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 Thermal energy storage system with phase change materials become increasingly 

important topics because of its important role in latent heat energy conservation, and for 

heating and cooling purpose. Thermal energy storage provides a great solution for the 

mismatch between energy production and its demand. TESS gives a high thermal storage 

density with a wide range of temperature. This paper considers the numerical solution of 

outward melting/solidification of encapsulated phase change materials in thermal energy 

storage system performance. Due to its nonlinear behaviour, it is complicated to have exact 

solution of melting process. HBI method is applied to solve uni-directional outward 

melting problem in cylindrical and spherical geometries. Interface location, heat transfer 

rate and heat transfer with time is obtained for both the geometries. A Matlab code has 

been written to solve moving interface problem. 
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1. INTRODUCTION 

 

The continuous depletion of non-renewable energy raises 

serious issues of their future availability and effect on 

environment. The increasing level of greenhouse gas 

emissions is the main reason behind the need of safe and 

clean energy alternative. Sun is the main source of clean and 

safe energy but there is a huge difference between its demand 

and supply because of its oscillating nature. Solar light is 

only available at day time, due to this fluctuation, we need a 

device which store renewable energy at faster rate and release 

whenever needed. This can be done by the use of thermal 

energy storage system (TESS). TESS used to store thermal 

energy as a form of sensible heat or latent heat. In Sensible 

thermal energy storage system, thermal energy is stored by 

increasing the temperature of storage medium while in Latent 

thermal energy storage system, thermal energy is stored at 

constant temperature. 

Phase change materials used in TESS are materials, which 

store thermal energy due to its large heat storage capacity at 

constant temperature. PCM are broadly categorised into 3 

main parts: organic, inorganic and eutectic [1]. The choice of 

PCM is totally based on their melting temperature and its 

applications. 

All the other materials which melt in between these two 

temperature limit are used in heating purpose [2]. A 

technique which is used to keep the PCM in a different 

geometrical container to avoid any direct contact between the 

PCM and HTF is known as encapsulation. The size and shape 

of the PCM encapsulation is important to ensure long-term 

thermal performance of any thermal energy storage system 

and also the melting / solidification time of the PCM. There 

are some specific geometries, which commonly employed as 

PCM encapsulation are the rectangular, cylindrical and 

spherical encapsulation [3]. 

There are a series of experimental and analytical 

investigation has been done by the researchers on the phase 

change thermal energy storage system of different geometry 

under different boundary conditions. A phase change 

problem should be solved separately due to its non-linear 

nature of the problem. There are a wide range of different 

methods like Heat balance integral method [7, 13, 16], 

enthalpy method [13, 16] and finite difference methods [12] 

available for solving non-linear phase change problems. 

Melting and freezing problem of PCM in thermal energy 

storage system solved by HBIM and its accuracy is improved 

by subdividing dependent variable into equal intervals by 

G.E.Bell [4]. A system of first order, non-linear differential 

equations has been produced to calculate the position of each 

isotherm. The location and time history of the 1-dimensional 

solid-liquid interface during the solidification of semi-infinite, 

cylindrical and spherical geometries has been investigated by 

G.Poots [5] by approximate integral method, which is very 

much similar to the solution of the boundary layer equations. 

Anant Prasad [6] has been numerically analysed the semi-

infinite solid of constant cross section area under 1-

dimensional convective heating to calculate the temperature 

build-up, thermal penetration depth and melt fraction by 

using Biot variational method. 

Several researchers continuously tried to improve the 

accuracy of non-linear phase change thermal energy storage 

problem. The accuracy of HBIM has been considerably 

improved by successive sub division of the dependent 

variable [4, 7] and / or by choosing suitable temperature 

profile [6, 9, 13]. Some alternative ways to develop the 

original quadratic HBI has been given by A.S.Wood [13] to 

solve melting of semi-infinite slab which is initially at its 

melting temperature. T.G.Myers [14] developed a new 

method to find out the best possible value of power of highest 

order term in the approximating function used in HBIM by 
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minimizing the square of the difference of the terms in the 

heat equations. 

James Caldwell & C.K.Chiu [7] investigated solidification 

problem of PCM in spherical encapsulated phase change 

thermal energy storage system by using front tracking 

method and found that in spherical case the solidification 

front moves slightly slower. A.Kumar et al. [8] solved 

spherical outward melting of PCM in radial direction by 

employing Variational, Integral and Quasi-steady method. 

He-Sheng Ren [9] has solved the 1-dimensional inward 

solidification in Cartesian and spherical encapsulation 

problem by heat balance method. The melting phenomenon 

of PCM, encapsulated in a rectangular geometry under 

radiative heat injection has been analysed by A.Prasad et al. 

[10] by biot variational method, HBIM & quasi-static method. 

The results obtained by all these methods were almost same. 

R.K.Sharma et al. [11] obtained the solution of a 2-

dimensional solidification problem in isosceles trapezoidal 

cavity by using CFD software and found that the heat transfer 

mainly occurs due to the conduction. Explicit finite 

difference method has been applied by K.Morgan [12] to 

solve freezing and melting phenomenon in a cylindrical 

thermal cavity. The combined effect of conduction and 

convection heat transfer was considered by this method and 

validated this numerical result with experimental result. 

A modified variable time step method has been obtained 

by R.S.Gupta and Dhirendra Kumar [15] to solve 

solidification problem of liquid which is initially at its fusion 

temperature. The result obtained for the movement of the 

interface, temperature distribution and compared results with 

the result found by HBI method. James Caldwell and Ching-

chuen Chan [16] numerically analysed PCM solidification by 

enthalpy method & HBIM over a wide range of the Stefan 

number except for very small value. The shell and tube type 

latent heat thermal energy storage system during melting and 

solidification has been numerically and experimentally 

analysed by Anica Trp [17] to evaluate heat transfer during 

process. 

Dinu G Thomas et al. [18] experimentally analysed energy 

and exergy analysis of PCM during melting process. Sodium 

thiosulfate pentahydrate used as PCM in this analysis. Piia 

Lamberg et al. [19] numerically and experimentally 

investigated the PCM energy storage device with and without 

heat transfer enhancement structure by enthalpy method and 

heat capacity method. The results obtained then compared 

with experimental results. Finite difference approach has 

been used by Stetislav Savovic et al. [20] to analyse the 1-

dimensional Stefan problem with periodic fixed boundary 

condition. 

In this present paper, the mathematical modelling of phase 

change thermal energy storage system has been formulated 

for charging process. The behaviour of PCM melting in a 

cylindrical and spherical encapsulation under fixed boundary 

is being analysed by using MATLAB coding. The effect of 

Stefan number on dimensionless interface location, heat 

transfer and rate of interface position is discussed. 

 

 

2. MATHEMATICAL MODELLING 
 

In the present study, a schematic drawing of a spherical 

and cylindrical geometry containing solid PCM used is 

shown in Figure.1. We consider a single phase, 1-

dimensional outward melting problem of PCM kept inside a 

spherical and cylindrical capsule, while in practical, the 

melting problem is rarely one dimensional, initial and 

boundary conditions are always complex. Initially, PCM is at 

its melting temperature Tm. The temperature at the geometry 

boundary is TS, which is higher than the PCM melting 

temperature Tm. 

The term ‘moving boundary problems’ is associated with 

time-dependent boundary problems and also referred as 

Stefan problems, where the position of the moving boundary 

must be determined as a function of time and space. As the 

time passes solid PCM will melt due to the boundary 

temperature applied at vessel and the governing equations for 

this process may be described by: 

 
1

rk
 

∂

∂r
[rk  

∂T

∂r
] =  

1

α
 
∂T

∂t
 

(1) 

 

where k =1 for cylindrical geometry 

           k =2  for spherical geometry 

 

 
 

Figure 1. Schematic diagram of encapsulated PCM inside 

cylindrical geometry undergoing outward melting 

 

Boundary Conditions are, 

 

r = ri ,       t > 0,       T = Ts (2) 

 

r = δ ,       t > 0,       T = Tm (3) 

 

r  ≥ ri,       t = 0,       T = Tm (4) 

 

Energy balance equation at the solid-liquid interface is, 

 

[𝐾 
𝜕𝑇

𝜕𝑟
] =  −𝜌𝐿 

𝜕𝛿

𝜕𝑡
 

(5) 

 

To reduce dependent variables we introduce the non 

dimensional variables, 

 

𝜉 =
𝑟

𝑟𝑖

 𝜂 =  
δ

ri

 𝜏 =  
𝛼 𝑡

𝑟𝑖
2

 

 

𝜃 =  
𝑇 − 𝑇𝑓

𝑇𝑠 − 𝑇𝑓

 𝑆𝑡 =   
𝐶 ( 𝑇𝑠 − 𝑇𝑓  )

𝐿
 

 

Now governing Eq. (1) can be written as, 

 
1

𝜉𝑘
 

𝜕

𝜕𝜉
[𝜉𝑘  

𝜕𝜃

𝜕𝜉
] =  

𝜕𝜃

𝜕𝜏
 

(6) 

 

And all boundary conditions become, 

 

𝜉 = 1,       𝜏 > 0,       𝜃 = 1 (7) 
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𝜉 = 𝜂,       𝜏 > 0,       𝜃 = 0 (8) 

 

𝜉 ≥ 1,       𝜏 = 0,       𝜃 = 0 (9) 

 

Now non-dimensional energy balance equation at the 

solid-liquid interface is, 

 

[ 
∂θ

∂ξ
] =  −

1

St

 
∂η

∂τ
 

(10) 

   

2.1 Heat balance integral method 

 

The heat balance integral method (HBIM) is simple 

approximate technique developed for solving transport 

problems like phase change problems. Goodman [21] 

introduced HBIM, which converts the governing partial 

differential equations to ordinary differential equations by:  

(i). Assuming the most suitable approximate temperature 

profile, either linear, quadratic, cubic, exponential etc. 

(ii). Satisfying the boundary conditions, 

(iii). Integrate the heat conduction equation with respect to 

the space variable over a suitable interval to create a 

heat balance integral equation. 

(iv). Solve the integral equation to obtain the interface 

location and temperature distribution. 

Now, integrate the energy equation (10) with respect to 

space variable, 

 

∫
𝜕

𝜕𝜉
[𝜉𝑘

𝜕𝜃

𝜕𝜉
] 𝑑𝜉 =  ∫ [𝜉𝑘

𝜕𝜃

𝜕𝜏
 ] 𝑑𝜉

𝜂

1

𝜂

1

 
(11) 

 

𝜕

𝜕𝜏
[∫ (𝜉𝑘𝜃)𝑑𝜉

𝜂

1

] − (𝜉𝑘𝜃)𝜉=𝜂𝜂 ̇

=  [𝜉𝑘
𝜕𝜃

𝜕𝜉
]

𝜉=𝜂

−  [𝜉𝑘
𝜕𝜃

𝜕𝜉
]

𝜉=1

 

(12) 

 

Now assume a suitable linear temperature profile with 

negligible temperature drop within the solid layer, which 

satisfies the boundary conditions: 

 

θ = 1 − [
1 − 

1
ξ

1 − 
1
η

] 

(13) 

 

2.2  Interface location analysis 

 

Substituting Eq. (13) into Eq. (12) leads to, for spherical 

geometry (k=2), 

 

𝜏 =  
𝜂3

3
− 

𝜂2

2
− 

1

6
+ [𝜂2 − log(𝜂) −  𝜂]  (

𝑆𝑡

6
) 

(14) 

 

For cylindrical geometry (k=1), 

 

𝜏 =  
𝜂2

3
−  𝜂 + 

1

2
+  [𝜂 − log(𝜂) −  1] (

𝑆𝑡

2
) 

(15) 

 

2.3 Heat transfer analysis 

 

Q = ∫ (Latent heat +  Sensible heat)dξ
η

1
  

For sphere: 

 

Qτ =  [
η3 −  1

St

+  3 ∫ ξ2θ dξ
η

1

] 
(16) 

 

Substituting Eq. (13) into Eq. (16) leads to 

 

Qτ =  [
η3 −  1

St

+ (η3 − 1)

−  3 (
η

η − 1
) (

η3 − 1

3
− 

η2 − 1

2
)] 

(17) 

 

For cylinder: 

 

𝑄𝜏 =  [
𝜂2 −  1

𝑆𝑡

+  2 ∫ 𝜉 𝜃 𝑑𝜉
𝜂

1

] 
(18) 

 

Substituting Eq. (13) into Eq. (18) leads to 

 

Qτ =  [
η3 −  1

St

+ (η3 − 1)

−  3 (
η

η − 1
) (

η3 − 1

3
− 

η2 − 1

2
)] 

(19) 

 

 

3. RESULTS AND DISCUSSION 
 

In this part we present the numerical results obtained by 

using heat balance integral method in cylindrical and 

spherical melting process of phase change materials used in 

thermal energy storage. 

 

 
 

Figure 2. Behaviour of the non-dimensional interface 

location with non-dimensional time, Stefan’s number is taken 

as a parameter 

 

Figure 2 shows the variation of dimensionless interface 

location or interface depth with time for different values of 

Stefan’s number. With each values of Stefan number, during 

starting time of melting, the interface depth increases very 

rapidly with time and as the time passes, interface depth 

becomes almost linear with time because during starting time 

period heat transfer rate increases more quickly. By using 

HBIM the melting process of PCM used in latent heat 

thermal energy storage system is strongly depends upon 

Stefan’s number. At any time instance interface depth with 

time decreases, as Stefan’s number decreases. 
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Figure 3. Non-dimensional heat transfer with non-

dimensional time, Stefan’s number is taken as a parameter 

 

The variation of dimensionless heat transfer with time in 

spherical and cylindrical melting for different values of 

Stefan’s number is shown in Figure 3. During initial time of 

melting of PCM, the heat transfer increases more rapidly 

because of large temperature difference available between 

two phases. But with time, heat transfer becomes linear 

because the temperate difference between two phases 

decreases. This means that, except the initial time period, the 

heat transfer process is very slow. The time taken to absorb a 

certain amount of heat in cylindrical process is higher than 

that of spherical melting process. 

The rate of interface depth or the interface velocity is a 

function of Stefan’s number, as seen in equation 14 & 16. 

The variation of interface velocity with time is shown in 

Figure 4. The rate of interface position, which is a single 

curve, decreases with time, for all values of Stefan’s number. 

 

 
 

Figure 4. Behaviour of the non-dimensional rate interface 

position with non-dimensional time, Stefan’s number is taken 

as a parameter 

 

 

4. CONCLUSIONS 
 

The mathematical modelling for melting phenomenon of 

PCM at constant temperature heat transfer in cylindrical and 

spherical encapsulated thermal energy system has been 

formulated and solved by heat balance integral method for 

interface depth, heat transfer and interface velocity. In 

present work, HBIM is used only for single phase change 

model. This method can be further applied on more realistic 

melting or solidification problems. The heat transfer process 

between two phases occurs only by conduction. Convection 

and radiation heat transfer is being neglected in this work.  
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NOMENCLATURE 

C Heat capacity 

k constant, k=1,2 for cylinder & sphere 

respectively 

K thermal conductivity, W/m K 

L latent heat,  J/Kg 

Qτ non-dimensional total heat absorbed 

R radius, m 

ri inner radius, m 

St Stefan number, 
𝐶 ( 𝑇𝑠− 𝑇𝑚 )

𝐿

t time, s 

Tm melting temperature, K 

Ts surface temperature, K 

Greek symbols 

 thermal diffusivity, m2/s 

δ Interface location 

ƞ non-dimensional radial distance of 

phase front, δ/ri 

ƞ̇ time rate of non-dimensional radial 

distance of phase front, d ƞ/d τ 

ξ non-dimensional radial distance within 

phase change, r/ri 

𝜌 density, Kg/m3 

θ non-dimensional temperature, 
𝑇−𝑇𝑚

𝑇𝑠− 𝑇𝑚

τ non-dimensional time, 
𝛼 𝑡

𝑟𝑖
2
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