated as presented in the paper [19]. 

 

3.1 Data generation 

 

We carried out the computational experiments on five 

classes of test problems which are generated randomly. In each 

class, first and second-stage processing times are random 

integers from a uniform distribution from 1 to 20, denoted by 

𝑝𝑖1~𝑈[1,20]  and  𝑝𝑖2~𝑈[1,20 ]. The ease of finding a 

satisfying solution for the studied problem depends on whether 

there is a balance between average workloads of dedicated 

machines and the total workload on the single machines. 

Hence, the processing times of jobs on the dedicated machines 

are generated randomly from the following uniform 

distributions [19]:  

 

CLASS 1: 𝑑𝑝𝑖𝑘~𝑈[1,20]∀𝑘 ∈ {1,2}           

CLASS 2: 𝑑𝑝𝑖𝑘~𝑈[1,60]∀𝑘 ∈ {1,2}      

CLASS 3: 𝑑𝑝𝑖𝑘~𝑈[20,40]∀𝑘 ∈ {1,2} 

CLASS 4: 𝑑𝑝𝑖𝑘 = 𝑝𝑖2 + 5 with 𝑘 ∈ {1,2} 

CLASS 5: 𝑑𝑝𝑖𝑘 = 𝑝𝑖2 + 10 with ∀𝑘 ∈ {1,2} 

 

Moreover, each job has an integer parameter which defines 

its processing on the dedicated machine in stage 3. This 

parameter is chosen randomly between D1 and D2, since there 

is no preference between the two dedicated machines. Several 

instances of various sizes are generated 

(N=40,80120,160,200) for each of the five classes.  

 

3.2 A comparative study of crossover operators 

 

In this paragraph, we compare the performance of five 

crossover operators to minimize the makespan, without the 

mutation step.  

 

361



 

3.2.1 Computational results  

To conduct experiments, we set the crossover probability 

𝑃𝑐𝑟𝑜𝑠𝑠 to 0.9 and we set the mutation probability 𝑃𝑚𝑢𝑡 to 0. We 

recall that the crossover operators used in this study are 1X, 

2X, OX, LOX and NOX.  

The comparative results are shown in Figures 13-17 below. 

We note that this comparison is carried out for each problem 

size and selection method, where we generate 20 instances for 

each pair of operators (selection, crossover) and a problem size. 

For each instance, we evaluate the percentage deviation of the 

makespan from the lower bound, and the results are presented 

in terms of mean percentage deviation MPD for each class of 

test problems. Since the results are similar for all problem sizes, 

we present the comparative results of crossover operators for 

only a problem size equal to 120 jobs (Figures 13-17). 

 

 
 

Figure 13. Comparison of crossover operators for CLASS 1 

problems 

 

 
 

Figure 14. Comparison of crossover operators for CLASS 2 

problems 

 

 
 

Figure 15. Comparison of crossover operators for CLASS 3 

problems 

 
 

Figure 16. Comparison of crossover operators for CLASS 4 

problems 

 

 
 

Figure 17. Comparison of crossover operators for CLASS 5 

problems 

 

3.2.2 Discussion 

The results show, firstly, that 2X is worse than all other 

crossover operators for solving the 3FHD|1,1,2|Cmax problem, 

where it gives the largest mean percentage deviation of the 

Cmax value from the lower bound. In fact, the makespan 

calculation, in our case study, is mainly conditioned by the 

choice of jobs to be placed at the beginning of the sequence 

and the idle-time that can be produced. And, it is also 

conditioned by the choice of jobs to be placed at the end of the 

sequence and the time that can be taken to finish the last 

operations. However, by preserving the beginning and the end 

of the sequence, the modification proposed by 2X is not 

relevant and often does not make an improvement in the 

makespan. 

Furthermore, we can observe that for all cases of test 

problems, the roulette wheel selection outperforms 

tournament and random selection methods achieving best 

solution quality. Indeed, in the roulette wheel selection, 

individuals with higher fitness have more probability of 

selection, but it can be also possible to select low fit 

individuals, which may ensure certain heterogeneity and avoid 

the premature convergence of our algorithm as problem size 

increases.  

According to these results, we limit our choice, in the 

genetic algorithm, to the roulette wheel as the selection 

method and we exclude the 2X crossover operator.  

On the other hand, it is observed that the respective 

performances of the crossover operators (1X, OX, LOX and 

NOX) depend on the type of data. We find that the best 

crossover operator for CLASS 1 is 1X with a mean percentage 

deviation equal to 0.37%. For all cases of CLASS 3, CLASS 

4 and CLASS 5, the proposed operator NOX outperforms the 
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other crossover operators in finding near optimal solution, 

where the MPD values do not exceed 0.67%. While for 

CLASS 2, we find that LOX performs the best with a mean 

percentage deviation equal to 0.47%. 

 

3.3 A comparative study of mutation operators 

 

In this paragraph, we compare the performance of two 

mutation operators to minimize the makespan, without the 

crossover step.  

 

3.3.1 Computational results 

To conduct experiments, we set the mutation probability 

Pmut to 0.9 and we set the crossover probability Pcross to 0. 

We recall that the mutation operators used in this study are 

insertion and swap.  

The comparative results are shown in Figures 18-22 below. 
 

 
 

Figure 18. Comparison of mutation operators for CLASS 1 

problems 
 

 
 

Figure 19. Comparison of mutation operators for CLASS 2 

problems 

 

 
 

Figure 20. Comparison of mutation operators for CLASS 3 

problems 

 
 

Figure 21. Comparison of mutation operators for CLASS 4 

problems 

 

 
 

Figure 22. Comparison of mutation operators for CLASS 5 

problems 

 

As well, the comparison is carried out for each problem size 

and selection method. We generate 20 instances for each pair 

of operators (selection, mutation) and a problem size. For each 

instance, we evaluate the percentage deviation of the 

makespan from the lower bound and the results are presented 

in terms of mean percentage deviation MPD for each class 

problems. Since the results are similar for all problem sizes, 

we present the comparative results of mutation operators for a 

problem size equal to 160 jobs (as shown in Figures 18-22 

above). 

 

3.3.2 Discussion 

The simulation results show again that the roulette wheel 

selection outperforms tournament and random selection 

methods in terms of mean percentage deviation of the solution 

from the lower bound. Indeed, MPD values do not exceed 

0.95% for the roulette wheel selection while, it can reach 

2.13% for tournament and random methods.  

Hence, we conclude that the roulette wheel selection 

method is the most suitable for solving the 3FHD|1,1,2|Cmax 

problem.  

We can further observe that both of swap and insertion are 

effective to solve the problem, but in almost all cases, swap 

results are slightly better. 

 

3.4 The interactive effects of crossover and mutation 

operators 

 

In this section, we evaluate the interactive effects of 

crossover and mutation operators on the performance of the 

basic genetic algorithm. The objective is to determine the most 

appropriate combination of crossover and mutation operators 
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for solving the 3FHD|1,1,2|Cmax problem. In this 

computational study, we use only NOX, LOX and 1X as 

crossover operators since each of them takes a first place for 

solving a given class problems, and we use insertion and swap 

as mutation operators. Also, we use the roulette wheel 

selection method since it gives the best results for all class 

problems. This means that we will run six versions of the 

proposed genetic algorithm. We will refer to these algorithms 

as 1X/insertion; 1X/swap; NOX/insertion; NOX /swap; LOX 

/insertion; and LOX /swap according to the genetic operators 

used in each of them.  

 

3.4.1 Preliminary results 

The performance of the six versions of the genetic algorithm 

depends on the determination of the control parameters used, 

which are the population size, crossover probability, mutation 

probability and maximum number of iterations (generations). 

In this paragraph, we seek to determine the suitable values of 

these control parameters for each version of the genetic 

algorithm.  

Thus, before describing the computational results obtained 

for these genetic algorithms, we analyze their parameter 

setting. In this study, we use a factorial design of experiments, 

which has been very beneficial to design several metaheuristic 

approaches for solving scheduling problems. It consists to 

investigate the effects of different control parameters (input) 

on the results (output) and to choose the optimal values of 

these parameters. The factorial design of experiments that we 

use involves four parameters (factors), each having two 

possible values, such as Psize=50 and 100, Pcross=0.7 and 0.9, 

Pmut=0.05 and 0.1 and Itermax=200 and 800. The Combination 

of these parameters results in 2Χ2Χ2Χ2Χ2=16 runs for each 

genetic algorithm. In order to determine the best combination 

of parameters for each version of the proposed genetic 

algorithm, we consider CLASS 5. For each of the 16 runs, we 

generate randomly 10 instances of CLASS 5 with n=80. Hence, 

a total number of 16Χ10Χ6=960 runs are made in our 

preliminary computational experiments. Table 2 presents the 

parameter setting of each version of the genetic algorithm. The 

results are presented in terms of mean percentage deviation of 

the solution from the lower bound. 

As it is seen in Table 2, the best parameter combination that 

obtains the smallest MPD is selected for each version of the 

genetic algorithm. Indeed, we find that the best combination 

for 1X/swap, NOX /swap and LOX /swap is Psize=100, 

Pcross=0.9, Pmut=0.1 and Itermax=800. For 1X/insertion and 

NOX/insertion, the best parameter combination is Psize=100, 

Pcross=0.7, Pmut=0.1 and Itermax=800. And, for LOX/ insertion, 

the best parameter combination is Psize=100, Pcross=0.7, 

Pmut=0.1 and Itermax=800. These parameter combinations will 

be used in the following computational experiments.  

 

3.4.2 Computational results 

This computational study aims to test the effects of different 

combinations of crossover and mutations operators on the 

performance of the basic genetic algorithm under different 

types of data. And thus, it is to determine the most appropriate 

combination of these genetic operators for solving the 

3FHD|1,1,2|Cmax problem. The comparison of these 

combinations (versions of the genetic algorithm) is presented 

in Tables 3-7. The last column presents the average of CPU 

time of the six genetic algorithms.  

 

Table 2. The computational results for parameter setting for each version of the basic genetic algorithm 

 
Parameter Combination  

(𝑷𝒔𝒊𝒛𝒆; 𝑷𝒄𝒓𝒐𝒔𝒔; 𝑷𝒎𝒖𝒕; 𝑰𝒕𝒆𝒓𝒎𝒂𝒙) 

Mean Percentage Deviation MPD (%) 

NOX/ swap NOX/ insertion LOX/ swap LOX/ insertion 1X/ swap 1X/ Insertion 

50;0.7; 0.05; 200 1,28 1,45 0,96 1,08 1,16 1,12 

50; 0.7; 0.05; 800 1,16 0,88 0,72 0,70 0,77 0,76 

50; 0.7; 0.1; 200 1,20 1,23 0,99 1,21 1,28 1,08 

50; 0.7; 0.1; 800 0,89 0,95 0,72 0,66 0,69 0,75 

50; 0.9; 0.05; 200 1,25 1,33 1,04 0,82 1,40 1,10 

50; 0.9; 0.05; 800 0,92 1,04 0,64 0,58 0,99 0,91 

50; 0.9; 0.1; 200 1,32 1,25 1,04 1,02 1,27 1,26 

50; 0.9; 0.1; 800 0,92 0,97 0,64 0,74 0,79 0,89 

100; 0.7; 0.05; 200 1,19 1,26 0,99 0,89 1,14 1,27 

100; 0.7: 0.05; 800 0,83 0,91 0,77 0,64 0,92 0,95 

100; 0.7; 0.1; 200 1,17 1,16 1,02 0,86 0,93 0,99 

100; 0.7; 0.1; 800 0,84 0,77 0,72 0,59 0,48 0,61 

100; 0.9; 0.05; 200 1,22 1,29 0,86 0,88 0,90 1,20 

100; 0.9; 0.05; 800 1,00 0,93 0,72 0,53 0,48 0,97 

100; 0.9; 0.1; 200 1,08 1,21 0,88 1,07 0,92 1,07 

100; 0.9; 0.1; 800 0,83 0,87 0,63 0,69 0,46 0,61 

 

Table 3. Computational results of six genetic algorithms for CLASS 1 problems 

 

CLASS 1 

MPD (%) 
Average CPU time 

of GAs(s) 
1X/insertio

n 
LOX/insertion 

NOX/insertio

n  
1X/swap LOX/swap 

NOX/ 

swap 

n=40 0.08 0.09 0.12 0.09 0.09 0.07 220.3 

n=80 0.01 0.03 0.01 0.01 0.01 0.00 74.24 

n=120 0.02 0.03 0.02 0.02 0.01 0.01 98.54 

n=160 0.01 0.04 0.03 0.01 0.04 0.03 130.9 

n=200 0.03 0.05 0.04 0.02 0.04 0.02 156.1 
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Table 4. Computational results of six genetic algorithms for CLASS 2 problems 

 

CLASS 2 
MPD (%) Average CPU 

time of GAs(s) 1X/Insertion LOX/Insertion NOX/Insertion  1X/swap LOX/swap NOX/swap 

n=40 0.07 0.06 0.07 0.06 0.05 0.02 123.4 

n=80 0.06 0.04 0.02 0.02 0.02 0.02 87.23 

n=120 0.04 0.01 0.01 0.03 0.01 0.01 60.48 

n=160 0.03 0.004 0.004 0.004 0.004 0.004 66.31 

n=200 0.07 0.01 0.01 0.04 0.01 0.01 89.08 

 

Table 5. Computational results of six genetic algorithms for CLASS 3 problems 

 

CLASS 3 
MPD (%) Average CPU 

time of GAs(s) 1X/Insertion LOX/Insertion NOX/Insertion  1X/swap LOX/swap NOX/swap 

n=40 0.00 0.00 0.00 0.00 0.00 0.00 58.03 

n=80 0.04 0.004 0.00 0.004 0.00 0.00 77.50 

n=120 0.04 0.00 0.00 0.01 0.00 0.00 82.12 

n=160 0.04 0.01 0.01 0.04 0.01 0.01 85.34 

n=200 0.06 0.01 0.01 0.03 0.007 0.005 96.00 

 

Table 6. Computational results of six genetic algorithms for CLASS 4 problems 

 

CLASS 4 
MPD (%) Average CPU 

time of GAs(s) 1X/ Insertion LOX/ Insertion NOX/ Insertion  1X/swap LOX/swap NOX/swap 

n=40 0.68 0.77 0.81 0.68 0.58 0.81 2346 

n=80 0.30 0.32 0.44 0.29 0.32 0.36 2422 

n=120 0.15 0.18 0.22 0.15 0.17 0.18 2615 

n=160 0.18 0.16 0.19 0.16 0.13 0.19 1546 

n=200 0.05 0.07 0.08 0.05 0.07 0.08 723 

 

Table 7. Computational results of six genetic algorithms for CLASS 5 problems 

 

CLASS 5 
MPD (%) Average CPU 

time of GAs(s) 1X/insertion LOX/insertion NOX/insertion  1X/ swap LOX/swap NOX/swap 

n=40 1.62 1.73 1.82 1.25 1.45 1.67 2400 

n=80 0.61 0.69 0.87 0.57 0.64 0.85 2612 

n=120 0.38 0.21 0.45 0.25 0.21 0.50 2753 

n=160 0.37 0.30 0.46 0.31 0.27 0.46 3020 

n=200 0.31 0.20 0.27 0.25 0.20 0.27 3554 

 

3.4.3 Discussion 

The computational results show that the combination of 

crossover and mutation operators has a significant impact on 

the outcomes of the basic genetic algorithm, as the later 

performs better than a genetic algorithm running with only a 

crossover or a mutation operator. Also, for each crossover 

operator, it can be observed that the genetic algorithm which 

uses swap as a mutation operator performs better than the 

genetic algorithm which uses insertion, in terms of the mean 

percentage deviation (MPD). 

Comparing the results of the six genetic algorithms, we 

notice that all of them are effective to solve the problem, as 

shown in Tables 3-7, where MPD values do not exceed 1.82%. 

However, we observe that for all problem cases of CLASS 1, 

CLASS 2 and CLASS 3, NOX/swap outperforms all other 

combinations of crossover and mutation operators, with a 

mean percentage deviation that does not exceed 0.07%. For 

CLASS 4 and CLASS 5, the best results are being shared 

between 1X/swap and LOX/swap with a mean percentage 

deviation that does not exceed respectively 1.25% and 1.45%.  

Considering the results per problem class, we can see from 

Tables 3, 4 and 5, that for all instances of CLASS 1 and 

CLASS 2, MPD values of all genetic algorithms are very close 

to zero and do not exceed 0.12% while in almost all cases of 

CLASS 3, the MPD values are zero. This means that CLASS 

1, CLASS 2 and CLASS 3 are relatively easy to solve by this 

genetic algorithm. However, CLASS 4 and CLASS 5, whose 

results are presented respectively in Tables 6 and 7, are more 

difficult as MPD values are the largest reaching 1.67%. 

Nevertheless, for most cases of such classes, MPD values of 

the genetic algorithms are slightly smaller in CLASS 4 than 

those in CLASS 5. 

Tables 3-7 also present the average CPU times for solving 

the 3FHD|1,1,2|Cmax problem. For CLASS 1, CLASS 2 and 

CLASS 3, the CPU times are smaller than those of CLASS 4 

and CLASS 5, since all genetic algorithms stop running once 

the best solution reaches the lower bound or once the iteration 

number reaches the maximum number. In general, the CPU 

times of the six different genetic algorithms are similar: As the 

number of jobs 𝑛 increases, the average CPU time increases 

for almost cases. This is an expect result due to the increasing 

search space.  

These computational experiments allow us to set the control 

parameters of the basic genetic algorithm and to choose its 

different operators for each class problems. These parameters 

and operators can be summarized as follows:  

 

• Controls parameters:  

- Population size:100 

- Crossover probability:0.9 

- Mutation probability:0.1 

- Maximum number of iterations:800 
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• Operators: 

- Selection method: Roulette wheel selection 

- Crossover operator: 1X, NOX and LOX 

- Mutation operator: swap 

 

In order to determine the crossover operator to use in our 

genetic algorithm, we examined the behavior of each of 1X, 

LOX and NOX by studying the evolution of the percentage 

deviation of the best solution (individual) within 800 iterations 

(generations). The Figures 23, 24 and 25 present, respectively, 

the evolution of the best solution obtained with LOX/swap, 

1X/swap and NOX/swap within 800 iterations for a given 

instance.  

 

 
 

Figure 23. Evolution of the best individual within 800 

generations for LOX/swap 

 
 

Figure 24. Evolution of the best individual within 800 

generations for 1X/swap 

 

 
 

Figure 25. Evolution of the best individual within 800 

generations for NOX/swap 

The results show that the best solution, most often, is going 

to stagnate for several iterations, after which it changes. The 

stagnation of the makespan may be justified by the repetitive 

application of the same crossover operator which may allow 

the genetic algorithm stagnates and converges, in most cases, 

to a local minimum. 

With the aim to obtain a better solution in a reasonable 

computational, we propose an improved genetic algorithm that 

we denote by IGA. It uses more than one crossover operator 

and a local search method (2-opt).  

Next, we present in details our improved genetic algorithm 

for solving the 3FHD|1,1,2|Cmax problem. 

 

 

4. IMPROVED GENETIC ALGORITHM (IGA)  

 

In this section, we propose an improved genetic algorithm 

(IGA) to solve the problem. It is a solution to escape the 

stagnation of the makespan and provides a good compromise 

between solution quality and computational time.  

In this genetic algorithm, we don’t limit ourselves to only 

one crossover operator. In fact, due to the performance of LOX, 

1X and NOX to solve the problem, we use all of them to build 

the new offspring: in this algorithm, we propose to change the 

current crossover operator when the value of the makespan of 

the best individual stagnates for 10 iterations. We start our 

algorithm with NOX and when the makespan of the best 

individual remains constant for 10 iterations, we change the 

operator NOX to 1X. We continue the iterations with the new 

operator as long as the value of the best makespan does not 

change for at most 10 iterations. Otherwise, we change the 

crossover operator to LOX. This logic is repeated as long as 

the maximum number of iterations has not been reached and 

the value of the best makespan has remained constant for more 

than 10 iterations.  

We also introduce a local search mechanism in order to 

explore new regions of the search space and thus, to avoid the 

stagnation of the makespan. If the makespan of the best 

individual remains constant for 30 iterations, then we generate 

the new population as follows: each individual in the current 

population undergoes a local search through a 2-Opt method, 

and the new individual replaces the old one in the new 

population.  

The 2-Opt algorithm is applied as follows: It starts with an 

initial solution S, which is considered as a current solution at 

the first iteration. Then, we use a 2-opt exchange operator to 

generate a new solution S', from S. This one is compared with 

the current solution. If it is better, then it is accepted and is 

used as a current solution in the next iteration. Otherwise, the 

candidate solution is rejected and we carry out the next 

iteration with the same current solution. The search continues 

until a stopping criterion is satisfied. Notice that the stopping 

criterion of the 2-Opt algorithm is the maximum number of 

iterations fixed as n(n-1)/2, with n is the problem size. 

In our opinion, the choice of switching from one crossover 

operator to another and introducing a population renewal with 

a 2-Opt method may be a solution to avoid the stagnation of 

the makespan and thus, a good quality solution can be reached 

before the 800th iteration. Taking this into account and for the 

case where the makespan of the best individual does not 

change for 100 iterations, the genetic algorithm (IGA) stops.  
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4.1 Computational results 

 

In this section, many experiments are conducted to evaluate 

the performance of the improved genetic algorithm IGA. 

We present, firstly, the new evolution of the best solution 

obtained with IGA for the same instance tested above (Figure 

26).  

 

 
 

Figure 26. Evolution of the best solution obtained with IGA 

 

The Figure 26 shows that IGA found rapidly the optimal 

solution, and the phenomenon of the stagnation of the 

makespan was avoided.  

In the following, we report the computational results of the 

improved genetic algorithm (IGA) in comparison with the 

heuristic approach IH-DP of Ouled Bedhief et al. [19] which 

is proposed for the same problem. Tables 8 and 9 present 

respectively the mean percentage deviation of the two methods 

and their average CPU time.  

 

4.2 Discussion  

 

The results show that the improved genetic algorithm IGA 

can obtain, in all cases, optimal or vey near optimal solutions 

for the 3FHD|1, 1, 2 |Cmax  problem. Also, it performs better 

than IH-DP [19] in terms of the mean percentage deviation of 

Cmax from the lower bound, in all cases of test problems. IGA 

can find solutions whose MPD values do not exceed 0.48%, 

while, it can reach 1.28% for IH-DP [19]. We further note that 

the maximum CPU time spent among all application data by 

the genetic algorithm IGA is 825 seconds. Thus, the choice of 

stopping the genetic algorithm after 100 iterations, when the 

makespan of the best individual remains constant, has greatly 

reduced the computational time, keeping a very good quality 

of solutions. However, we find that the computational time of 

IGA is still greater than that of IH-DP [19], which runs in few 

seconds. 

 

Table 8. Mean Percentage Deviation of IGA and IH-DP algorithms 

 
MPD (%) 

 n=40 n=80 n=120 n=160 n=200 

 IH-DP IGA IH-DP IGA IH-DP IGA IH-DP IGA IH-DP IGA 

CLASS 1 0.04 0.02 0.01 0.00 0.02 0.00 0.02 0.00 0.00 0.00 

CLASS 2 0.08 0.03 0.04 0.004 0.02 0.00 0.08 0.01 0.05 0.005 

CLASS 3 0.17 0.00 0.11 0.00 0.08 0.00 0.07 0.00 0.07 0.00 

CLASS 4 0.80 0.48 0.65 0.21 0.37 0.17 0.60 0.12 0.32 0.10 

CLASS 5 1.28 0.37 0.72 0.20 0.71 0.04 0.78 0.05 0.74 0.07 

 

Table 9. Average CPU time of IGA and IH-DP algorithms 

 
CPU (seconds) 

 n=40 n=80 n=120 n=160 n=200 

 IH-DP IGA IH-DP IGA IH-DP IGA IH-DP IGA IH-DP IGA 

CLASS 1 1 77 10 134 38 206 104 320 217 313 

CLASS 2 1 53 11 55 39 60 103 225 216 205 

CLASS 3 1 21 11 66 42 53 112 107 234 152 

CLASS 4 1 296 14 334 41 434 105 601 238 825 

CLASS 5 1 219 15 300 42 276 108 370 238 545 

 

 

5. CONCLUSION 

 

In this paper, we have dealt with the three-stage hybrid flow 

shop problem with two single machines in the first and second 

stages, and two dedicated machines in stage three. Considering 

the NP-hardness of the problem, a basic genetic algorithm was 

proposed. Many comparative studies were considered to 

measure the impact of different controls parameters and 

operators on the outcomes of the genetic algorithm. And, the 

emanating results motivated us to develop an improved 

version (IGA) of the existing genetic algorithm model to help 

to undertake some observed shortages. 

The computational results indicated that IGA is a promising 

and very effective method for solving the three-stage HFS with 

dedicated machines. Besides, the simulation results were 

compared with an existing heuristic approach (IH-DP) that has 

been previously proposed in the academic literature to deal 

with the same problem. The results proved that IGA 

outperforms IH-DP with a mean percentage deviation that did 

not exceed 0.5% and a very reasonable computational time.  

For future research, on one hand, we are interested in 

analyzing the effects of more realistic situations on the 

performance of our proposed genetic algorithm (IGA), such as 

multiple stages and multiple machines in each stage.  On the 

other hand, other crossover operators or mutation operators 

could be embedded and tested, or other metaheuristic 

algorithms, such as ant colony optimization (ACO), or tabu 

search could be assessed to solve the problem. 
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