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 In the present study, a two-dimensional pulsatile blood flow model is created and the related 

heat transfer characteristics through a stenosed artery are investigated in the presence of a 

defined magnetic field with the body acceleration. The blood domain is assumed as a non-

linear, time-dependent, incompressible and laminar flow. The blood flow is considered with 

the unsteady characteristics because the pulsatile pressure gradient is arising due to the 

systematic reactions between the heart and the body acceleration. The non-linear momentum 

and continuity equations are solved with suitable initial and boundary conditions using the 

Crank-Nicolson scheme. In this study, the blood flow characteristics (velocity profiles, 

temperature, volumetric flow rate and flow resistance) are evaluated, also effects of the defined 

stenosis severity, the heat transfer factors and the considered magnetic field on the effective 

flow properties are discussed. Besides, the blood flow characteristics have been analyzed in a 

comparison form for two rigid and elastic arteries. Finally, it should be said that the present 

outputs are in good agreement with some available and validated results. 
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1. INTRODUCTION 

 

The cardiovascular diseases are responsible for over 17.3 

million deaths per year and the main causes of death in many 

countries [1-2]. Amongst the different cardiovascular diseases, 

the arteriosclerosis is the main one which affects the blood 

flow in the arteries [3]. In atherosclerosis, the fat particles and 

cholesterol are gatherd inside the blood arteries. This event 

causes the partial occlusion and reduces the blood transport in 

the area beyond the narrowing [1]. Depending on the stenosis 

artery's location, the atherosclerosis may lead to stroke, heart 

attack, and various cardiovascular diseases. Many researchers 

[4-6] have noted that the initiation and development of 

atherosclerosis are strongly related to the blood flow 

characteristics, therefore to study the effect of stenosed on 

blood flow characteristics through vessels, many theoretical 

and numerical investigations [2, 7-10] have been performed.  

Blood is a suspension of different cells such as red and white 

blood cells, leukocytes, and platelets in a special liquid called 

plasma [11-13]. Chakravarty and Mandal [14] took blood flow 

as a non-linear and incompressible flow through a stenosed 

artery and investigated the blood flow characteristics 

considering the mentioned conditions. They noted that 

assumption of the vessels rigidity isn’t acceptable, so the 

vessels is considered to be an elastic domain and the stenosis's 

geometries are considered as a time-dependent boundaries. 

Lorenzini and Casalena [9] investigated CFD analysis of 

pulsatile blood flow in an atherosclerotic human artery 

with  eccentric plaques. Marques et al. [10] investigated the 

pulsatile blood flow in a human artery which the vessel was 

assumed as a straight wall, also the blood flow was considered 

to be incompressible and axisymmetric. Also, the effect of 

pulsatile flow was taken into account by imposing the velocity 

profile of the cardiac cycle. Ponalagusmy and Selvi [15] have 

developed a mathematical model for blood flow through 

arterial stenosis with the two-fluid model including a core 

region of Casson fluid and a peripheral layer of Newtonian 

fluid. They concluded that the downstream of the stenotic 

regions is more important for the diagnosis of vessel diseases. 

Haghighi et al. [16] have studied a two-dimensional, pulsatile 

and two-layered blood flow through a tapered flexible artery. 

They solved the governing equations using the finite 

difference scheme and studied the effect of several factors 

such as the vessel tapering, the presence of stenosis and the 

wall motion on blood flow characteristics. 

The magnetic field has an important application as a blood 

flow controller during surgery. In this regard, Misra et al. [17-

19] studied the varieties in blood behavior through arteries by 

operating Newtonian/ non-Newtonian fluid in the presence of 

a magnetic field. Mekheimer et al. [20] designed a 

mathematical model for blood flow through an elastic vessel 

having many stenoses in the presence of magnetic field. Shit 

[21] developed a computational model for blood flow in the 

presence of magnetic field. In this model he reported that no 

clinical disorders are observed for human health when a 

magnetic field is used up to 9 T.  Alshare et al. [22] tried to 

perform the flow simulations on the blood flow in an 

axisymmetric arterial stenosis using the non-Newtonian fluid 

model in the presence of magnetic field.  

The flow of blood under the influence of body acceleration 

is significantly affected, while driving a vehicle or flying in an 

aircraft, because the blood flow may create serious health 

problems such as loss of vision, headache, increase of pulse 

rate and hemorrhage in face, neck and brain in a vibrating 

environment. Sankar and Lee [23] studied on the pulsatile flow 

of blood through an arterial stenosis considering blood as a 
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core region of the Casson fluid and a peripheral layer of 

Newtonian fluid under periodic body acceleration. Also Shit 

and Roy [24] examined the pulsatile flow of blood through a 

stenosed artery under the influence of periodic body 

acceleration and then analyzed the heat transfer phenomena 

with constant blood viscosity.  

Haghighi and Asl [25] solved a two-dimensional and 

pulsatile model of blood flow through a tapered artery with 

overlapping stenosis using the explicit scheme. The aim of the 

present study is investigation on blood flow in the presence of 

magnetic field and body acceleration. The governing 

equations have been solved using finite difference Crank-

Nicolson scheme. This study tries to examine the effect of 

several factors such as the magnetic field, the presence of 

stenosis and the body acceleration on the heat transfer 

characteristics of the considered blood flow.  

 

 

2. THE GEOMETRY OF THE STENOSIS 
 

This numerical modeling considers a two-dimensional, 

laminar, unsteady, fully developed and axially symmetric flow 

of blood through a stenosed artery. Let (r,θ,z) is the 

cylindrical polar coordinates system in which z is taken along 

the axial direction and r,θ  are taken along the radial and 

circumferential directions, respectively. The geometry of the 

stenosis varies with time and is constructed mathematically as: 

(see Fig 1) [26-28]. 

 

n 1 n1 A l (z d) (z d) a (t) d z d l .1 00R(z, t)

a (t) otherwise .1

       

                                                

    (1) 

 

And: 

 

n(n 1)δ n
A .

n (n 1)R L0 0

 

 

where, R(z, t), R0, L, l0, d and τm are the radius of the arterial 

segment in the constricted region, the radius of the no stenotic 

artery, the finite length of the arterial segment, the length of 

the stenosis, the upstream length of the artery and   the critical 

height of the stenosis, respectively. In the above equations,
n 2 is the parameter representing the asymmetry of the 

stenosis, where n 2  represents that the stenosis is symmetric. 

The variant time parameter a (t)1  is given by

a (t) 1 k cos(w t φ)1 r . Also φ and kr are the phase angle 

and the amplitude parameter, respectively. 

 

 
 

Figure 1. Schematic geometry of the stenosed artery 

 

 

3. THE GOVERNING EQUATIONS 
 

The governing equations for the blood flow in the 

cylindrical coordinate system can be written in non-

dimensional forms as follow [17, 25, 29]: 

 

0,
 

+ + =
 
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                                                              (2) 
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             (5) 

 

The following non-dimensional variables are used in Eqs. 

(2-5): 

 

** * * * * * pu v r z t U d
u , v , r , z , t , d , p ,

2U U R R R R0 0 0 0 ρU

* *l ρUR T T0 0l , Re ,θ .0
R μ T T0 w

 

 

where, u and v are the axial and the radial dimensionless 

velocity components, respectively, p is the pressure, ρ is the 

density and μ  is the viscosity of the fluid. The non-

dimensional parameters in Eqs. (2-5) are as follow, 

Womersley parameter
UR02α
υ

, Hartmann number 

σ
h B R0 0

ρυ
, Prandtl number

μCp
Pr

K
 and Eckert 

number 
2U

Ec
C (T T )p w

 [28-30]. 

The dimensionless pressure gradient
p

z
 in Eqs. (2-5) is 

assumed as: 

 

p
A A cosω t .0 1

z
                                                    (6) 

 

where,  

a) A0 is the constant amplitude of the pressure gradient. 

b) A1 is the amplitude of the pulsatile component giving rise 

to the systolic and diastolic pressures. 

c) fp is the pulse frequency.  
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The body acceleration expression defined in the following 

form [28] using the non-dimensional quantities

2 *R a00a0
υU

 

and
wbb
w

: 

 

G(t) a cos(bt φ ).0 g                                                      (7) 

 

The boundary conditions are considered as follows  

[31-33]: 

 
u(r, z, t) θ(r, z, t)

v(r, z, t) 0, 0, 0 r 0,
r r

R
v(r, z, t) , u(r, z, t) 0, θ(r, z, t) 1 r R(z).

t

 

 

In the transformed coordinate ξ , a radial coordinate 

transformation has been defined applying 
r

ξ
R

 [8, 33-37]. 

In the following, Eqs. (2-5) and prescribed boundary 

conditions take the following forms using this transformation: 

 

ξu u R v 1 v
0,

z R ξ z ξR R ξ

   
− + + =

   
                                        (8) 

 

pu 1 u R R u
[ξ(u ) v] u

t z R ξ z t z

21 1 R u2[ {1 (ξ ) }
2 2 2zα R ξ

2 21 R R u u2 2{1 2(ξ ) ξ R } ]
2 2 2z ξξR z z

1 12(h) u G(t),
2 2α α

    
= − + + − −

     

 
+ +

 

   
+ + − +

  

− +

           (9) 

 

θ 1 θ R R
[ξ( u ) v]

t R ξ t z

2θ 1 θ R 2u [ {1 (ξ ) }
2 2 2z zα P R ξr

21 θ R R2 2(1 2(ξ ) Rξ )
2ξ ξ z z

22 E (h)θ c2 2R ] u ,
2 2z α

   
= + −

   

  
− + +

 

  
+ + −

  


+ +



                     (10) 

 

u(ξ, z, t) θ(ξ, z, t)
v(ξ, z, t) 0, 0, 0 ξ 0,

ξ ξ
  (11) 

 

R
v(ξ, z, t) , u(ξ, z, t) 0, θ(ξ, z, t) 0 ξ 1.

t
(12) 

 

 

 

4. THE RADIAL VELOCITY COMPONENT 

 

After multiplying Eq. (8) by ξR and integrating with 

respect to ξ  form 0 to ξ , we get: 

 

u R Rξ ξ2ξv(ξ, z, t) R ξ dξ ξ u 2ξudξ 0.
0 0z z z

  
+ − + = 

  
      (13) 

 

Also by using the boundary conditions (12) at ξ 1= , Eq. 

(13) is obtained as: 

 

u 2 R 1 R1 1 1ξ dξ ξudξ ( ξf (ξ))dξ.
0 0 0z R z R t

  
= − +  

  
            (14) 

 

where f (ξ)  represents an arbitrary function satisfying

ξ
ξf (ξ)dξ 1

0
= . Let choose 2f (ξ) 4(1 ξ )= − − . Taking the 

approximation of treating the equality between the integrals to 

integrands, Eq. (13) can be written as: 

 

u 2 R 4 R2u (1 ξ ) .
z R z R t

  
= − − −

  
                                      (15) 

 

By substituting (15) into (13), the radial velocity component 

can be obtained as follows: 

 

R R 2v(ξ, z, t) ξ[ u (2 ξ )].
z t

 
= + −

 
                                    (16) 

 

 

5. COMPUTATIONAL SCHEME 

 

To solve Eqs. (9)-(10) using a Crank-Nicolson scheme, the 

central difference formula is used to express the spatial 

derivatives and the forward difference formula is applied to 

the time derivative as bellow: 

 
k k k 1 k 1(u) (u) (u) (u)
i, j 1 i, j 1 i, j 1 i, j 1u 1

[ ],
ξ 2 2Δξ 2Δξ

k k(u) (u)
i 1, j i 1, ju

,
z 2Δz

k k k k 1 k 1 k 1(u) 2(u) (u) (u) 2(u) (u)2 i, j 1 i, j i, j 1 i, j 1 i, j i, j 1u 1
[ ],

2 2 22ξ (Δξ) (Δξ)

k k(u) 2(u) (2 i 1, j i, ju

2z

+ +− −
+ − + −

= +


−
+ −

=


+ + +− + − +
+ − + −

= +



− +
+

 =



ku)
i 1, j

,
2(Δz)

k 1 k(u) (u)
i, j i, ju

.
t t

−

+ −


=
 

 

 

We define:  

 

ξ ( j 1)Δξ , ( j 1, 2, .., N 1),j

z (i 1)Δz , (i 1, 2, ..,M 1),i

t (k 1)Δt, (i 1, 2, ...).k

= − = +


= − = +
 = − =

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where, ξ , z , t  are the increments in the radial, the axial 

and the time directions respectively. Using the Crank-

Nicolson scheme, the discretized form of Eq. (9) is given as: 

 

k 1 k 1 k 1A u B u C u D .i, j i, j i, ji, j 1 i, j i, j 1 i, j
+ + ++ + =
− +

                    (17) 

 

where 

 

k k
Δt R R

A ξ u vi, j j i, j i, jk t zi i4ΔξR
i

Δt R k 2{1 (ξ ( ) ) }j ik 2 2 2 z2(R ) α Δξ
i

2t R Rk 2 2 k k{1 2(ξ ( ) ) ξ R ( ) },j i j i i2 k 2 2z4α (R ) ξ ξ zji

        = + −   
       

  
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

  
+ + −
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k k
Δt R R

C ξ u vi, j j i, j i, jk t zi i4ΔξR
i

Δt R k 2{1 (ξ ( ) ) }j ik 2 2 2 z2(R ) α Δξ
i

2t R Rk 2 2 k k{1 2(ξ ( ) ) ξ R ( ) },j i j i i2 k 2 2z2α (R ) ξ ξ zji

  −       = + −   
       

  


− +



  
− + −

 

 

 

2G(t)R hkD u t( ) t( ) t( )ui, j i, ji, j 2 2z α α

t R Rk k[ξ (u ( ) ( ) ) v ]j i, j i, ji ik z t4R ξ
i

tk k k k k((u) (u) ) (u) ((u) (u) )
i, j 1 i, j 1 i, j i 1, j i 1, j2 z

t k k k((u) 2(u) (u) )
i, j 1 i, j i, j 12 k 2 22α (R ) ξ

i

R k 2{1 (ξ ( ) )j iz


= −  +  − 



  
+ + −

 


− − −

+ − + −


+ − +

+ −



+



t
}

2 k 24α (R ) ξ ξji

2R Rk 2 2 k k{1 2(ξ ( ) ) ξ R ( ) }j i j i i2z z

tk k((u) (u) )
i, j 1 i, j 1 2 2α z

k k k((u) 2(u) (u) ).
i 1, j i, j i 1, j


+



 
+ −

 


− +

+ −


− +
+ −  

 

And the discretized form of Eq. (10) is: 

 

k 1 k 1 k 1P θ Q θ E θ S .i, j i, j i, ji, j 1 i, j i, j 1 i, j
+ + ++ + =
− +

                       (18) 

 

 

where 

 

k k
Δt R R

P ξ u vi, j j i, j i, jk t zi i4ΔξR
i
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The volumetric flow rate (Q), the resistive impedance ( Λ ) 

and the Nusselt number (Nu) can be obtained using the 

following formulas:  

 

( )
2

k k k1Q 2π R ξ (u) dξ .j j0i i, ji
=                                          (19) 
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p k| L( ) |
izkΛ .

i kQ
i

 
 

 
=                                                           (20) 

 

k kθ θ
1 i,n i,n 1

Nu ( ).i k ξR
i

−
−

=


                                              (21)      

 

 

6. NUMERICAL RESULTS AND DISCUSSION 

 

The numerical computations have been carried out using the 

following parameter values [14, 34, 38]: 

 

Δt 0.001,Δξ 0.0125,Δz 0.1, d 10, α 4, f 1.2,p

A 0.1, A 0.2A , L 30, l 14, R 1.52,0 1 0 0 0

πk 0.05, a 1,φ ,φ 0, b 1.r 0 g 4

= = = = = =

= = = = =

= = = = =

 

 

In order to validate the proposed results, the obtained axial 

velocity for the blood flow through a stenosed artery in the 

maximum constricted region for h=0 and at the time t=2 is 

compared with the corresponding results obtained by Shit and 

Roy [24]. The present results are in good agreement with Shit 

and Roy's [24] results 

 

 
 

Figure 2. Comparison of the dimensionless axial velocity 

profile 

 

 
 

Figure 3. Dimensionless axial velocity profile for different 

values of Hartmann number 

 

 

Fig. 3 shows the axial velocity profiles of the blood flow 

through the stenosed artery, at the specific conditions 

including; z=17, t=4, n=2 and τ 0.2Rm 0= , for different values 

of Hartmann number. Fig. 3 depicts that the axial velocity 

decreases with decrease in the Hartmann number. This event 

happens due to the interactions between the magnetic field and 

the blood flow. Furthermore, the axial velocity reaches to 

maximum value at the central line of the artery in all four 

cases. 

Fig. 4 illustrates the dimensionless axial velocity profiles of 

the blood flow at h=2 and n=2 for different stenosis sizes. 

According to Fig 4, the axial velocity decreases by increasing 

the size of stenosis. The present figure includes the axial 

velocity at t=3 through an elastic and rigid artery. The results 

show that the axial velocity in elastic artery is more than the 

axial velocity in the rigid artery. This difference between the 

axial velocities shows the importance of the assumption of 

elastic blood vessels. 

 

 
 

Figure 4. Dimensionless axial velocity profile for different 

stenosis sizes 

 

The axial velocity variations are shown in Fig 5 for different 

amplitudes of body acceleration at t=4 for τ 0.2Rm 0= , h=2 

and n=2. As another result, the axial velocity increases as the 

amplitude of body acceleration increases. Thus, in the 

presence of vibration, the environmental system may produce 

an increase in the blood velocity. 

 

 
 

Figure 5. Dimensionless axial velocity profile for different 

amplitudes of body acceleration 

 

 
 

Figure 6. Distribution of the temperature profile for 

different values of Prandtl number 
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Figs. 6 and 7 show the variation of heat transfer and Nusselt 

number for different Prandtl numbers. It is observed from Fig 

6 that the temperature decreases with the increase of the 

Prandtl number. Fig 7 indicates that the Nusselt number 

increases with the increase of the Prandtl number. This 

variation of heat transfer and Nusselt number occurs for h=2, 

n=2 and τ 0.2Rm 0=  at t=4. As seen in Fig. 7, when the 

Prandtl number increases, the thermal boundary layer 

thickness reduces. So, the less thermal conductivity leads to 

decrease in the heat conduction capacity. 

 

 
 

Figure 7. Distribution of the Nusselt number for different 

values of Prandtl number 

 

The flow rate in the stenosed artery for different Hartmann 

numbers at t=4, n=2 and τ 0.2Rm 0=  is shown in Fig 8. 

According to Fig 8, the flow rate decreases with the increase 

of the Hartmann number. As a consequence, with operating 

the magnetic field, the volume of blood flow can be controlled 

during the surgeries. 

 

 
 

Figure 8. Distribution of the rate of flow for different values 

of Hartmann number 

 

 
 

Figure 9. Distribution of the rate of flow for different 

stenosis sizes 

 

Fig. 9 displays the comparison results regarding the 

volumetric flow rate through the elastic and rigid arteries, 

considering the evaluation of the effect of the stenosis size on 

the volumetric flow rate. It is clear that, the rate of flow 

decreases with the increase in the stenosis size and also, the 

flow rate through the elastic artery is less than the flow rate 

through the rigid artery at the same time. 

The variation of the flow rate with time, for different 

amplitudes of body acceleration is illustrated in Fig 10. It is 

seen that the flow rate increases with the increase of 

amplitudes of body acceleration. Thus, the volumetric flow 

rate has an enhancing effect with its peak value of oscillation 

on the vibrating environmental system. 

 

 
 

Figure 10. Distribution of volumetric flow rate with time for 

different amplitudes of body acceleration 

 

The resistive impedance through a stenosed artery for 

different Hartmann numbers at t=4 is presented in Fig 11. In 

this figure the resistive impedance increases with the increase 

in the Hartmann number. According to Eq. (20) the volumetric 

flow rate and the resistive impedance are inversely related, so 

unlike the volumetric flow rate, the resistive impedance 

increases with the increase in the Hartmann number. 

 

 
 

Figure 11. Distribution of the resistive impedance for 

different values of Hartmann number 

 

 

7. CONCLUSIONS 

 

In the present study, a two-dimensional, unsteady and 

laminar blood flow through a stenosed artery is studied. The 

governing nonlinear partial differential equations are solved 

numerically using the Crank-Nicolson scheme. Also, the 

influences of the effective parameters on the flow 

characteristics such as the velocity profile, temperature, the 

volumetric flow rate and the resistive to flow are examined. 

The present results demonstrate that the axial velocity and the 

flow rate increases with the increase in the stenosis size. The 

axial velocity has reducing effect on the magnetic field. For 

this reason, the flow rate and the resistive impedance are 

inversely related to enhancements in the Hartmann number. So, 
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the volume of blood flow can be controlled during surgeries 

using a controlled magnetic field. The temperature decreases 

with the increase of the Prandtl number but the Nusselt number 

increases with the increase of the Prandtl number. The blood 

flow characteristics through elastic artery have been compared 

with the rigid one and this difference between the axial 

velocities shows the importance of applying the elastic 

assumption for the blood vessels. 
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NOMENCLATURE 

 

A0 Constant amplitude of the pressure 

gradient 

A1 Amplitude of the pulsatile component 

d Upstream length 

fp Pulse frequency 

h Hartmann number 

kr Amplitude parameter 

L Finite length of the arterial segment 

l0 Length of the stenosis 
n 2  parameter representing the asymmetry of 

the stenosis 

Nu Nusselt number 

p pressure 

Pr Prandtl number 

Q Rate of flow 

R(z,t) Radius of the arterial in the constricted 

R0 Radius of the nonstenotic 

t time 

u Axial velocity 

v Radial velocity 

 

Greek symbols 

 

 

2α  
Womersley parameter 

t  Time direction 

z  Axial direction 

ξ  Radial direction 

µ Viscosity  

Λ  Resistive impedance 
τ

m
 Critical heigh 

φ  Phase angle 

Subscripts 

 

i  

j  

k  
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