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This paper aims to disclose the thermal expansion effect on thickness-shear vibrations of quartz 

filters. To this end, a brand-new “dot-ring” electrode structure was proposed for quartz filter 

operating in thickness-shear modes (TSMs). Then, a reasonable solution to the government 

equations of thermal expansion was derived, and the thermal expansion effect on the operation 

modes and vibration frequencies of the filter were examined in details. Through the rational 

design of electrode size and quartz plate thickness, a frequency interval was determined with 

two trapped modes. Under the working temperature between -55°C and 85°C, the electrode 

sizes changed with the thermal expansion; the resonance frequency declined with the increase 

of temperature. However, the frequency difference considering the thermal expansion effect is 

extremely small, indicating that the quartz crystal filter has good thermal stability. The research 

findings shed new light on the design of quartz filters. 
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1. INTRODUCTION

Piezoelectric crystals are the main raw materials of acoustic 

wave resonators, filters and sensors. For instance, AT-cut 

quartz crystals are often made into acoustic wave devices 

which operate in the thickness-shear mode (TSM) of a plate 

[1,2]. It is extremely difficult to simulate these materials with 

3D theory of linear piezoelectricity, due to their high 

anisotropy and electromechanical coupling. A viable 

alternative is to develop approximate 2D plate equations, such 

as the single scalar differential equation for the fundamental 

and the overtone TSMs. This equation was derived for AT-cut 

quartz plates [3-6], and later applied to other anisotropic 

materials [7-9]. 

The traditional design of resonators contains 

square/rectangular dielectric and piezoelectric layers and 

square electrodes [9-11]. In crystal filters, however, two 

square electrodes are arranged above the piezoelectric crystals. 

The acoustic waves from the square electrodes propagate in all 

directions [12-13], leading to concentrated electric field, stress 

and temperature [14] in the electrode corners. In this case, the 

materials may deteriorate or even fail. Therefore, it is 

meaningful to consider the thermal expansion effect on 

thickness-shear vibrations. Nevertheless, there is little 

theoretical analysis on this effect of crystal filters, because the 

situation is too complicated to be explained clearly with 2D 

equations [15-20]. 

Considering the above, this paper proposes a brand-new 

“dot-ring” electrode structure for quartz filter. The corner-less 

design of the structure helps eliminate the concentration of 

electric field. Then, a theoretical analysis was performed to 

acquire the basic vibration features of the quartz filter with the 

proposed electrodes, and investigate the thermal expansion 

effect. 

2. THERMAL EXPANSION

The research object is an AT-cut quartz plate filter. As 

shown in Figure 1, the plate is 2h in thickness and ρ in mass 

density. There is a thin, elliptical dot electrode in the central 

region and a ring electrode in the annular region atop the 

quartz plate. The two electrodes form the “dot-ring” structure. 

The mass density and thickness of both electrodes are denoted 

as ρ' and 2h', respectively. The semi-major axis of the elliptical 

electrode points to the x1 direction, while the semi-minor axis 

of the elliptical electrode points to the x3 direction. The two 

axes are respectively denoted as aiRi and 

Figure 1. An FBAR filter with dot-ring driving electrodes 

Ri , where i=0, 1 and 2 and the ratio ai will be determined 

by the later formula. 

The thermal expansion coefficient can be expressed as [21]: 

= / ( ).L L T          (1) 

The electrode radius and the quartz plate thickness both 

change under thermal expansion. Considering the linear 

expansion coefficient of quartz crystal filter, the linear 
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expansion coefficient along axis x2 is about half of the linear 

expansion coefficient vertical to axis x2. Table 1 lists the two 

coefficients from -250 °C to 500 °C. 

 

Table 1. The linear thermal expansion coefficients of the x1 and x2 axis 

 

T (⁰C)  -250 -200 -100 0 100 200 300 400 500 

α1×10-6(/⁰C) 8.60 9.90 11.92 13.24 14.45 15.61 16.89 18.5 20.91 

α2×10-6(/⁰C)  4.10 5.50 6.08 7.10 7.79 8.75 9.60 10.65 12.22 

 

The linear expansion coefficient at any angle φ relative to 

axis x2 can be expressed as [21]: 

 
2

2 1 2( )sin .L    = + −                                                       (2) 

 

At room temperature, 
62 10sin23.648.7 −+= ）（ L . 

 

 

3. GOVERNING EQUATIONS 

 

For time-harmonic motions of a filter at resonance 

frequency ω, all fields have the samei time-dependence with a 

common factor exp(iωt). Thus, the TSM displacement of order 

n can be expressed as [3-6]:    
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I there is no top driving electrode, the in-plane variation 

),( 311 xxu
n

 in the TSM mode of order n is governed by[3-6]: 
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If there is a driving electrode, the in-plane variation 

),( 311 xxun  in the TSM mode of order n is governed by: 
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In Eq(4) and Eq(5), c55 is the elastic constant of quartz 

crystals. The Mn can be determined by: 
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where c11, c12, c22 and c66 are the elastic constants of quartz 

crystals. The coefficients 66c , 66ĉ , γ and K can be obtained by: 
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where e26 and ε22 are the piezoelectric constants and dielectric 

constants of quartz crystals, respectively. These constants can 

be determined by: 
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In the (x1, x3) plane, the elliptical electrode can be described 

as: 
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The semi-major and semi-minor axes are in RcM 55  and 

Ri, respectively. Then, a new coordinate system (λ1, λ3) was 

introduced as: 
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The ellipses in Eq(10) can be converted into circle equations: 
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Then, the polar coordinates were introduced: letdependence  

θ of the fields be cos(mθ) where m=0, 1, 2...  Thus, Eq(5) and 

Eq(4) can be rewritten as: 
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(13) 

 

where ̂  and   are the unbounded plate TSM resonant 

frequencies for plates with or without electrode, respectively. 

The two parameters obey    ˆ
 because the resonant 

frequencies are dragged down by electrode inertia. The ̂

and   can be described as: 

 
2 2 2 2

2 266 66

2 2

ˆ
ˆ ,  .

4 4

n c n c

h h

 
 

 
 = =                                           (14) 

 

For “trapped modes”, the vibration gradually attenuates 

away from an electrode edge, especially when r approaches 

infinity. The boundary conditions are: 
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4. ANALYTICAL SOLUTION  

 

The following conditions are required to solve Eq(13):  
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The above equation defines a frequency interval for the 

trapped modes of interest:   ̂ . Based on the 

separate variables in polar coordinates, we have:     
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Then, Eq(13) can be converted into: 
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The two sub-equations of Eq(18) are the Bessel function and 

modified Bessel function of order m, respectively. Then, the 

general solution to Eq(18) satisfying Eq(15) can be written as: 
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where A1~A6 are unknown constants; Jm and Ym are the mth-

order Bessel functions of the first kind and second kind; Im and 

Km are the mth-order modified Bessel functions of the first 

kind and second kind. The solution to Eq(19) must satisfy the 

following continuous conditions:  
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Substituting Eq(19) into Eq(20), we have six linear 

homogeneous equations for A1~A6. For nontrivial solutions, 

the determinant of the coefficient matrix should be eliminated, 

producing the frequency equation. The modes can be 

determined by the corresponding nontrivial solutions of A1~A6. 

The numerical solutions are obtained with Matlab by selecting 

appropriate parameters. 

 

 

5. NUMERICAL SIMULATION AND RESULTS 

ANALYSIS 

 

The numerical example is a filter operating at the 

fundamental TSMs. For the remainder of this paper, the  

values of n and m are fixed as  n=1 and m=0. The other 

parameters are as follows: electrode-plate mass ratio R'=0.1, 

plate thickness 2h=200 m, electrodes radii R0=620 m, 

R1=720 m and R2=1,500 m. The trapped modes are the 

interest modes and found in the narrow frequency interval 

determined by Eq(14). By this equation, it is determined that

srad /106492.4ˆ 7=  and srad /102185.5 7= . The 

two trapped modes of interest were found in the frequency 

interval ),ˆ(   : ω1=4.9361×107rad/s and 

ω1=4.9917×107rad/s, in this case. 

 

Table 2. Numerical value of electrode radius and plate 

thickness at different temperatures 

 
T(⁰C) R0(μm) R1(μm) R2(μm) h(μm) 

-55 619.35 719.25 1,498.44 99.95 

-35 619.51 719.43 1,498.82 99.96 

-15 619.67 719.62 1,499.20 99.97 

5 619.83 719.81 1,499.60 99.99 

25 620 720 1,500 100 

45 620.17 720.20 1,500.41 100.01 

65 620.34 720.40 1,500.83 100.03 

85 620.52 720.60 1,501.25 100.04 

 

 

(a) 
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(b) 

Figure 2. Two trapped thickness-extensional modes in the frequency interval 

 

The two trapped modes bear high resemblance with each 

other, with a weak dependence on the in-plane mode variation. 

Figure 2 illustrates the cross-section of the two modes along 

x1=0 and x3=0. The mode in Figure 2(a) has no nodal line 

(point) except at the edges, but there exists a gap  between the 

ring and dot electrodes. The mode vibrated under the dot 

electrode, attenuated between the ring and dot electrodes, and 

vibrated again under the ring electrode. The thickness-shear 

strain was always positive thanks to the thickness-shear 

displacement with n=1.The mode in Figure 2(b) has one nodal 

line between the ring and dot electrodes. The two sides of that 

nodal line vibrated in opposite directions. However, the charge 

of the electrode system is not cancelled out.  

For better view, the contours of the two modes are also 

presented in Figure 2. It can be seen that the electrodes are oval 

in shape, and the semi-major axis ( iRcM 551 ) and semi-

minor axis (Ri) are along axes x1 and x3, respectively. The ratio 

between them was 1.47, which is very close to the optimal 

electrode shape in References [22-24]. 

In the numerical simulation, the working temperature of the 

filter was set to -55 °C ~ 85 °C. The separate points in Table 2 

were fitted to obtain the thermal expansion curve in the 

temperature range. Then, the thermal expansion coefficients in 

the range were integrated to acquire the numerical value of 

each length at the corresponding varied more violently than 

the plate thickness with the temperature. Since a1 is about half 

of a2, the electrode size varied more violently than the plate 

thickness with the same temperature change. Based on these 

values, ̂  and   were calculated by Eq(14). In each case, 

the two trapped modes of interest were found in the frequency 

interval.  

 

 
 

Figure 3.The frequency of trapped modes varies with 

temperature. 

 

Figure 3 presents two frequency-temperature curves. The 

first and second modes are respectively expressed with the star 

line and the point line. In the first mode, the filter could operate 

with the in-phase vibration of the whole plate; In the second 

mode, the filter could also operate with the out-of-phase 

vibration of the dot and ring electrodes. It is clear that the 

temperature is negatively correlated with resonance frequency; 

both plate thickness and electrode size increased with the 

temperature. Thus, there is a negative correlation between 

plate thickness/electrode size andresonance frequency. 

As shown in Figure 3, the frequencies varied little with 

temperatures. In mode 1, the maximum and minimum 

frequencies were 49.3926×106rad/s and 49.3395×106rad/s, 

respectively. This means the quartz crystal filter has good 

thermal stability.  

Figure 4 show the effects of temperature on the operation 

modes. All parameters are the same as those in Figure 2, 

except that plate thickness and electrode size are variants. The 

figure reveals no obvious impact of temperature (T) on mode 

shapes. This is particularly true for mode one: the three 

temperature curves at -55 °C, 25 °C and 85 °C almost 

coincided completely. For mode two, there was a significant 

difference between the vibration modes in the ring electrode 

region. 

 
(a) 

 
(b) 

Figure 4. Effects of the temperatures T on the operating 

modes 
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The electrode scale is crucial to filter design. To disclose the 

effect of electrode scale, three kinds of electrode scales were 

designed and compared with each other. The shapes of the 

trapped modes are recorded in Figure 5. In the remainder of 

this paper, the value of R2 is fixed as R2=1,500 m, while the 

values of other parameters are specified in individual figures. 

As shown in Figure 5, the radii R0 and R1 were time-varying, 

resulting in changes to the area of the dot or ring electrode 

region. With the increase of R0, the vibration under the ring 

electrode grew weaker but remained basically the same under 

the dot electrode. This is because the electrode scale is 

positively correlated with the vibration amplitude. As R0 grew 

longer, the annular region shrank in size and became 

comparable to the central region. Thus, the vibration under the 

annular region attenuated. With the increase of R1, the 

vibration became weaker under the ring electrode, the annular 

region got smaller, the distance grew wider. A possible reason 

lies in the weak interaction between the two electrodes when 

the distance was wide. 

 

 

 
(a) 

 
(b) 

Figure 5. Effects of the radius of the electrode R0 and R1 on the operating modes. 

 

 
(a) 

 
(b) 

 

Figure 6. Effects of the half quartz plate thickness h on the operating modes 
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Table 3. Average and difference of the frequencies of two operating modes at different temperatures. 

 

T(⁰C) ω1(rad/s) ω2(rad/s) (f1+f2)/2(MHz) f2-f1 (kHz) 

-55 49,392,632.14 49,949,972.75 7.905,4 88.703,5 

-35 49,382,480.51 49,939,629.50 7.903,8 88.673,0 

-15 49,376,940.6 49,933,658.95 7.902,9 88.604,5 

5 49,366,806.56 49,923,271.81 7.901,3 88.564,2 

25 49,361,115.00 49,917,211.46 7.900,3 88.505,5 

45 49,355,475.27 49,911,129.47 7.899,4 88.435,1 

65 49,345,284.49 49,900,661.59 7.897,7 88.391,0 

85 49,339,532.84 49,894,517.40 7.896,8 88.328,5 

 

Table 4. Average and difference of the frequencies of two operating modes with different dimensions. 

 

R0(μm) R1(μm) h(μm) ω1(rad/s) ω2(rad/s) (f1+f2)/2(MHz) f2-f1 (kHz) 

620 720 100 49,361,115.00 49,917,211.46 7.900,3 88.505,5 

600 720 100 49,479,635.10 50,029,419.08 7.918,7 87.500,8 

640 720 100 49,172,948.28 49,863,881.04 7.881,1 109.965,3 

620 700 100 49,164,215.46 49,914,289.84 7.884,4 119.378,0 

620 740 100 49,524,037.54 49,933,262.10 7.914,6 65.1301,1 

630 710 100 49,174,701.48 49,880,317.05 7.882,5 112.302,2 

610 730 100 49,512,410.12 49,967,633.45 7.916,4 72.451,0 

620 720 60 79,589,986.47 79,691,441.38 12.675,2 16.147,1 

620 720 150 34,281,745.84 -- -- -- 

 

Figure 6 presents the effects of h on the operation modes of 

the filter. All parameters are the same as those in Figure 2, 

except that plate thickness is a variant. It is observed that both 

modes and the number of frequency roots were sensitive to the 

plate thickness. Under h=0.06 m, three trapped modes were 

discovered in the frequency interval. For better view, the 

contour of the third mode is also displayed in Figure 6. This 

mode contains two nodal lines: one in the dot electrode region 

and the other in the ring electrode region. Thus, the third mode 

cannot cancel out the charge in the electrode region and is not 

an ideal operation mode. 

Our filter design adopts the average and difference of the 

first and second frequency roots, instead of the frequencies. 

When the frequencies of the two modes are close enough and 

their resonance peaks overlap to a certain degree, the two 

modes can be used together as a filter with twice the bandwidth. 

Tables 3-4 list the frequencies of the modes in Figures 2-6. 

The frequency difference is related to the band pass width 

of the filter. As shown in Table 3, the average of the first and 

second frequency roots was close to 7.9 MHz; the frequency 

difference amounts to hundreds of Hz. As shown in Table 4, 

the frequency difference amounts to tens of thousands of Hz, 

much larger than the frequency difference in Table 3. 

Therefore, the thermal expansion effect on the frequency 

difference can be neglected in filter operation, and the 

accuracy of frequency should reach kHz. 

 

 

6. CONCLUSIONS 

 

This paper proposes a novel “dot-ring” electrode structure 

for quartz filter. The corner-less design of the structure helps 

eliminate the concentration of electric field. Then, a theoretical 

analysis was performed to acquire the basic vibration features 

of the quartz filter with the proposed electrodes, and 

investigate the thermal expansion effect. 

The simulation confirms the importance of the electrode 

size and quartz plate thickness in the design of filters. The 

proper design can reveal some trapped modes, whose 

vibrations are covered by the dot-ring electrodes.The trapped 

modes are the ideal operation mode, with a nodal line in the 

gap between the ring and the dot electrodes. Both the location 

of the nodal line and the field attenuation rate are sensitive to 

the geometric and physical parameters of the electrodes and 

plate. Under the working temperature between -55 °C and 

85 °C, the electrode sizes changed with the thermal expansion; 

the resonance frequency declined with the increase of 

temperature. However, the frequency difference considering 

the thermal expansion effect is extremely small, indicating that 

the quartz crystal filter has good thermal stability. 
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NOMENCLATURE 

 

x cartesian coordinates, m 

h height,m 

R 

a 

semi-minor axis, m 

dimensionless ratio of semi-major axis/ semi-minor 

axis  

L  length, m 

T temperature, K 

u dimensionless displacement 

n vibration order 

M coefficient of equation, N/m2
  

c elastic coefficient, N/m2 

R' dimensionless electrode-plate mass ratio 

f frequency, Hz 

m mode order 

r polar coordinates, m 

θ polar coordinates, rad 

 

Greek symbols 

 

α thermal expansion coefficient, K-1 

λ coordinates, m 

ρ density,  kg.m-3 

φ  angle relative to axis x2, rad 

η wave number, m-1 

γ dimensionless ratio of elastic coefficients 

ω circular frequency, rad.s-1 

β intermediate parameters 

ξ intermediate parameters 

 

Subscripts 

 

∞ infinite plate 
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