

A Genetic Algorithm for Three-Stage Hybrid Flow Shop Scheduling Problem with

Dedicated Machines

Asma Ouled Bedhief*, Najoua Dridi

Department of Industrial Engineering, National Engineering School of Tunis, University of Tunis El Manar, Tunis 1002,

Tunisia

Corresponding Author Email: asma.ouledbedhief@enit.utm.tn

https://doi.org/10.18280/jesa.530306

ABSTRACT

Received: 26 May 2020

Accepted: 14 June 2020

 In recent years, many studies have been carried out to solve scheduling problems with

dedicated machines. But, few of them have considered the case of more than two stages.

This paper aims at filling this gap by addressing the three-stage hybrid flow shop

scheduling problem with two dedicated machines in stage 3. The objective is to minimize

the maximum completion time (makespan). Since the genetic algorithm is very effective

at finding optimal solutions to a wide variety of problems, this paper proposes an improved

genetic algorithm (IGA). It uses more than one crossover operator and is based on a local

search method (2-opt). The impact of different control parameters and operators on the

outcomes of the basic genetic algorithm has been firstly tested by means of computational

experiments, which can help us to undertake some observed shortages when developing

our improved genetic algorithm. The results with different problem configurations

demonstrate the effectiveness of IGA for solving the three-stage scheduling problem with

dedicated machines, with a mean percentage deviation from the lower bound that did not

exceed 0.5% and a very reasonable computational time. Besides, the simulation results

show that our improved GA model outperforms an existing heuristic approach that has

been previously proposed in the academic literature to deal with the same problem.

Keywords:

flow shop, dedicated machines, genetic

algorithm, crossover, mutation, local search

1. INTRODUCTION

The hybrid flow shop (HFS) scheduling problem may arise

in a large class of real manufacturing environments. It is a

combination of the flow shop where all products flow

successively from one stage to the next, and the parallel shop

where several machines are present in at least one stage to

complete the associate manufacturing phase. The HFS

problem consists in assigning jobs to parallel machines and

sequencing the jobs assigned to the same machine. Scheduling

in such an environment with two or more stages is NP -hard,

even when there is one machine in the first stage and two

identical machines in the second stage [1].

In this paper, we consider a special type of HFS scheduling

problem: the hybrid flow shop with dedicated machines, where

a machine is said to be dedicated to a specific job type if this

job can be processed only on the corresponding machine that

is dedicated to that job.

In several industrial applications, dedicated machines

consist to produce different types of a same basic product. For

example, various types of products go through the same main

operations of the production process, and then, they are

processed on dedicated machines specific to each product type,

such as in pharmaceutical industry, label sticker

manufacturing [2], pottery production, furniture assembly [3],

mass customization [3] and global manufacturing firms [4].

In these real manufacturing environments, the most of

organizations with dedicated machines are composed of at

least three stages of production. And, the HFS with dedicated

machines with two or more stages is NP-hard in the strong

sense [5, 6].

Several studies have considered this particular type of

problem. But, the majority of these studies have focused on the

two-stage configurations. The first study in the HFS problem

with dedicated machines was done by Herrmann and Lee [5].

They considered a two-stage HFS with one single machine in

the first stage and two dedicated machines in the second stage

and proved the NP-hardness of the problem for three objective

functions: the makespan, the total completion time and the

number of tardy jobs. Following their work, other studies

considering two-stage configurations, are reported in the

literature:

Some studies have proposed exact methods [7-9]. Riane et

al. [7] developed a dynamic program in order to solve a two-

stage hybrid flow shop problem with two dedicated machines

in the second stage. Huang et al. [10] considered the same

problem with constant setup times in the first stage. They

examined the case where processing sequences of the two

types of jobs are given and they proposed a dynamic

programming algorithm. Hadda et al. [9] introduced a branch

and bound method and presented a new dominance rule for

this problem. Mosheiov et al. [8] proposed a linear integer

program that minimizes the weighted number of tardy jobs in

a two-stage HFS with m dedicated machines in the second

stage.

For the case of several dedicated machines in stage 1, a set

of dominance rules are presented and different polynomial

cases are proposed by Yang et al. [11, 12].

Other studies have proposed heuristic approaches [13-15].

For the case of two dedicated machines in the first stage, Oguz

Journal Européen des Systèmes Automatisés
Vol. 53, No. 3, June, 2020, pp. 357-368

Journal homepage: http://iieta.org/journals/jesa

357

https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.530306&domain=pdf

et al. [15] considered the objective of minimizing the

makespan and developed a heuristic approach based on the

Johnson’s algorithm [16]. Yang [17] investigated the same

problem with respect to the total completion time

minimization. The author proposed an optimal solution for the

case where the processing times on the single machine of stage

2 are identical. Lin and Liao [2] studied the case of two-stage

HFS with setup times and due dates in a label sticker

manufacturing company. The aim was to minimize the

weighted maximum tardiness of jobs. To solve the problem,

the authors proposed a heuristic approach with combined rules.

For more than two dedicated machines in the second stage,

many heuristic approaches are developed in the papers [14, 15].

For the case of more than two stages, Riane et al. [18]

considered a three-stage HFS with two dedicated machines in

the second stage and one single machine in stages 1 and 3.

They developed a dynamic programming-based heuristic and

a branch and bound based heuristic. Ouled Bedhief et al. [19]

studied the case of three-stage HFS with dedicated machines

in stage 3. The authors studied a set of particular cases and

proposed a heuristic approach for the general problem that is

denoted by IH-DP.

The literature review shows that the scheduling problem

with dedicated machines with more than two stages is not

widely studied. Thus, the lack of studies considering three

stages represents a step that can be taken to obtain a more

thorough view on the problem. Furthermore, the most of

research on HFS with dedicated machines focus on the

development of heuristics, and optimal solutions for particular

cases of the problem. To the best of our knowledge, there is no

report on metaheuristics for the three-stage HFS problem with

dedicated machines.

In this paper, we investigate the problem of minimizing the

makespan in a three-stage hybrid flow shop with dedicated

machines. It can be defined as follows: We consider a set

J={1,2…n} of n jobs to be executed in a three-stage HFS

where there is one single machine in each of stages 1 and 2,

denoted as Mj, j={1,2} and two dedicated machines Dk, k={1,2}

in stage 3. Each job i must be processed consecutively on M1,

and M2, with a processing time pij,j={1,2} and depending on

its type, it will be further processed on a dedicated machine Dk,

with a processing time dpik, k={1,2}. The objective is to find a

feasible schedule 𝜋 = (𝜋1, 𝜋2, … , 𝜋𝑛) that minimizes the

makespan (the maximum completion time) denoted by Cmax.

For this problem, the set of permutation schedules is dominant

[19]. Following the notation of 𝛼|𝛽|𝛾 proposed by Graham et

al. [20], we denote this problem as 3FHD|1,1,2|Cmax.

This problem appears from a real-life application that can

be found in a liquid detergent industry. Figure 1 shows the

schematic of its production process: The shop produces two

types of products, which are sold in a local market or an export

market. The products undergo three different operations: blow

molding, filling and labeling.

The workshop is composed of a unique blow molding

machine. Then, the resulting bottles are transferred to the

liquid filling machine in stage 2. The last operation consists on

labeling. There are two dedicated machines able to label

bottles sold in local and export markets (Figure 1).

Due to the NP-hardness of the 3FHD|1,1,2|Cmax problem, it

is more difficult to solve it using exact methods when the

number of jobs increases. Thus, we need to develop efficient

heuristics or metaheuristics to find good approximate

solutions in a very reasonable computational time. In this

paper, we propose a genetic algorithm, since this later is

successfully applied for scheduling problems.

The rest of the paper is organized as follows:

Section 2 describes the implementation details of our basic

genetic algorithm. Section 3 presents a set of computational

experiments employed for evaluating the effects of control

parameters and operators on the outcomes of this genetic

algorithm. Based on these experiments, we propose in Section

4, an improved genetic algorithm (IGA) to solve the problem.

We further evaluate its performance to minimize the makespan.

Finally, Section 5 concludes the paper.

Figure 1. Schematic of the production process in a liquid

detergent industry

2. BASIC GENETIC ALGORITHM

The genetic algorithm was originally proposed by Holland

[21] and since, it was usually applied to solve many

combinatorial optimization problems. This metaheuristic uses

a set of solutions called a population that can be changed using

different operators such as selection, crossover, mutation and

insertion, to provide a high-quality solution.

A solution is referred to as an individual or a chromosome.

Each chromosome is composed of many genes, and a gene can

also be identified as an allele. The process of a genetic

algorithm begins with an initial population of a fixed number

(population size) of individuals. Each individual of the

population is evaluated by its fitness value which is related to

the objective function of the problem. Then, using a selection

method, the most fitted individuals in the population are

selected as parents to create new individuals called offspring,

according to crossover and mutation operators. These

offspring are, next, reinserted into the current population based

on their fitness and by keeping the population size. Such a

process is reiterated until a stopping criterion is reached.

In this paper, we use this general structure to construct our

genetic algorithm. In the following, we present, in detail, the

implementation of our basic genetic algorithm proposed for

the 3FHD|1,1,2|Cmax problem.

2.1 Solution encoding

Many encoding approaches exist in the literature for solving

scheduling problems. We distinguish between a direct and

indirect representation. In this work, we consider a direct

encoding representation, where a solution is directly encoded

into the chromosome. Thus, a chromosome is a sequence (a

permutation) of n jobs (1, 2 … n) corresponding to the job

order in the three stages (See Figure 2).

358

Figure 2. A direct encoding representation

2.2 Initial population

The performance of a genetic algorithm depends on the

initial population, which can be generated with different

methods. In our genetic algorithm, the initial population is

produced randomly to generate 𝑃𝑠𝑖𝑧𝑒 individuals, where the

population size, 𝑃𝑠𝑖𝑧𝑒 , is one of the control parameters to be

kept constant through the generations. In this work, we

consider two population size values: 50 and 100, representing

respectively a small population and a large population.

2.3 Fitness

The fitness value is related to the objective function of an

individual. In this work, the fitness of an individual is defined

by the makespan value (𝐶𝑚𝑎𝑥) of the corresponding schedule.

2.4 Selection

In the selection step, a set of individuals are selected from

the current population to produce the offspring. Many

selection methods are used in the literature for scheduling

problems. In this study, we will focus on random, roulette

wheel and tournament selection.

- Random selection: It consists in selecting randomly the

individuals (as parents) from the current population.

- Roulette wheel selection: In this method, a roulette wheel

with slots is used. Each slot is assigned to an individual of the

population and sized proportional to its fitness value. Figure 3

describes in detail the different steps of the roulette wheel

selection.

Figure 3. Steps of the roulette wheel selection

Figure 4. Steps of the tournament selection

-Tournament selection: This method has been introduced

by Goldberg [22]. We select randomly k individuals from the

current population and we select the best one to become a

parent (Figure 4).

In this study, we select
𝑃𝑠𝑖𝑧𝑒

2
 individuals from the current

population using one of these selection methods.

The selected individuals form a population that we denote

as 𝑃𝑜𝑝𝑠𝑒𝑙𝑒𝑐𝑡. Once the individuals are selected, the crossover

and mutation operators are used to generate new offspring.

2.5 Crossover

Typically, the crossover is the main genetic operator on

which the performance of a genetic algorithm is very

dependent. The crossover operator recombines two selected

individuals (parents) called Parent1 and Parent2 to produce

two new individuals (offspring) called Child1 and Child2,

according to a crossover probability Pcross.

Several crossover operators have been proposed in the

literature for scheduling problems. In this study, we choose

four crossover operators, namely the One-Point Crossover

(1X), Two-Point Crossover (2X), Order Crossover (OX) and

Linear Order Crossover (LOX).

Furthermore, we introduce a new crossover operator which

is denoted by NOX (New Order Crossover).

- One-point Crossover (1X):

Given two parent chromosomes, a random cut point is

selected partitioning them into left and right portions. The left

section of Parent1 (Parent2) is transferred to Child1 (Child2),

and its right section is completed with the missing jobs in the

same order that they appear in Parent2 (Parent1). (See Figure

5)

- Two-point Crossover (2X):

Given two parent chromosomes, two random cut points are

selected partitioning them into a left, middle and right portions.

The left and right sections of Parent1 (Parent2) are copied in

Child1 (Child2), and its middle section is completed with the

missing jobs in the same order that they appear in Parent2

(Parent1). (See Figure 6)

Figure 5. Crossover operator (1X)

359

Figure 6. Crossover operator (2X)

Figure 7. Crossover operator (OX)

Figure 8. Crossover operator (LOX)

Figure 9. Crossover operator (NOX)

- Order Crossover (OX):

Given two parent chromosomes, two random cut points are

selected partitioning them into left, middle and right portions.

The middle section is copied from Parent1 (Parent2) into

Child1 (Child2). The left and right sections are completed with

the remaining jobs in the relative order of Parent2 (Parent1)

starting after the second cut point. (See Figure 7)

- Linear Order Crossover (LOX):

Its procedure is similar to that of OX, with a slight

modification: Once the substring between the two cut points is

transferred from Parent1 (Parent2) to Child1 (Child2), this

new job sequence genes is completed with the remaining jobs

in the relative order of Parent2 (Parent1) starting from left to

right. (See Figure 8)

- New Order Crossover (NOX):

The proposed crossover operator NOX combines the ideas

of both OX and LOX.

It determines randomly two cut points, and for generating

an offspring, the substring between these two points is

transferred from Parent1 (Parent2) to Child1 (Child2). Then,

starting after the second cut point of Child1 (Child2), (as in

OX), the empty genes are filled with the missing jobs in the

relative order of Parent2 (Parent1) scanning from left to right

(as in LOX). (See Figure 9)

In this study, we consider two crossover probability values

Pcross: 0.7 and 0.9, since similar values are usually used in

genetic algorithms for HFS scheduling problems [23, 24]. All

generated offspring form a population that we denote as

POPchild.

2.6 Mutation

The use of a mutation helps the genetic algorithm to escape

from a local minimum and prevents its premature convergence.

The mutation is commonly used as a simple search operator

which introduces a random gene or a chromosome change,

according to a mutation probability 𝑃𝑚𝑢𝑡 .

In this study, we consider two mutation operators: insertion

and swap that are widely used in the literature for HFS

scheduling problems [25].

- Insertion-mutation: This operator consists in selecting

randomly a gene from the individual and inserting it in a

random position. (See Figure 10)

Figure 10. Mutation operator (Insertion)

- Swap-mutation: This operator consists in selecting

randomly two genes from the individual and exchanging their

relative positions. (See Figure 11)

Figure 11. Mutation operator (Swap)

The mutation probability 𝑃𝑚𝑢𝑡 is frequently small and often

is mentioned (0.01 ≤ 𝑃𝑚𝑢𝑡 ≤ 0.1). Hence, we tested, in this

study, Pmut=0.05 and 0.1.

2.7 Reinsertion method

In many proposed genetic algorithms, the new populations

can include both parents and generated offspring and the

population size is kept constant through the generations. In this

study, offspring are inserted into the current population based

on their fitness value. All individuals (parents and offspring)

should be ranged in increasing order of their fitness value and

the best 𝑃𝑠𝑖𝑧𝑒 individuals are considered as the new population

of the next generation.

2.8 Stopping criterion

Several stopping criteria are considered in the literature

such as maximum time limit, maximum number of iterations

(generations), and no improvement in the best objective

function value.

In this study, our genetic algorithm stops once the iteration

number reaches the maximum number 𝐼𝑡𝑒𝑟𝑚𝑎𝑥, chosen as 200

and 800.

The control parameters and operators of our basic genetic

algorithm and their modalities that will be used later are

summarized in Table 1.

The steps of our basic genetic algorithm can be described in

the Figure 12 bellow.

360

Table 1. The parameters and operators used

P

a
ra

m
et

er
s

Population size: 𝑃𝑠𝑖𝑧𝑒 50; 100

Crossover probability: 𝑃𝑐𝑟𝑜𝑠𝑠 0.7; 0.9

Mutation probability: 𝑃𝑚𝑢𝑡 0.05; 0.1

Maximum number of

iterations: 𝐼𝑡𝑒𝑟𝑚𝑎𝑥
200; 800

O
p

er
a

to
rs

Selection
random, roulette wheel,

tournament

Crossover 1X; 2X; LOX; OX; NOX

Mutation insertion; swap

Figure 12. Steps of the basic genetic algorithm

3. COMPUTATIONAL EXPERIMENTS

In order to provide an efficient version of the genetic

algorithm to the 3FHD|1,1,2|Cmax problem, we conduct many

experiments.

On one hand, we evaluate, separately, the effects of five

crossover operators and two mutation operators on the

outcomes of the basic genetic algorithm. We compare, for each

selection method, the crossover operators without the mutation

step, and we compare the mutation operators without the

crossover step. In this case, the population size and the

maximum number of iterations are fixed respectively at 100

and 800.

On the other hand, we study the interactive effects of the

crossover and mutation operators on the performance of the

genetic algorithm. We test several combinations of crossover

and mutation operators under different problem sizes. Each

combination is a version of the genetic algorithm. In this case,

a preliminary computational test with factorial experiments

design is performed to set the best values of the control

parameters for each version of the genetic algorithm.

Our genetic algorithm is implemented using C++ and

obtained in a personal computer with an Intel 2.50 GHz CPU

and 1.96 GB RAM.

The results are presented in terms of mean percentage

deviation MPD of the makespan from the lower bound.

The MPD of an algorithm is defined as:

𝑀𝑃𝐷 = ∑
𝑃𝐷(𝑖)

20

20

𝑖=1

 (1)

where, PD(i) is the percentage deviation of instance i such as:

𝑃𝐷(𝑖) =
[𝐶𝑚𝑎𝑥(𝑖)−𝐿𝐵(𝑖)]

𝐿𝐵(𝑖)
∗ 100 (2)

We note that 𝐶𝑚𝑎𝑥(𝑖) represents the makespan value

obtained by the genetic algorithm for a problem instance i and

LB(i) denotes the lower bound value of instance i, which is

calculated as presented in the paper [19].

3.1 Data generation

We carried out the computational experiments on five

classes of test problems which are generated randomly. In each

class, first and second-stage processing times are random

integers from a uniform distribution from 1 to 20, denoted by

𝑝𝑖1~𝑈[1,20] and 𝑝𝑖2~𝑈[1,20]. The ease of finding a

satisfying solution for the studied problem depends on whether

there is a balance between average workloads of dedicated

machines and the total workload on the single machines.

Hence, the processing times of jobs on the dedicated machines

are generated randomly from the following uniform

distributions [19]:

CLASS 1: 𝑑𝑝𝑖𝑘~𝑈[1,20]∀𝑘 ∈ {1,2}

CLASS 2: 𝑑𝑝𝑖𝑘~𝑈[1,60]∀𝑘 ∈ {1,2}

CLASS 3: 𝑑𝑝𝑖𝑘~𝑈[20,40]∀𝑘 ∈ {1,2}

CLASS 4: 𝑑𝑝𝑖𝑘 = 𝑝𝑖2 + 5 with 𝑘 ∈ {1,2}

CLASS 5: 𝑑𝑝𝑖𝑘 = 𝑝𝑖2 + 10 with ∀𝑘 ∈ {1,2}

Moreover, each job has an integer parameter which defines

its processing on the dedicated machine in stage 3. This

parameter is chosen randomly between D1 and D2, since there

is no preference between the two dedicated machines. Several

instances of various sizes are generated

(N=40,80120,160,200) for each of the five classes.

3.2 A comparative study of crossover operators

In this paragraph, we compare the performance of five

crossover operators to minimize the makespan, without the

mutation step.

361

3.2.1 Computational results

To conduct experiments, we set the crossover probability

𝑃𝑐𝑟𝑜𝑠𝑠 to 0.9 and we set the mutation probability 𝑃𝑚𝑢𝑡 to 0. We

recall that the crossover operators used in this study are 1X,

2X, OX, LOX and NOX.

The comparative results are shown in Figures 13-17 below.

We note that this comparison is carried out for each problem

size and selection method, where we generate 20 instances for

each pair of operators (selection, crossover) and a problem size.

For each instance, we evaluate the percentage deviation of the

makespan from the lower bound, and the results are presented

in terms of mean percentage deviation MPD for each class of

test problems. Since the results are similar for all problem sizes,

we present the comparative results of crossover operators for

only a problem size equal to 120 jobs (Figures 13-17).

Figure 13. Comparison of crossover operators for CLASS 1

problems

Figure 14. Comparison of crossover operators for CLASS 2

problems

Figure 15. Comparison of crossover operators for CLASS 3

problems

Figure 16. Comparison of crossover operators for CLASS 4

problems

Figure 17. Comparison of crossover operators for CLASS 5

problems

3.2.2 Discussion

The results show, firstly, that 2X is worse than all other

crossover operators for solving the 3FHD|1,1,2|Cmax problem,

where it gives the largest mean percentage deviation of the

Cmax value from the lower bound. In fact, the makespan

calculation, in our case study, is mainly conditioned by the

choice of jobs to be placed at the beginning of the sequence

and the idle-time that can be produced. And, it is also

conditioned by the choice of jobs to be placed at the end of the

sequence and the time that can be taken to finish the last

operations. However, by preserving the beginning and the end

of the sequence, the modification proposed by 2X is not

relevant and often does not make an improvement in the

makespan.

Furthermore, we can observe that for all cases of test

problems, the roulette wheel selection outperforms

tournament and random selection methods achieving best

solution quality. Indeed, in the roulette wheel selection,

individuals with higher fitness have more probability of

selection, but it can be also possible to select low fit

individuals, which may ensure certain heterogeneity and avoid

the premature convergence of our algorithm as problem size

increases.

According to these results, we limit our choice, in the

genetic algorithm, to the roulette wheel as the selection

method and we exclude the 2X crossover operator.

On the other hand, it is observed that the respective

performances of the crossover operators (1X, OX, LOX and

NOX) depend on the type of data. We find that the best

crossover operator for CLASS 1 is 1X with a mean percentage

deviation equal to 0.37%. For all cases of CLASS 3, CLASS

4 and CLASS 5, the proposed operator NOX outperforms the

362

other crossover operators in finding near optimal solution,

where the MPD values do not exceed 0.67%. While for

CLASS 2, we find that LOX performs the best with a mean

percentage deviation equal to 0.47%.

3.3 A comparative study of mutation operators

In this paragraph, we compare the performance of two

mutation operators to minimize the makespan, without the

crossover step.

3.3.1 Computational results

To conduct experiments, we set the mutation probability

Pmut to 0.9 and we set the crossover probability Pcross to 0.

We recall that the mutation operators used in this study are

insertion and swap.

The comparative results are shown in Figures 18-22 below.

Figure 18. Comparison of mutation operators for CLASS 1

problems

Figure 19. Comparison of mutation operators for CLASS 2

problems

Figure 20. Comparison of mutation operators for CLASS 3

problems

Figure 21. Comparison of mutation operators for CLASS 4

problems

Figure 22. Comparison of mutation operators for CLASS 5

problems

As well, the comparison is carried out for each problem size

and selection method. We generate 20 instances for each pair

of operators (selection, mutation) and a problem size. For each

instance, we evaluate the percentage deviation of the

makespan from the lower bound and the results are presented

in terms of mean percentage deviation MPD for each class

problems. Since the results are similar for all problem sizes,

we present the comparative results of mutation operators for a

problem size equal to 160 jobs (as shown in Figures 18-22

above).

3.3.2 Discussion

The simulation results show again that the roulette wheel

selection outperforms tournament and random selection

methods in terms of mean percentage deviation of the solution

from the lower bound. Indeed, MPD values do not exceed

0.95% for the roulette wheel selection while, it can reach

2.13% for tournament and random methods.

Hence, we conclude that the roulette wheel selection

method is the most suitable for solving the 3FHD|1,1,2|Cmax

problem.

We can further observe that both of swap and insertion are

effective to solve the problem, but in almost all cases, swap

results are slightly better.

3.4 The interactive effects of crossover and mutation

operators

In this section, we evaluate the interactive effects of

crossover and mutation operators on the performance of the

basic genetic algorithm. The objective is to determine the most

appropriate combination of crossover and mutation operators

363

for solving the 3FHD|1,1,2|Cmax problem. In this

computational study, we use only NOX, LOX and 1X as

crossover operators since each of them takes a first place for

solving a given class problems, and we use insertion and swap

as mutation operators. Also, we use the roulette wheel

selection method since it gives the best results for all class

problems. This means that we will run six versions of the

proposed genetic algorithm. We will refer to these algorithms

as 1X/insertion; 1X/swap; NOX/insertion; NOX /swap; LOX

/insertion; and LOX /swap according to the genetic operators

used in each of them.

3.4.1 Preliminary results

The performance of the six versions of the genetic algorithm

depends on the determination of the control parameters used,

which are the population size, crossover probability, mutation

probability and maximum number of iterations (generations).

In this paragraph, we seek to determine the suitable values of

these control parameters for each version of the genetic

algorithm.

Thus, before describing the computational results obtained

for these genetic algorithms, we analyze their parameter

setting. In this study, we use a factorial design of experiments,

which has been very beneficial to design several metaheuristic

approaches for solving scheduling problems. It consists to

investigate the effects of different control parameters (input)

on the results (output) and to choose the optimal values of

these parameters. The factorial design of experiments that we

use involves four parameters (factors), each having two

possible values, such as Psize=50 and 100, Pcross=0.7 and 0.9,

Pmut=0.05 and 0.1 and Itermax=200 and 800. The Combination

of these parameters results in 2Χ2Χ2Χ2Χ2=16 runs for each

genetic algorithm. In order to determine the best combination

of parameters for each version of the proposed genetic

algorithm, we consider CLASS 5. For each of the 16 runs, we

generate randomly 10 instances of CLASS 5 with n=80. Hence,

a total number of 16Χ10Χ6=960 runs are made in our

preliminary computational experiments. Table 2 presents the

parameter setting of each version of the genetic algorithm. The

results are presented in terms of mean percentage deviation of

the solution from the lower bound.

As it is seen in Table 2, the best parameter combination that

obtains the smallest MPD is selected for each version of the

genetic algorithm. Indeed, we find that the best combination

for 1X/swap, NOX /swap and LOX /swap is Psize=100,

Pcross=0.9, Pmut=0.1 and Itermax=800. For 1X/insertion and

NOX/insertion, the best parameter combination is Psize=100,

Pcross=0.7, Pmut=0.1 and Itermax=800. And, for LOX/ insertion,

the best parameter combination is Psize=100, Pcross=0.7,

Pmut=0.1 and Itermax=800. These parameter combinations will

be used in the following computational experiments.

3.4.2 Computational results

This computational study aims to test the effects of different

combinations of crossover and mutations operators on the

performance of the basic genetic algorithm under different

types of data. And thus, it is to determine the most appropriate

combination of these genetic operators for solving the

3FHD|1,1,2|Cmax problem. The comparison of these

combinations (versions of the genetic algorithm) is presented

in Tables 3-7. The last column presents the average of CPU

time of the six genetic algorithms.

Table 2. The computational results for parameter setting for each version of the basic genetic algorithm

Parameter Combination

(𝑷𝒔𝒊𝒛𝒆; 𝑷𝒄𝒓𝒐𝒔𝒔; 𝑷𝒎𝒖𝒕; 𝑰𝒕𝒆𝒓𝒎𝒂𝒙)

Mean Percentage Deviation MPD (%)

NOX/ swap NOX/ insertion LOX/ swap LOX/ insertion 1X/ swap 1X/ Insertion

50;0.7; 0.05; 200 1,28 1,45 0,96 1,08 1,16 1,12

50; 0.7; 0.05; 800 1,16 0,88 0,72 0,70 0,77 0,76

50; 0.7; 0.1; 200 1,20 1,23 0,99 1,21 1,28 1,08

50; 0.7; 0.1; 800 0,89 0,95 0,72 0,66 0,69 0,75

50; 0.9; 0.05; 200 1,25 1,33 1,04 0,82 1,40 1,10

50; 0.9; 0.05; 800 0,92 1,04 0,64 0,58 0,99 0,91

50; 0.9; 0.1; 200 1,32 1,25 1,04 1,02 1,27 1,26

50; 0.9; 0.1; 800 0,92 0,97 0,64 0,74 0,79 0,89

100; 0.7; 0.05; 200 1,19 1,26 0,99 0,89 1,14 1,27

100; 0.7: 0.05; 800 0,83 0,91 0,77 0,64 0,92 0,95

100; 0.7; 0.1; 200 1,17 1,16 1,02 0,86 0,93 0,99

100; 0.7; 0.1; 800 0,84 0,77 0,72 0,59 0,48 0,61

100; 0.9; 0.05; 200 1,22 1,29 0,86 0,88 0,90 1,20

100; 0.9; 0.05; 800 1,00 0,93 0,72 0,53 0,48 0,97

100; 0.9; 0.1; 200 1,08 1,21 0,88 1,07 0,92 1,07

100; 0.9; 0.1; 800 0,83 0,87 0,63 0,69 0,46 0,61

Table 3. Computational results of six genetic algorithms for CLASS 1 problems

CLASS 1

MPD (%)
Average CPU time

of GAs(s)
1X/insertio

n
LOX/insertion

NOX/insertio

n
1X/swap LOX/swap

NOX/

swap

n=40 0.08 0.09 0.12 0.09 0.09 0.07 220.3

n=80 0.01 0.03 0.01 0.01 0.01 0.00 74.24

n=120 0.02 0.03 0.02 0.02 0.01 0.01 98.54

n=160 0.01 0.04 0.03 0.01 0.04 0.03 130.9

n=200 0.03 0.05 0.04 0.02 0.04 0.02 156.1

364

Table 4. Computational results of six genetic algorithms for CLASS 2 problems

CLASS 2
MPD (%) Average CPU

time of GAs(s) 1X/Insertion LOX/Insertion NOX/Insertion 1X/swap LOX/swap NOX/swap

n=40 0.07 0.06 0.07 0.06 0.05 0.02 123.4

n=80 0.06 0.04 0.02 0.02 0.02 0.02 87.23

n=120 0.04 0.01 0.01 0.03 0.01 0.01 60.48

n=160 0.03 0.004 0.004 0.004 0.004 0.004 66.31

n=200 0.07 0.01 0.01 0.04 0.01 0.01 89.08

Table 5. Computational results of six genetic algorithms for CLASS 3 problems

CLASS 3
MPD (%) Average CPU

time of GAs(s) 1X/Insertion LOX/Insertion NOX/Insertion 1X/swap LOX/swap NOX/swap

n=40 0.00 0.00 0.00 0.00 0.00 0.00 58.03

n=80 0.04 0.004 0.00 0.004 0.00 0.00 77.50

n=120 0.04 0.00 0.00 0.01 0.00 0.00 82.12

n=160 0.04 0.01 0.01 0.04 0.01 0.01 85.34

n=200 0.06 0.01 0.01 0.03 0.007 0.005 96.00

Table 6. Computational results of six genetic algorithms for CLASS 4 problems

CLASS 4
MPD (%) Average CPU

time of GAs(s) 1X/ Insertion LOX/ Insertion NOX/ Insertion 1X/swap LOX/swap NOX/swap

n=40 0.68 0.77 0.81 0.68 0.58 0.81 2346

n=80 0.30 0.32 0.44 0.29 0.32 0.36 2422

n=120 0.15 0.18 0.22 0.15 0.17 0.18 2615

n=160 0.18 0.16 0.19 0.16 0.13 0.19 1546

n=200 0.05 0.07 0.08 0.05 0.07 0.08 723

Table 7. Computational results of six genetic algorithms for CLASS 5 problems

CLASS 5
MPD (%) Average CPU

time of GAs(s) 1X/insertion LOX/insertion NOX/insertion 1X/ swap LOX/swap NOX/swap

n=40 1.62 1.73 1.82 1.25 1.45 1.67 2400

n=80 0.61 0.69 0.87 0.57 0.64 0.85 2612

n=120 0.38 0.21 0.45 0.25 0.21 0.50 2753

n=160 0.37 0.30 0.46 0.31 0.27 0.46 3020

n=200 0.31 0.20 0.27 0.25 0.20 0.27 3554

3.4.3 Discussion

The computational results show that the combination of

crossover and mutation operators has a significant impact on

the outcomes of the basic genetic algorithm, as the later

performs better than a genetic algorithm running with only a

crossover or a mutation operator. Also, for each crossover

operator, it can be observed that the genetic algorithm which

uses swap as a mutation operator performs better than the

genetic algorithm which uses insertion, in terms of the mean

percentage deviation (MPD).

Comparing the results of the six genetic algorithms, we

notice that all of them are effective to solve the problem, as

shown in Tables 3-7, where MPD values do not exceed 1.82%.

However, we observe that for all problem cases of CLASS 1,

CLASS 2 and CLASS 3, NOX/swap outperforms all other

combinations of crossover and mutation operators, with a

mean percentage deviation that does not exceed 0.07%. For

CLASS 4 and CLASS 5, the best results are being shared

between 1X/swap and LOX/swap with a mean percentage

deviation that does not exceed respectively 1.25% and 1.45%.

Considering the results per problem class, we can see from

Tables 3, 4 and 5, that for all instances of CLASS 1 and

CLASS 2, MPD values of all genetic algorithms are very close

to zero and do not exceed 0.12% while in almost all cases of

CLASS 3, the MPD values are zero. This means that CLASS

1, CLASS 2 and CLASS 3 are relatively easy to solve by this

genetic algorithm. However, CLASS 4 and CLASS 5, whose

results are presented respectively in Tables 6 and 7, are more

difficult as MPD values are the largest reaching 1.67%.

Nevertheless, for most cases of such classes, MPD values of

the genetic algorithms are slightly smaller in CLASS 4 than

those in CLASS 5.

Tables 3-7 also present the average CPU times for solving

the 3FHD|1,1,2|Cmax problem. For CLASS 1, CLASS 2 and

CLASS 3, the CPU times are smaller than those of CLASS 4

and CLASS 5, since all genetic algorithms stop running once

the best solution reaches the lower bound or once the iteration

number reaches the maximum number. In general, the CPU

times of the six different genetic algorithms are similar: As the

number of jobs 𝑛 increases, the average CPU time increases

for almost cases. This is an expect result due to the increasing

search space.

These computational experiments allow us to set the control

parameters of the basic genetic algorithm and to choose its

different operators for each class problems. These parameters

and operators can be summarized as follows:

• Controls parameters:

- Population size:100

- Crossover probability:0.9

- Mutation probability:0.1

- Maximum number of iterations:800

365

• Operators:

- Selection method: Roulette wheel selection

- Crossover operator: 1X, NOX and LOX

- Mutation operator: swap

In order to determine the crossover operator to use in our

genetic algorithm, we examined the behavior of each of 1X,

LOX and NOX by studying the evolution of the percentage

deviation of the best solution (individual) within 800 iterations

(generations). The Figures 23, 24 and 25 present, respectively,

the evolution of the best solution obtained with LOX/swap,

1X/swap and NOX/swap within 800 iterations for a given

instance.

Figure 23. Evolution of the best individual within 800

generations for LOX/swap

Figure 24. Evolution of the best individual within 800

generations for 1X/swap

Figure 25. Evolution of the best individual within 800

generations for NOX/swap

The results show that the best solution, most often, is going

to stagnate for several iterations, after which it changes. The

stagnation of the makespan may be justified by the repetitive

application of the same crossover operator which may allow

the genetic algorithm stagnates and converges, in most cases,

to a local minimum.

With the aim to obtain a better solution in a reasonable

computational, we propose an improved genetic algorithm that

we denote by IGA. It uses more than one crossover operator

and a local search method (2-opt).

Next, we present in details our improved genetic algorithm

for solving the 3FHD|1,1,2|Cmax problem.

4. IMPROVED GENETIC ALGORITHM (IGA)

In this section, we propose an improved genetic algorithm

(IGA) to solve the problem. It is a solution to escape the

stagnation of the makespan and provides a good compromise

between solution quality and computational time.

In this genetic algorithm, we don’t limit ourselves to only

one crossover operator. In fact, due to the performance of LOX,

1X and NOX to solve the problem, we use all of them to build

the new offspring: in this algorithm, we propose to change the

current crossover operator when the value of the makespan of

the best individual stagnates for 10 iterations. We start our

algorithm with NOX and when the makespan of the best

individual remains constant for 10 iterations, we change the

operator NOX to 1X. We continue the iterations with the new

operator as long as the value of the best makespan does not

change for at most 10 iterations. Otherwise, we change the

crossover operator to LOX. This logic is repeated as long as

the maximum number of iterations has not been reached and

the value of the best makespan has remained constant for more

than 10 iterations.

We also introduce a local search mechanism in order to

explore new regions of the search space and thus, to avoid the

stagnation of the makespan. If the makespan of the best

individual remains constant for 30 iterations, then we generate

the new population as follows: each individual in the current

population undergoes a local search through a 2-Opt method,

and the new individual replaces the old one in the new

population.

The 2-Opt algorithm is applied as follows: It starts with an

initial solution S, which is considered as a current solution at

the first iteration. Then, we use a 2-opt exchange operator to

generate a new solution S', from S. This one is compared with

the current solution. If it is better, then it is accepted and is

used as a current solution in the next iteration. Otherwise, the

candidate solution is rejected and we carry out the next

iteration with the same current solution. The search continues

until a stopping criterion is satisfied. Notice that the stopping

criterion of the 2-Opt algorithm is the maximum number of

iterations fixed as n(n-1)/2, with n is the problem size.

In our opinion, the choice of switching from one crossover

operator to another and introducing a population renewal with

a 2-Opt method may be a solution to avoid the stagnation of

the makespan and thus, a good quality solution can be reached

before the 800th iteration. Taking this into account and for the

case where the makespan of the best individual does not

change for 100 iterations, the genetic algorithm (IGA) stops.

366

4.1 Computational results

In this section, many experiments are conducted to evaluate

the performance of the improved genetic algorithm IGA.

We present, firstly, the new evolution of the best solution

obtained with IGA for the same instance tested above (Figure

26).

Figure 26. Evolution of the best solution obtained with IGA

The Figure 26 shows that IGA found rapidly the optimal

solution, and the phenomenon of the stagnation of the

makespan was avoided.

In the following, we report the computational results of the

improved genetic algorithm (IGA) in comparison with the

heuristic approach IH-DP of Ouled Bedhief et al. [19] which

is proposed for the same problem. Tables 8 and 9 present

respectively the mean percentage deviation of the two methods

and their average CPU time.

4.2 Discussion

The results show that the improved genetic algorithm IGA

can obtain, in all cases, optimal or vey near optimal solutions

for the 3FHD|1, 1, 2 |Cmax problem. Also, it performs better

than IH-DP [19] in terms of the mean percentage deviation of

Cmax from the lower bound, in all cases of test problems. IGA

can find solutions whose MPD values do not exceed 0.48%,

while, it can reach 1.28% for IH-DP [19]. We further note that

the maximum CPU time spent among all application data by

the genetic algorithm IGA is 825 seconds. Thus, the choice of

stopping the genetic algorithm after 100 iterations, when the

makespan of the best individual remains constant, has greatly

reduced the computational time, keeping a very good quality

of solutions. However, we find that the computational time of

IGA is still greater than that of IH-DP [19], which runs in few

seconds.

Table 8. Mean Percentage Deviation of IGA and IH-DP algorithms

MPD (%)

 n=40 n=80 n=120 n=160 n=200

 IH-DP IGA IH-DP IGA IH-DP IGA IH-DP IGA IH-DP IGA

CLASS 1 0.04 0.02 0.01 0.00 0.02 0.00 0.02 0.00 0.00 0.00

CLASS 2 0.08 0.03 0.04 0.004 0.02 0.00 0.08 0.01 0.05 0.005

CLASS 3 0.17 0.00 0.11 0.00 0.08 0.00 0.07 0.00 0.07 0.00

CLASS 4 0.80 0.48 0.65 0.21 0.37 0.17 0.60 0.12 0.32 0.10

CLASS 5 1.28 0.37 0.72 0.20 0.71 0.04 0.78 0.05 0.74 0.07

Table 9. Average CPU time of IGA and IH-DP algorithms

CPU (seconds)

 n=40 n=80 n=120 n=160 n=200

 IH-DP IGA IH-DP IGA IH-DP IGA IH-DP IGA IH-DP IGA

CLASS 1 1 77 10 134 38 206 104 320 217 313

CLASS 2 1 53 11 55 39 60 103 225 216 205

CLASS 3 1 21 11 66 42 53 112 107 234 152

CLASS 4 1 296 14 334 41 434 105 601 238 825

CLASS 5 1 219 15 300 42 276 108 370 238 545

5. CONCLUSION

In this paper, we have dealt with the three-stage hybrid flow

shop problem with two single machines in the first and second

stages, and two dedicated machines in stage three. Considering

the NP-hardness of the problem, a basic genetic algorithm was

proposed. Many comparative studies were considered to

measure the impact of different controls parameters and

operators on the outcomes of the genetic algorithm. And, the

emanating results motivated us to develop an improved

version (IGA) of the existing genetic algorithm model to help

to undertake some observed shortages.

The computational results indicated that IGA is a promising

and very effective method for solving the three-stage HFS with

dedicated machines. Besides, the simulation results were

compared with an existing heuristic approach (IH-DP) that has

been previously proposed in the academic literature to deal

with the same problem. The results proved that IGA

outperforms IH-DP with a mean percentage deviation that did

not exceed 0.5% and a very reasonable computational time.

For future research, on one hand, we are interested in

analyzing the effects of more realistic situations on the

performance of our proposed genetic algorithm (IGA), such as

multiple stages and multiple machines in each stage. On the

other hand, other crossover operators or mutation operators

could be embedded and tested, or other metaheuristic

algorithms, such as ant colony optimization (ACO), or tabu

search could be assessed to solve the problem.

367

REFERENCES

[1] Gupta, J.N.D. (1988). Two-stage hybrid flow shop

scheduling problem. Operational Research Society,

39(4): 359–364. https://doi.org/10.1057/jors.1988.63

[2] Lin, H.T., Liao, C.J. (2003). A case study in a two-stage

hybrid flow shop with setup time and dedicated machines.

International Journal of Production Economics, 86(2):

133–143. http://dx.doi.org/10.1016/S0925-

5273(03)00011-2

[3] Cheng, T.C.E., Lin, B.M.T., Tian, Y. (2009). Scheduling

of a two-stage differentiation flow shop to minimize

weighted sum of machine completion times. Computers

and Operations Research, 36(11): 3031–3040.

https://doi.org/10.1016/j.cor.2009.02.001

[4] Yang, J. (2011). Minimizing total completion time in

two-stage hybrid flow shop with dedicated machines.

Computers and Operations Research, 38(7): 1045–1053.

http://dx.doi.org/10.1016/j.cor.2010.10.009

[5] Herrmann, J.W., Lee, C.Y. (1992). Three-machine look-

ahead scheduling problems. Research Report No. 92–93,

Department of Industrial Engineering, University of

Florida, FL.

[6] Lin, B.M.T. (1999). The strong NP-hardness of two-

stage flow shop scheduling with a common second-stage

machine. Computers & Operations Research, 26(7): 695-

698. https://doi.org/10.1016/S0305-0548(98)00080-X

[7] Riane, F., Artiba, A., Elmaghraby, S.E. (2002).

Sequencing a hybrid two-stage flow shop with dedicated

machines. International Journal of Production Research,

40(17): 4353–4380.

https://doi.org/10.1080/00207540210159536

[8] Mosheiov, G., Sarig, A. (2010). Minimum weighted

number of tardy jobs on an m-machine flow shop with a

critical machine. European Journal of Operational

Research, 201(2): 404–408.

http://dx.doi.org/10.1016/j.ejor.2009.03.018

[9] Hadda, H., Dridi, N., Hajri-Gabouj, S. (2014). Exact

resolution of the two-stage hybrid flow shop with

dedicated machines. Optimization Letters, 8: 2329-2339.

http://dx.doi.org/10.1007/s11590-014-0741-y

[10] Huang, T.C., Lin, B.M.T. (2013). Batch scheduling in

differentiation flow shops for makespan minimization.

International Journal of Production Research, 51(17):

5073–5082.

https://doi.org/10.1080/00207543.2013.784418

[11] Yang, J. (2013). A two-stage hybrid flow shop with

dedicated machines at the first stage. Computers &

Operation Research, 40(12): 2836–2843.

http://dx.doi.org/10.1016/j.cor.2013.05.020

[12] Hadda, H., Hajji, M.K., Dridi, N. (2015). On the two-

stage hybrid flow shop with dedicated machines. RAIRO

- Operations Research, RAIRO-Oper. Res., 49(4): 795–

804. http://dx.doi.org/10.1051/ro/2015005

[13] Oguz, C., Lin, B.M.T., Cheng, T.C.E. (1997). Two-stage

flow shop scheduling problem with a common second-

stage machine. Computers & Operations Research,

24(12): 1169–1174. https://doi.org/10.1016/S0305-

0548(97)00023-3

[14] Dridi, N., Hadda, H., Hajri-Gabouj, S. (2009). Méthode

heuristique pour le problème de flow shop hybride avec

machines dédiées. RAIRO Operations Research, 43(4):

421-436. http://dx.doi.org/10.1051/ro/2009024

[15] Wang, S., Liu, M. (2013). A heuristic method for two-

stage hybrid flow shop with dedicated machines.

Computer & Operations Research, 40: 438-450.

http://dx.doi.org/10.1016/j.cor.2012.07.015

[16] Johnson, S.M. (1954). Optimal two- and three-stage

production schedules with setup times included. Naval

Research Logistics Quarterly, 1(1): 61–68.

http://dx.doi.org/10.1002/nav.3800010110

[17] Yang, J. (2015). Minimizing total completion time in

two-stage hybrid flow shop with dedicated machines at

the first stage. Computers & Operations Research, 58: 1–

8. http://dx.doi.org/10.1016/j.cor.2014.11.012

[18] Riane, F., Artiba, A., Elmaghraby, S.E. (1998). A hybrid

three-stage flow shop problem: Efficient heuristics to

minimize makespan. European Journal of Operational

Research, 109(2): 321–329.

https://doi.org/10.1016/S0377-2217(98)00060-5

[19] Ouled Bedhief, A., Dridi, N. (2019). Minimizing

makespan in a three-stage hybrid flow shop with

dedicated machines. International Journal of Industrial

Engineering Computations, 10(2): 161-176.

http://dx.doi.org/10.5267/j.ijiec.2018.10.001

[20] Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan,

A.H.G. (1979). Optimization and approximation in

deterministic sequencing and scheduling: A survey.

Annals of Discrete Mathematics, 5: 287–326.

http://dx.doi.org/10.1016/S0167-5060(08)70356-X

[21] Holland, J.H. (1975). Adaption in Natural and Artificial

Systems. Ann Arbor: University of Michigan Press.

[22] Goldberg, D. (1989). Genetic Algorithm in Search,

Optimization, and Machine Learning. The university of

Alabama Addison Wesley publishing 1989.

[23] Oguz, C., Ercan, M.F. (2005). A genetic algorithm for

hybrid flow-shop scheduling with multiprocessor tasks.

Journal of Scheduling, 8: 323–351.

https://doi.org/10.1007/s10951-005-1640-y

[24] Serifoglu, F.S., Ulusoy, G. (2004). Multiprocessor task

scheduling in multistage hybrid flow-shops: A genetic

algorithm approach. Journal of the Operational Research

Society, 55(5): 504–512.

https://doi.org/10.1057/palgrave.jors.2601716

[25] Wang, S., Liu, M. (2013). A genetic algorithm for two-

stage no-wait hybrid flow shop scheduling problem.

Computers & Operations Research, 40(2013): 1064-

1075. http://dx.doi.org/10.1016/j.cor.2012.10.015

368

