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 This research focuses on numerical patterns of temperature distribution and blood flow 

through tapered arteries. The blood flow is considered as an incompressible and fully 

developed flow with Non-Newtonian nature assumed as modified Cross fluid which is inside 

a body under certain acceleration. Also, the impact of heat transfer regarding a single layer 

model on an unstable and pulsatile blood flow through a designed tapered artery with a 

combination of stenotic and aneurysm is investigated. The wall of artery is designed as an 

elastic tube, so, its geometry changes during the numerical computations is up to time. This 

research uses a suitable coordinate transformation to create an exact mesh with rectangular 

mesh units. In the case of the thermophysical parameters of blood flow field including the 

velocity pattern and temperature distributions, the governing equations are managed and 

solved based on the finite difference method and then, the reported results are discussed as a 

function of velocity and temperature. The outputs of this mathematical modeling are 

compared with some available and proved results in previous researches to confirm the 

accuracy and validity of the method. The variations in dynamic features of blood flow wall 

shear stress, volumetric flow rate and flow resistance can be analyzed and computed on basis 

of the pattern of velocity profile in assumed domain. Furthermore, contour plots of 

temperature and velocity for specified parameters are provided.  
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1. INTRODUCTION 

 

As we know the atherosclerosis is one of the reasons for 

cardiovascular disease. When the arteries are narrowing 

because of atherosclerosis causes their capability for oxygen 

transmission will be decreased gradually. The high level of 

cholesterol in blood causes the deposition of fat on inner wall 

of the arteries which leads to the stenotic, narrowing and 

hardening problems for vessels [1-3]. Blood is a red 

suspension fluid composed of four main parts including the 

red and white blood cells, plasma and platelets [4-5]. The 

collaboration of scientists and engineers during the years 

between 1970 and 2008 showed that the atherosclerosis 

affects the flow characteristics inside the human body, so, the 

investigations were continued on the importance of 

dynamical factors regarding the blood flow. Most of the 

previous investigations assumed the blood vessel as an 

inelastic geometry the shape of walls are independent of time 

with some single or overlapping stenosis, and then the blood 

flow characteristics were investigated and analyzed applying 

the perturbation method. Also in some, the domain of blood 

flow is considered as a Newtonian, steady, one dimensional 

and axisymmetric case, consequently, these models couldn’t 

present the precise results because of the Non-Newtonian 

nature of the blood [6-10]. 

 When the artery diameter decreases, the blood cannot 

flow easily at the low Newtonian shear rates, also it is 

pointed out in many works of literature, like [26], the nature 

of blood flow requires a non-Newtonian description to well 

consider the shear stress effect. For this reason, in the 

presented study we considered a non-Newtonian (Cross fluid) 

model of the blood flow. In this research we forced the body 

to have a certain acceleration to be closer to the real model 

(Travelers roller coaster, using jackhammer and etc.) 

compared with the previous works, in this way, a dynamical 

parameter is added to the simulation of blood flow [11-12]. 

This acceleration affects the blood flow to have some 

abnormal and sometimes dangerous reactions against the 

sudden movements which need to be investigated (loss of 

vision, increasing heart rate, abdominal pain, bleeding in the 

face) [13-15]. Zaman et al. [16] performed an interesting 

work on the unsteady blood flow inside a catheterized artery 

as a mild stenotic in channel using the micropolar model to 

clarify the rheological Factors of the blood. Considered the 

heat transfer effect on blood flow as another dynamical 

parameter. Their results are so valuable because when the 

heat dissipation rate is increased over than the normal 

situation the body cannot compensate the lost water and salt, 

so, the body temperature will be increased. This situation 

leads to some sudden problems like contraction and 

deterioration of the muscles [17-19]. Mekheimer et al. 

determined the impact of heat fluctuations on blood flow 

through the anisotropic ally tapered elastic artery with 

overlapping stenosis [20-21]. Sankar and Lee used the a sisko 

fluid in their work for modeling an artery with a mild stenosis, 

in their researches the core flow and the plasma (in peripheral 

layer) are adjusted as Casson and Newtonian fluids, 

respectively [22]. Sarifuddin et al. introduced a numerical 

International Journal of Heat and Technology 
Vol. 37, No. 1, March, 2019, pp. 11-21 

 

Journal homepage: http://iieta.org/Journals/IJHT 
 

11



 

model for blood flow with exact and appropriate boundary 

conditions. It should be said that their method used a 

generalized Newtonian model and solved the Navier-stokes 

equations using Mac method [23]. Assumed the blood can be 

considered as a Casson fluid. They simulated a blood vessel 

as a small tube and checked the heat transfer effects on the 

flow in the determined domain (small tube). They fund that 

the heat transfer rate increases on the motionless wall when 

the viscosity improves. Victor and Shah [24] conducted their 

numerical work on the blood flow as a two phase unsteady 

pulsatile flow, then they discussed the effect of acceleration 

on the blood flow properties. Zaman et al. [25] presented a 

numerical model on the blood flow which can handle the 

nonlinear continuity and momentum equations using finite 

difference method. Lorenzini and Casalena presented a CFD 

analysis for pulsatile blood flow in an atherosclerotic human 

artery [26]. 

The present study provides a numerical and mathematical 

model to evaluate the effect of heat transfer process on blood 

characteristics inside the artery with determined stenotic 

under body acceleration. The recent scientific works tried to 

assume some real considerations on the simulations in order 

to present an actual view of what happened in the blood 

arteries. This matter motivated us to perform an exact and 

comprehensive mathematical modeling on the blood arteries 

with actual situations (more than ever) such as heat transfer 

consideration, artery with elastic wall, unsteady flow, 

pulsatile condition and finally adjusting certain acceleration 

to the problem. The present study is organized in the 

following fashion: section2, geometry problem. Section3, 

describes basic equations governing the blood flow under 

consideration and Suitable coordinate transformation. 

Section4, contains the scheme for the numerical solution and 

investigate the stability. Section5, numerical results and 

discussion are presented. Section6 conclusion summary. 

 

 

2. THE GEOMERY OF THE STENOSIS AND 

ANEURYSMS 
 

This research uses a mathematical domain the blood flow 

in the shape of a tapered artery with axisymmetric geometry 

in the presence of body acceleration. The wall of artery is 

modeled as an elastic cylindrical tube (circular Cross-section) 

which can conduct a non-Newtonian fluid as the blood. This 

mathematical modeling applies the cylindrical coordinate 

system (r, ,z) at constant temperature T. In this coordinate 

system r,   and z represent the radius, angle and direction 

along the tube (artery), reflectively. Also, the boundaries 

along the tube (artery) are considered as dimensionless time-

dependent geometries. The mathematical modeling of the 

artery is presented by figure 1 [16, 27, 28].  
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In this modeling 𝜎𝑖
∗ shows the critical point 𝜎∗ = 𝜎1

∗ is the 

positive critical point (regarding stenosis), 𝜎2
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∗  is the 

negative critical point (for aneurysms), il  presents the length 

of stenosis or aneurysms, and finally 𝜉(= 𝑡𝑎𝑛 𝜑) introduces 

the tapered parameter for the area after the aneurysms. 
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In this equation 𝜔 = 2𝜋𝑓𝑝,
rK  and  represent the angular 

frequency, oscillation parameters and phase angle, 

respectively. 

 

 
 

Figure 1. Schematic model of the artery in longitudinal 

section 

  

 

3. FORMULATION OF THE PROBLEM 
 

As said in the introduction, this research wants to model 

the blood in the vessel as an incompressible and unsteady 

flow. Also in the investigated model we have considered 

pulsatile nature of the blood flow, like as ref [26]. The 

velocity components should be defined in r and z directions, 

so, the governing equations are as follow. 

The form of dimensionless continuity equation: 
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The form of dimensionless Navier-Stokes equation for 

non-Newtonian fluid Cross [19, 20] 
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The components of 𝑆𝑖𝑗 extra stress are provided as bellow  
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To continue the modeling, the parameters must be used in 

the non-dimensional form: 
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Relation, 𝑈0 is the unsteady flow average velocity with the 

dimensionless number. Also, Re ,𝐵𝑟,𝑃𝑟, 
𝜕𝑝

𝜕𝑧
 are the signs for 

Reynolds number, Brinkman number, Prandtl number and the 

pulsatile pressure gradient for the human body, reflectively, 

so [2, 28, 29]: 
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The periodic vibrations of the body for 0t  can be 

defined as [12, 14, 22]: 

  

2 2( ) cos( )G t D t = +                                                          (9) 

 

where   defines the phase difference. 
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4. ANALYSIS OF THE CONDITIONS OF MILD 

STENOSIS/ANEURYSM 

 

As said before the artery in this study is assumed with a 

mild stenosis/aneurysm, so, to simplify the conditions we 

assumed that the flow is the Stokes type (low Reynolds 

number) through an artery with the small inner diameter 

considering the supposition Ratio (𝜎 = 𝜎∗/𝑎 ≪ 1)  and 
(𝜀 = 𝑎/𝑙0 ≈ 𝛰(1))  is considered. If the function of be 

smooth and continuous, derivative of them will be first order. 

So  
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Checking the momentum equation in the direction r shows 

that: 
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Pressure changes in direction compared with direction 

changes to be ignored. And the continuity equation shows: 
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After the above changes equations conversion to the 

following form: 
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Since the flow is fully developed 
𝜕𝑣

𝜕𝑧
= 0 and we pass the 

boundary layer, the initial and boundary conditions is 

considered as follows [2, 9, 19]: 
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Also, regarding the boundary conditions we have [30]: 
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Up to now the velocity profiles are evaluated, then, the 

dimensionless relations for the volumetric flow rate, wall 

shear stress and resistance impedance are considered as 

below: 
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In order to define the motionless elastic artery, we can 

apply a coordinate conversion as 𝜅 =
𝑟

𝑅
 on the governing, 

initial and boundary equations. Consequently, the mesh grids 

can be generated on the applied Cross section area of the 

artery [26, 31]. Applying the mentioned coordinate 

conversion can result the following equations:  

 

( )

1 1 2

1

2 2 12

1 1
( (1 cos( ))

Re

[ { 1 (1 (( ) | | ) ) } ])
n

v
D e t

t R

We v v

R





  

−

−


= + +



  
 + −  +

  

    (23) 

( )
1

2 2 12
2

2
2

2 2

{ 1 (1 ( | | ) ) }
Re

1 1
( ) ( )

n

r

r

BT v
We

t p R

v T T

R



  

−

− 
=  + −  +

 

  
+ +

 

         (24) 

 

In the case of initial conditions, the dimensionless relations 

are as: 
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5. STABILITY CRITERIA 

 

Usually the dynamic problems need to be solved by the 

high-speed convergence finite difference method. This 

method has some benefits for solving the complex problems 

so that the solving speed can be controlled and improved by 

the user. The stability of the employed explicit method has a 

conditional situation. A criterion for this stability is the 

Courant number, as the following [32-34]: 
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Consequently, the time step value is adjusted equal to 

0.0001t = (in the stability conditions). 

    

5.1 Discretization with finite difference method 

 

The axial velocity and temperature pattern are so important 

to analyze the flow regime inside the considered artery with 

stenosis/aneurysm. All of these distributions are evaluated 

with the finite difference method. In this way, the spatial and 

time derivatives are discretized with the central difference 

and forward approximation schemes, reflectively 
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The achieved values for the volumetric flow rate, wall 

shear stress and resistance impedance are as: 
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Similarly, the discrete form of the boundary conditions is 

the following form: 
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Also, we have to define: 
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where  , z  and t  are the lengths of time step, length of 

the radial step and length of axial step, reflectively. 

 

 

6. RESULTS AND DISCUSSION 

 

This research presents a numerical and mathematical 

method to simulate the flow and heat transfer characteristics 

of the blood flow inside an artery with a mild 

stenosis/aneurysm. This simulation is performed by 

considering the following dimensionless parameters: [9, 19, 

29]. 

0 1 2

0 1

0.0001, 0.025, 0.01, 0.1, 1.2, 0

1, 1, 2.8, 0.5, 2 , 4, 0.2

0.56, 0.0345, 21, 4,Re 1

p

r

t z f

R l L We D e

p D

  

 

 

 =  =  = = = =

= = = = = = =

= = = = =

 (36) 

 

The mentioned parameters are exactly associated with the 

blood flow factors inside an artery with the adjusted 

stenosis/aneurysm considering our assumptions (elastic, 

pulsatile, Stokes flow and acceleration condition). The 

mentioned assumptions mean than we have tried to create a 

model near the real condition (as much as possible). 

Figure 2 to evaluate the accuracy of the proposed model, 

the axial velocity at the critical point of 0.7z =  with 

0.1 =  the results obtained of axial velocity in research 

Mandel [2] are compared. The results of Figure 2 are 

achieved in 6t = . The trends on Figure 2 show a good 

agreement between the output results. 

 

 
 

Figure 2. The compare results axial with results [2] 

 

Figure 3 the effect of power law index on velocity at time 

has been analyzed in figure 3. If 1n  is indicative of 

healthy blood flow. When 1n =  is Newtonian fluid, the 

treatment of blood flow in this study is non-Newtonian. 

When 1n  is indicative of blood thickness in the body. As a 

result, by increasing power law index velocity, blood flow 

will increase as well (in t=0.45, z=2.1). 

 

 
 

Figure 3. The dimensionless axial velocity profile for power 

low index 

 

As shown in Figure 4, the axial velocity profiles for the 

rigid and elastic arteries are compared at the position of 

0.1 = . According to this comparison, the axial velocity 

regarding the rigid or inelastic artery is more than the axial 

velocity in the case of elastic artery (in 0.45t = ). 

Figure 5 illustrates the axial velocity profiles inside the 

elastic artery against three different stenotic/aneurysm values 
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( 0.1 = , 0.2 =  and 0.3 =  ) at two critical points 0.7z =

And 2.1z = . As seen in Figure 5a, the axial velocity 

decreases with an increase in stenotic value at 0.7z = . Figure 

5b shows an opposite behavior in the case of aneurysm. 

According to Figure 5b, the axial velocity increases with an 

increase in aneurysm value. These results agree closely with 

the observations of Lorenzini and Casalena [26] which they 

concluded that the blood flow peak velocities depend on the 

height of stenosis. 

 

 
 

Figure 4. The axial velocity of radial variation 

 

 
(a) 

 
(b) 

 

Figure 5. The dimensionless axial velocity profile for 

different values of stenotic and aneurysm 

 

Figure 6 provides the axial velocity pattern of the artery 

against different tapered angles of aneurysm and stenotic. 

Figure 6 pointed on this fact that the axial velocity inside the 

artery has an increasing pattern against the increasing angle. 

Also, the result of non-tapered artery is located between the 

convergent and divergent tapered arteries curves. These 

results agree closely with the observations of Lorenzini and 

Casalena [26] which they concluded that the blood flow 

velocity and recirculation are strongly affected by the 

stenotic slope. Figure 7 shows the effect of Prandtl number 

on the temperature distributions inside the artery. This figure 

shows that the heat transfer rate will decrease with increase 

in the Prandtl number. In other words, the rate of heat 

transferred from the artery to the blood decreases with 

increase in the Prandtl number. 

 

 
 

Figure 6. The dimensionless axial velocity profile for 

different tapered angles 

 

 
 

Figure 7. The dimensionless temperature profile for 

different prandtl numbers 

 

Figure 8 denotes the variation of Br against the 

dimensionless temperature profile. It can be seen that the 

temperature of crossing blood increases with increases in the 

Br value. Also, it can be seen that when Br increases the heat 

transfer decreases as the result of temperature increasing. 

 

 
 

Figure 8. The dimensionless temperature profile for 

different prandtl numbers 

 

Figure 9 the effect of body acceleration (
2D ) on the non-

Newtonian flow rate (blood) is described in Figure 9. Figure 

9a declares that the blood flow is strongly up to the 

acceleration of the body. When
2D is increased slowly, the 

maximum velocity develops sooner. Since the axial velocity 
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of the blood flow and the volumetric rate are in a close 

relationship, the flow rate will increase with improvement in 

the body acceleration parameter. Figure 9b shows that the 

profiles of the flow rate which changes against the time. As a 

result, comparison between three different values of 

stenosis/aneurysms leads to this point; increase in the 

aneurysm value can result a significant enhance in the 

volumetric flow rate. (The graph shows the pulse behavior 

blood flow in different heartfelt periods). 

 

 
(a) 

 
(b) 

 

Figure 9. The flow rate profile for different acceleration 

values 

 

 
(a) 

 
(b) 

 

Figure 10. The Flow rate profile for different values of 

aneurysm 

Figure 10a shows the effect of body acceleration parameter 

on the blood flow inside the considered artery. As said before, 

the acceleration of body and the blood flow rate are directly 

related to each other, so, when the velocity increases, the 

flow rate increases too. Figure 10b describes the effect of 

aneurysms/ stenotic size on the blood flow against the 

position and place. When the aneurysms size increases the 

flow rate improves and consequently the blood velocity 

increases. 

Figure 11 illustrates the effect of Weissenberg number (as 

a dimensionless number at different times) on dimensionless 

blood flow rate. In can be visible that the blood flow rate will 

reduce with the increasing Weissenberg number. As another 

result, the patterns or treatments of volumetric flow rates for 

the Weissenberg numbers are related to the geometry of the 

stenosis and aneurysms. 

Figure 12 the effect of Reynolds number on the blood flow 

resistance is indicated in Figure 11. This figure illustrates that 

when the Reynolds number increases the resistance against 

the blood flow increases. In other words, the pressure drop 

enhances with the increasing velocity. 

 

 
 

Figure 11. The flow rate profile for different Weissenberg 

number 

 

 
 

Figure 12. The resistance to flow profile for different 

Reynolds number 

 

Figure 13 tries to declare the impact of dimensionless 

Weissenberg number we at different times on dimensionless 

impedance. As shown in Figure 12, the enhancing 

Weissenberg number can create an important increase in 

impedance. Also, in can be understood that the volumetric 

flow rate plays an opposite role against the blood flow 

resistance. 

Figure 14 indicates the flow resistance different time series 

for different Power law indexes. According to these results, 

increase in the Power law index leads to decrease in the 

blood flow resistance, or in other words, blood flow 

resistance decreases with the increasing n parameter. 
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Figure 13. The resistance impedance profile for different 

Weissenberg number 

 

 
 

Figure 14. The resistance impedance profile for different 

power low index 

 

Figure 15 the impact of Reynolds number on the wall 

shear stress is presented in Figure 15. This figure states that 

the wall shear stress can be increased when the related 

Reynolds number increases. 

 

 
 

Figure 15. The wall shear stress profile for different 

Reynolds number 

 

 
 

Figure 16. The wall shear stress profile for different values 

Figure 16 based on the results of Figure 16 (at 2.1Z = ), 

when the size of stenosis grows the wall shear stress 

increases. Furthermore, when the size of aneurysms increases 

the wall shear stress decreases. 

Figure 17 points on the wall shear stress values for tapered 

and non-tapered arteries in geometry. As seen in this figure, 

the wall shear stress allays when the angle tapered increases. 

Also, it can be observed that the trend for non-tapered artery 

is located between the curves belong to the convergent and 

divergent arteries. 

 

 
 

Figure 17. The wall shear stress profile for different tepered 

angles 

 

(a) 

(b) 

(c) 

(d) 
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(e) 

(f) 

 

Figure 18. Contour of velocity of blood flow 

 

Figure 18 the patterns and behaviors of the blood flow for 

different values of 𝑊𝑒, 𝜏, 𝜉, 𝐷2  and Re are shown in Figure 

18. Figure 18a shows a contour for some fixed parameters. 

By comparing plans a and b we found that when the 

Weissenberg number increases, the power of blood decreases. 

Besides, when the size of stenosis increases the blood flow 

velocity reduces and in the case of aneurysms, the velocity 

increases with increase in the height of aneurysms 

(comparing plans (a) and (c)). Furthermore, this comparison 

shows that in the non-tapered artery (left side) a small vortex 

is formed. In the systole phase the behavior is a little 

different from the diastolic phase. The effect of acceleration 

parameter on the blood flow is visible in the comparison 

view between plans (a) and (e). As said before, the flow 

velocity will increase with an improving acceleration. The 

effect of Reynolds number can be seen in plan (f). Also, 

when the Reynolds number is increased the flow rate on the 

arterial axis allays (the blood flow is reduced near the artery 

walls). 

The two dimensional temperature distributions for some 

specific parameters are shown in Figure 19. The plan (a) has 

been compared to other plans in as a function of  , Br, We 

and sigma. As seen in comparison of plans (a) and (b), the 

temperature reduces when we have an increase the amount of 

stenosis and aneurysm. As another result, the increase in 

Brinkman and Weissenberg numbers leads to some positive 

and negative effects on the temperature values, reflectively 

(plans (a), (c) and (d)). The comparison between plans (a), (e) 

and (f) describes the effects of taper angle (divergent and 

convergent arteries) on the temperature profiles. 

 

 (a) 

(b) 

(c) 

(d) 

(e) 

(f) 

 

Figure 19. The contour of temperature of blood flow 

 

 

7. CONCLUSION 

 

In this investigation the blood flow patters and the effects 

of heat transfer between the wall of arteries and the flow on 

the blood characteristics have been studied. The mentioned 

parameters on a cross section area of the arteries in the axial 

direction have been analyzed in different situations. The 

velocity and temperature distributions are investigated as two 

main affective parameters on the blood flow. The Blood flow 

is assumed to have some conditions near the real state such as 

pulsed, nonlinear, layered and unstable and flowing through 

an elastic wall. The comparison between the present 

simulation and previous works shows a good agreement 

which proves the accuracy of the results. We also provided 

some comparisons between our results and those of Lorenzini 

and Casalena [26] who analyzed the blood flow in a coronary 

artery, affected by different stenotic shapes, via a CFD code. 
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The results prove that when the Prandtl and Brinkman 

numbers increase, the heat transfer between the blood and the 

artery walls and the temperature values on the profiles 

{improve}. By comparing the elastic and the rigid walls, it 

can be seen that the axial velocity of elastic wall is less than 

the axial velocity regarding the rigid wall. Furthermore, when 

the aneurysm size is increased the axial velocity and the flow 

rate will be increased. 
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NOMENCLATURE 

Br Brinkman number 

pc Specific heat 

fp Pulse frequency 

kr Oscillation parameter 

L Finite length of the arterial segment 

0l Length of the stenosis 

n Power law index 

p pressure 

Pr Prandtl number 

Q Rate of flow 

R(z) Radius of the nonstenotic 

Re Reynolds number 

S Extra stress tensor 

t time 

T Temperature 

u Radial velocity 

0U Average velocity 

v Axial velocity 

We Weissenberg number 

Greek symbols 

t Time direction 

z Axial direction 

 Radial direction 

s Wall shear sterss 

 Critical heigh 

µ Viscosity 

 Resistive impedance 
 Phase angle 

Subscripts 

i 

j 

k 
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