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 The present analysis investigates non-orthogonal stagnation point flow and heat transfer of 

a dual stratified Casson fluid in the presence of radiation. A set of partial differential 

equations of the physical model is transformed into a system of coupled non-linear ordinary 

differential equations as a first step (or initially) and then are solved numerically. Effects of 

the physical parameters on velocity and temperature fields, and species concentration are 

presented through graphs. The coefficient of surface drag, local heat and mass fluxes are 

also presented and discussed. Authenticity of the present study is ensured by comparing our 

results with the available results in the literature and is found to be in a very good agreement. 

Undershoot of temperature (concentration) is noticed due to excessive thermal (solutal) 

stratification. For higher Prandtl (Schmidt’s) numbers this undershoot is more significant. 

Stream contours are plotted for several sets of values of the stagnation point flow parameter 

B. Stream contours are seen to skew to the right of the stagnation point for B<0 and to the 

left when B>0.  
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1. INTRODUCTION 

 

The study of non-Newtonian fluids with specific physical 

and geometrical conditions is of utmost interest and these 

fluids are often encountered in industrial processes. The flow 

characteristics cannot be easily understood due to their non-

Newtonian nature. Different types of non-Newtonian fluids 

widely used are viscoelastic, power law, micropolar, couple 

stress, Casson and several others. The Casson fluid model is 

widely used in industry to describe paints, lubricants. The 

other examples include human blood, concentrated fruit juice, 

honey etc. Casson [1] first proposed this model to describe the 

flow curves of pigment oil suspensions of printing ink. Eldabe 

and Salwa [2] examined the heat transfer and flow 

characteristics of the Casson fluid between two rotating 

cylinders. Mustafa et al. [3] studied the boundary layer flow 

and heat transfer of a Casson fluid over a moving surface with 

parallel free stream. Several problems on Casson fluid flow in 

different physical situations have been studied [4-10]. 

Stratification refers to the formation of layers that arise due 

to concentration differences, temperature variations, or the 

presence of fluids with different densities. Double 

stratification occurs when both heat and mass transfer 

mechanisms take place simultaneously. Study of heat transfer 

in a doubly stratified medium has pragmatic applications in 

engineering. For example, heat rejection into environment like, 

reservoirs, lakes, rivers and oceans; thermal energy storage 

units which include solar pond and condensers of power plants. 

Yang et al. [11] treated the natural convection heat transfer 

from a non-isothermal vertical plate embedded in a thermally 

stratified medium. Jaluria and Gebhart [12] discussed the 

experimental and theoretical investigation to determine the 

effect of a stable ambient temperature stratification on the 

buoyancy induced flow past a vertical surface. Effects of 

thermal stratification on Newtonian fluid flows under different 

situations have been studied [13-17]. Murthy et al. [18] 

examined the double stratification effect on the free 

convective flow in a Darcy porous medium. Lakshmi 

Narayana and Murthy [19] extended this study to explore Soret 

and Dufour effects. Even though influence of double 

stratification of the medium on the processes of heat rejection 

into fluids is significant, not much work has been done in non-

Newtonian fluids. Effect of thermal and solutal stratification 

on free convective micropolar fluid flow is investigated by 

Srinivasacharya and Upendar [20]. Hayat et al. [21] analyzed 

the slip effects on the dual stratified stagnation point flow of a 

chemically reactive Casson fluid on a stretching cylindrical 

surface. Rehman et al. [22] discussed the double stratified 

mixed convective flow of a Casson fluid on an inclined 

stretching cylinder.  

Stagnation-point flows have been investigated extensively 

by several researches in view of their engineering and 

technological applications. These applications include rapid 

spray cooling and quenching in metal foundries, emergency 

core cooling systems, and glass blowing, etc. Also, analysis of 

stagnation point flow is of importance in estimating the 

frictional drag as well as rate of heat/mass transfer in the 

stagnation region of high speed bodies, and in the devise of 

thrust bearings and radial diffusers. The fluid may impinge 

vertically or obliquely on to the surface. Labropulu et al. [23] 

made the heat transfer analysis in the stagnated flow of a non-

Newtonian visco-elastic fluid impinging obliquely on to the 

stretching sheet. Mehmood et al. [24] evaluated the flow 

characteristics of a non-orthogonal stagnation point flow of a 

Jeffrey fluid on a stretching sheet with convective boundary 

conditions. Khan et al. [25] studied the effect of variable 

viscosity on the MHD non-orthogonal stagnation point flow of 

a water-based nanofluid on a convective stretching sheet with 
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radiative heat. Mustafa et al. [26] examined MHD stagnation 

point flow of an upper-convected Maxwell fluid interposing 

non-vertically on a continuously deforming surface 

considering non-linear radiative heat. Rana et al. [27] explored 

the features of Casson fluid flowing obliquely on to the 

stretched surface with the effects of homogeneous and 

heterogeneous reactions. Tabassum et al. [28] investigated the 

mixed convective flow of a nanofluid pouring non-vertically 

on to the stretched surface. 

Inspired by the aforementioned investigations, in this paper 

we analyze the effect of dual stratification, transverse 

magnetic field and thermal radiation on the non-orthogonal 

stagnated flow of a chemically reactive Casson fluid over a 

linearly stretching sheet. The analysis carried out in the present 

study is helpful to analyze the heat and mass characteristics of 

several industrial fluids that occur in many practical situations. 

Effects of various physical parameters on the velocity and 

temperature fields, and on the species, concentration are 

discussed. Aspects of the frictional drag coefficient, local heat, 

and mass fluxes are included in the discussion. 

 

 

2. MATHEMATICAL FORMULATION 

 

We consider the two-fold non-orthogonal stagnated flow of 

a non-Newtonian Casson fluid over a stretching sheet located 

at y=0 with dual stratification.  

 

 
Figure 1. Physical model and coordinate system 

 

To maintain the stretching, origin of the stretching sheet is 

fixed. Two equal and opposite forces are applied in opposite 

directions. The surface is stretched with a velocity 𝑢𝑤 = 𝑏𝑥. 

Let 𝑢𝑒 = 𝑎𝑥 + 𝑐𝑦 be the fluid’s velocity outside the boundary 

layer, where a, b and c are positive constants with dimensions 

per time. The flow is exposed to a normal uniform magnetic 

field of intensity 𝐵0 as illustrated in Figure 1. 

The relevant equations for the problem are [25]:  

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                                                         (1) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=  𝜈 (1 +

1

𝛽
)

𝜕2𝑢

𝜕𝑦2 + 𝑢𝑒
𝜕𝑢𝑒

𝜕𝑥
−

𝜎𝐵0
2

𝜌
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𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2 +
16𝜎∗𝑇∞

3

3𝑘∗𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2,                           (3) 

 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2 − 𝑘0(𝐶 − 𝐶∞),                      (4) 

 

where, u and v are fluid velocity components along x and y-

axes, respectively, 𝜈 is kinematic viscosity, β =  μB√2πc /Py 

is the Casson parameter, μB is the plastic dynamic viscosity of 

the non-Newtonian fluid, Py is the yield stress of the fluid, πc 

is critical value of π based on  non-Newtonian model,  𝜌 is 

density of the fluid, 𝜎  is electrical conductivity, T is fluid 

temperature, C is fluid concentration, 𝑇𝑤  and 𝐶𝑤  are 

temperature and concentration of the surface, 𝑇∞ and 𝐶∞ are 

temperature and concentration of the ambient fluid. k is 

thermal conductivity of the fluid, 𝑐𝑝 is specific heat at constant 

pressure, 𝜎∗  is Stefen-Boltzman constant, 𝑘∗  is absorption 

coefficient, D is mass diffusivity and 𝑘0  is the chemical 

reaction. 

The appropriate boundary conditions for the problem are 

 

𝑢 = 𝑢𝑤, v = 0, 𝑇 = 𝑇𝑤 = 𝑇0 + 𝑚1𝑥, 𝐶 = 𝐶𝑤 = 𝐶0 + 𝑛1𝑥 at 

𝑦 = 0,                                                                                   (5) 

 

u→ 𝑢𝑒, T→ 𝑇∞ = 𝑇0 + 𝑚2𝑥, C→ 𝐶∞𝐶0 + 𝑛2𝑥 as 𝑦 → ∞,  (6) 

 

where 𝑚1, 𝑚2, 𝑛1, 𝑛2 are dimensional constants and 𝑇0, 𝐶0 are 

the reference temperature and reference concentration, 

respectively. 

 

 

3. METHOD OF SOLUTION 

 

Equations (2)-(4) can be reduced to a set of ODE's by 

introducing the following similarity variables 

 

𝜂 = √𝑏/𝜈  𝑦, 𝑋 = √𝑏/𝜈  𝑥.                                                (7) 

 

From continuity equation (1), we can define the stream 

function as 

 

𝜓(𝑋, 𝜂) = 𝜈[𝑋𝑓(𝜂) + 𝑔(𝜂) ],                                              (8)    

 

where, 𝑓(𝜂)  and 𝑔(𝜂)  represent the normal and tangential 

components of flow respectively, such that 

  

𝑢 = √
𝑏

𝜈

𝜕𝜓

𝜕𝜂
, 𝑣 = −√

𝑏

𝜈

𝜕𝜓

𝜕𝑋
.                                                      (9) 

 

which automatically satisfy the continuity equation (1). Now, 

define 

 

𝑢 = √𝑏𝜈(𝑋 𝑓′(𝜂) + 𝑔′(𝜂)), 𝑣 = −√𝑏𝜈𝑓 (𝜂),                                   

𝜃(𝜂) =
𝑇−𝑇∞

𝑇𝑤−𝑇0
,  𝜙(𝜂) =

𝐶−𝐶∞

𝐶𝑤−𝐶0
.                                            (10) 

 

Substituting equation (10) into (2) – (4), we obtain 

 

(1 +
1

𝛽
) 𝑓′′′ + 𝑓𝑓′′ − 𝑓′2 − 𝑀(𝑓′ − 𝐴) + 𝐴2 = 0,           (11) 

 

(1 +
1

𝛽
) 𝑔′′′ + 𝑓𝑔′′ − 𝑓′𝑔′ − 𝑀(𝑔′ − 𝐵𝜂) + 𝑅𝐵 = 0,      (12) 
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(1 +
4

3
𝑁𝑟) 𝜃′′ + 𝑃𝑟(𝑓𝜃′ − 𝑓′𝜃 − 𝜀1𝑓′) = 0,                   (13) 

 

𝜙′′ + 𝑆𝑐(𝑓𝜙′ − 𝑓′𝜙 − 𝜀2𝑓′ − 𝛾𝜙) =  0.                          (14) 

 

The associated boundary conditions are  

 

𝑓(0) =  0,  𝑓′(0) =  1, 𝑔′(0) =  0, 𝜃(0) = 1 − 𝜀1, 𝜙(0) =

1 − 𝜀2,                                                                                (15) 

 

𝑓′(∞) → 𝐴, 𝑔′′(∞) → 𝐵, 𝜃(∞) → 0, 𝜙(∞) → 0.           (16) 

 

From equation (16), it can be easily seen that 𝑓(𝜂) = 𝐴 𝜂 +
𝑅  as 𝜂 → ∞ , where R is the boundary layer displacement 

constant to be determined. Let  

 

𝑔′(𝜂) = 𝐵 𝐺(𝜂))                       (17) 

 

Substituting equation (17) into equations (12), (15) and (16), 

we obtain 

 

(1 +
1

𝛽
) 𝐺′′ + 𝑓𝐺′ − 𝐺𝑓′ − 𝑀(𝐺 − 𝜂) + 𝑅 = 0,              (18) 

 

𝑓(0) =  0,  𝑓′(0) =  1, 𝐺(0) =  0, 𝜃(0) = 1 − 𝜀1, 𝜙(0) =

1 − 𝜀2,                                         (19) 

 

𝑓′(∞) → 𝐴, 𝐺′(∞) → 1, 𝜃(∞) → 0, 𝜙(∞) → 0,             (20) 

 

where, 𝑀 = 𝜎𝐵0
2/𝜌𝑏  is magnetic field parameter, 𝐴 = 𝑎/

𝑏 and 𝐵 = 𝑐/𝑏  are free stream stagnation flow parameters, 

𝑃𝑟 = 𝜌𝑐𝑝𝜈 /𝑘  is Prandtl number, 𝑁𝑟 = 4𝜎∗𝑇∞
3/𝑘𝑘∗  is 

thermal radiation parameter,  𝑆𝑐 = 𝜈/𝐷  is Schmidt number, 

𝜀1 = 𝑚2/𝑚1 is thermally stratified parameter, 𝜀2 = 𝑛2/𝑛1 is 

solutal stratified parameter and 𝛾 = 𝑘0/𝑏 is chemical reaction 

parameter. 

The surface drag coefficient 𝐶𝑓, Nusselt number 𝑁𝑢 at the 

boundary representing local heat flux Sherwood number  𝑆ℎ 

describing the local mass flux are defined by 

 

𝐶𝑓 =  
𝜏𝑤

𝜌𝑢𝑒
2, 𝑁𝑢 =

𝑥𝑞𝑤

𝑘(𝑇𝑤−𝑇∞)
, 𝑆ℎ =

𝑥𝑚𝑤

𝐷(𝐶𝑤−𝐶∞)
,                      (21) 

 

where the wall shear stress 𝜏𝑤, the surface heat flux 𝑞𝑤 and 

mass flux 𝑚𝑤 are given by 

 

𝜏𝑤 = 𝜇 (1 +
1

𝛽
) (

𝜕𝑢

𝜕𝑦
)

𝑦=0
,   𝑞𝑤 = −𝑘𝑥 (1 +

16𝜎∗𝑇3

3𝑘𝑘∗ ) (
𝜕𝑇

𝜕𝑦
)

𝑦=0
 , 

𝑚𝑤 = −𝐷 (
𝜕𝐶

𝜕𝑦
)

𝑦=0
.                 (22) 

 

and μ is dynamic viscosity of the fluid. 

Using equation (22) in equation (21), we obtain 

 

𝐶𝑓 = (1 +
1

𝛽
) (𝑋𝑓′′(0) + 𝐵𝐺′(0)) , 𝑁𝑢 = − (1 +

4

3
𝑁𝑟) 𝜃′(0), Sh= −𝜙′(0).                                                  (23) 

 

The position 𝑋𝑓 of attachment of dividing stream contour is 

determined by zero wall shear stress as  

 

𝑋𝑓 = −
𝐵𝐺′(0) 

𝑓′′(0)
. 

 
The set of coupled equations (11), (18), (13) and (14) with 

the boundary conditions (19) and (20) are solved using RKF45 

numerical scheme and is verified by comparing the values of 

𝑓 ′′(0) and 𝐺 ′(0) with those of Labropulu et al. [23], Nadeem 

et al. [29], Khan et al. [25] in the absence of magnetic field and 

for the case of a Newtonian fluid for different values of A. The 

data in Table 1 shows that the present results are in very good 

agreement. 

 

Table 1. Comparison values of 𝑓′′(0) and 𝐺′(0) for various values of A when 𝑀 = 0, 𝛽 → ∞ 

 

A R 
Labropulu et al. [23] Nadeem et al. [29] Khan et al. [25] Present Results 

𝑓′′(0) 𝐺′(0) 𝑓′′(0) 𝐺′(0) 𝑓′′(0) 𝐺′(0) 𝑓′′(0) 𝐺′(0) 

0.1 

0.3 

0.8 

2.0 

3.0 

-0.791705 

-0.519499 

-0.114527 

0.410407 

0.693053 

-0.96938 

-0.84942 

-0.29938 

2.01750 

4.72928 

0.26278 

0.60573 

0.93430 

1.16489 

1.23438 

-0.96938 

-0.84942 

-0.29938 

2.01750 

4.72928 

0.26332 

0.60631 

0.93472 

1.16521 

1.23465 

-0.969386 

-0.849420 

-0.299388 

2.017502 

4.729282 

0.26332 

0.60631 

0.93472 

1.16521 

1.23465 

 

-0.96938 

-0.84942 

-0.29938 

2.01750 

4.72928 

0.26332 

0.60631 

0.93472 

1.16521 

1.23465 

 

 

4. RESULTS AND DISCUSSION 

 

The aim of this investigation is to analyze the impact of 

radiative heat transfer, dual stratification and chemical 

reaction on the MHD non-orthogonal Casson fluid directed 

towards the surface of stretching. The obtained results are 

presented graphically for several sets of physical parameters. 

Figure 2 points out that the horizontal velocity 𝑓′(𝜂) 

decreases with increasing values of the non-Newtonian 

rheology parameter (𝛽)  due to increase in plastic dynamic 

viscosity. In the limiting case of 𝛽 → ∞, that is, when the fluid 

is viscous and in the absence of magnetic field (M) and when 

𝐴 = 1, equation (11) has an exact solution 𝑓(𝜂) = 𝜂 which 

leads to 𝑢 = 𝑎𝑥 and 𝑣 = −𝑎𝑦. In this case [30], it can be said 

that the velocity distribution is same as that of the inviscid flow, 

so that there is no boundary layer formation near the stretching 

surface. Figure 3 displays the development of the profiles of 

oblique velocity gradient 𝐺′(𝜂)  with 𝛽 . It is interesting to 

observe that 𝐺′(𝜂) increases rapidly near the boundary with 

steepened profiles and is an increasing function of Casson 

parameter in the vicinity of the boundary (0 ≤ 𝜂 ≤ 2.929) 

and has a reversal trend in the region 2.929 ≤ 𝜂 ≤ 8.687. 

Figure 4 suggests that the free stream stagnation flow 

parameter (A) has an enhancing impact on velocity. It can be 
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seen that the Casson fluid flow contains a specific boundary 

layer structure when A exceeds unity (𝐴 > 1)  and the 

boundary layer thickness reduces for increasing A. This may 

be due to the fact that a fixed value of b, when 𝐴 > 1 the flow 

corresponds to an increase in the straining motion in the 

neighbourhood of  stagnation point leading to enhancement of 

acceleration of the external stream and thus the thinning of the 

boundary layer takes place for increasing values of A. Further, 

it is clear that when 𝐴 < 1, the boundary layer pattern gets 

reversed owing to the fact that when 𝐴 < 1, the velocity of 

the surface surmounts the stagnation velocity of the external 

stream. We see from Figure 5, when 𝐴 > 1 for small values of 

free stream stagnation flow parameter 𝐴 = 0.5  the oblique 

velocity gradient 𝐺′(𝜂) increases rapidly near the boundary 

reaching its maximum and later decreases eventually attains 

its free stream value. The profiles of 𝐺′(𝜂)  are convex in 

nature. For 𝐴 > 1 though a similar trend in 𝐺′(𝜂) is noticed 

the profiles are concave.  

 
 

Figure 2. Variation of 𝛽 on 𝑓′(𝜂) 

 
Figure 3. Variation of 𝛽 on 𝐺′(𝜂) 

 

Figure 6 depicts the depreciation of 𝑓′(𝜂)  for higher 

intensities of the magnetic field (M). This is in conformity with 

the fact that the stronger Lorentz force, generated as a result of 

higher magnetic field strength, heavily opposes the fluid 

motion. From Figure 7, we see that as 𝑀 takes higher values 

the oblique velocity gradient 𝐺′(𝜂) increases near the wall and 

subsequently it reduces.  

Figure 8 shows the effect of thermal stratification on 

temperature for 𝑃𝑟 = 0.7  and 𝑃𝑟 = 3.0 . It is seen that 

temperature gradients decrease for higher Prandtl number near 

the surface and the temperatures are lesser than those when 

𝑃𝑟 = 0.7  due to smaller diffusivity. It is seen that the 

temperature decreases with increasing 𝜀1 in both cases of Pr. 

When 𝑃𝑟 = 0.7 and 𝜀1 = 0.3, it is observed that there is a 

small undershoot of temperature or negative temperature away 

from the boundary due to excessive stratification. When 𝑃𝑟 =
3.0 the undershoot is noticed even for smaller 𝜀1 and is more 

significant with increase in 𝜀1 due to the cumulative impact of 

smaller thermal diffusivity and excessive thermal stratification. 

Similar characteristics have been noticed in previous studies 

of natural convection flows [12, 31]. Physically, it may be 

explained that the ambient temperature 𝑇∞  increases 

downstream. Hence the flow coming from below tends to have 

a temperature smaller than that of the local temperature 

resulting in undershoot of temperature. Figure 9 shows that the 

temperature is enhanced predominantly for larger values of the 

thermal radiation parameter (Nr) as thermal radiation 

facilitates more heat to the fluid leading to an increase in the 

energy transport to the fluid. Similar trend had been observed 

in ealier investigation in non-Newtonian fluids [32, 33]. The 

associated thermal boundary layers become thicker for 

increasing values of Nr. Increase in Nr amounts to decrease in 

the absorption coefficient which leads to the enhancement of 

temperature in the boundary layer. Increased Nr spreads the 

associated thermal boundary layers. 

 
 

Figure 4. Variation of A on 𝑓′(𝜂) 

 
 

Figure 5. Variation of A on 𝐺′(𝜂) 
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Figure 6. Variation of M on 𝑓′(𝜂) 

 

 
 

Figure 7. Variation of 𝛽 on 𝐺′(𝜂) 

 

 
 

Figure 8. Variation of 𝜀1 and Pr on 𝜃(𝜂) 

 

Figure 10 shows the variation of solutal stratification 

parameter (𝜀2)  and Schmidt’s number (Sc) on species 

concentration. Since the role of Prandtl number on temperature 

is similar to that of Schmidt’s number on concentration, it can 

be seen that the influence of solutal stratification parameter on 

species concentration is exactly same as that of thermal 

stratification parameter on temperature distribution. Influence 

of chemical reaction parameter (𝛾) on species concentration is 

plotted in Figure 11. Effect of chemical reaction is to enhance 

the rate of interfacial mass transfer. When species 

concentration at the boundary is greater than that of the free 

stream, a gradual reduction in concentration occurs. It is 

observed that for a fixed value of 𝛾, concentration of chemical 

species is diluted along 𝜂  in the region 0 ≤ 𝜂 ≤ 5 and is seen 

to be a reducing function of  𝛾. Higher values of 𝛾 result in 

thinning of  solutal boundary layers due to weaker molecular 

diffusivity.  

 
 

Figure 9. Variation of Nr on 𝜃(𝜂) 

 

 
 

Figure 10. Variation of 𝜀2 and Sc on 𝜙(𝜂) 

 

 
 

Figure 11. Variation of 𝛾 on 𝜙(𝜂) 
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Figure 12. Variation of 𝛽 and M on 𝑓′′(0) 

 

 
 

Figure 13. Variation of 𝜀1 and Nr on 𝑁𝑢 

 

 
 

Figure 14. Variation of 𝜀2 and Sc on 𝑆ℎ 

 

From Figure 12, it can be inferred that the combined 

influence of non-Newtonian rheology (𝛽) and magnetic field 

(M) is to decrease the normal component of the surface drag 

coefficient considerably due to retardation in fluid flow. It is 

observed that a reduction in the surface drag coefficient when 

𝑀 = 4.0, 𝛽 = 1.0 is almost fourfolds to that of the case when 

𝑀 = 1 and 𝛽 = 0.1. From Figure 13 the local heat flux (Nu) 

is seen to be a decreasing function of 𝜀1 and Nr. When 𝑁𝑟 =
0.5, as 𝜀1 changes from 0.1 to 1.0, the Nu reduces in the range 

from 0.64 to 0.38. For the same range of 𝜀1, when 𝑁𝑟 = 2.0, 

the reduction in Nu is from 0.36 to 0.26. Figure 14 shows a 

plot of Sherwood number (Sh) versus solutal stratification 

number for different values of Schmidt’s number. From this 

figure we see that Sherwood number reduces with increase in 

𝜀2  and an opposite trend occurs with Schmidt’s number. 

Figure 15 shows that for 𝐵 < 0,  the streamlines are skewed to 

the right of the stagnation point and to the left for 𝐵 > 0 as 

expected. However, the streamlines are vertically oriented 

when 𝐵 = 0. 
 

 
Figure 15. Streamline patterns for the oblique flow (a) non-

aligned pattern for 𝐵 = −2.5; (b) aligned pattern for 𝐵 = 0; 

(c) non-aligned pattern for 𝐵 = 2.5 

 

 

5. CONCLUSIONS 

 

Some of the interesting outcomes of the investigation are as 

follows: 

➢ Cumulative effect of non-Newtonian rheology of the 

fluid and Lorentz force is to repress the horizontal velocity 

component and oblique velocity gradient considerably.  

➢ Excessive thermal (solutal) stratification causes 

undershoot of temperature (species concentration).  

➢ Non-dimensional temperature increases with 

increased thermal radiation parameter while thermal 

stratification parameter and Prandtl number have a reverse 

influence.  

➢ Species concentration is diluted with increasing 

chemical reaction parameter and Schmidt’s number. 

➢ Normal component of the frictional drag decreases 

with Casson parameter and magnetic field parameter. 

➢ Nusselt number diminishes with thermal radiation 

parameter and thermal stratification parameter. 

➢ Local mass flux increases with Schmidt’s number 

whereas solutal stratification parameter has a decreasing 

influence. 

➢ Contours of the stream function are oblique to the left 

of the stagnation point for 𝐵 > 0  as a result of straining 

motion and a reversal trend is noticed for 𝐵 < 0. 
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