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 Numerical prediction of heat transfer by natural convection of a Herschel-Bulkley non-

Newtonian fluid inside a square cavity has been computationally analyzed. Unsteady 2D fluid 

mechanics and heat transfer were described in terms of the non-linear coupled continuity, 

momentum and heat equations. These equations were solved by the control volume finite 

element method (CVFEM) with Gauss-Seidel/System Over-Relaxation coupling algorithm. 

The effect of the Ra, Pr, Bn and the rheological behavior index (n) on the non-Newtonian fluid 

thermal and momentum behavior were studied. The non-Newtonian fluid flow was described 

by the rheological model of Herschel-Bulkley. Results for the streamlines and isotherms along 

the enclosure walls are presented. It was found that the effect of the Pr and Bn is more 

important when the Ra is lower (103). In addition, the behavior index had a significant effect 

on the CPU time for the different studied cases.  
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1. INTRODUCTION 

 

Processes involving shear thinning non-Newtonian fluids 

are of great importance in several biological applications, 

chemical and food industry [1-3]. For instance, thermal 

processing of pulps and fruit juices is interesting in food 

industry. Several studies have demonstrated that rheological 

properties of fruit juices are well described by shear-thinning 

Non-Newtonian models such as Power-law [4-5], Hershel-

Bulkley [6], Bingham and Casson [7]. Most of foregoing 

mentioned experimental studies consider the effect of solutes 

concentration, water content, and temperature in the 

rheological parameters.  

Natural convection involving Newtonian and non-

Newtonian fluids has been broadly investigated. Both 

experimental and numerical studies have been made; hence 

benchmark reliable results are available for two and three-

dimensional domains [8-11]. Nevertheless due to 

experimental difficulties, to the best knowledge of the authors, 

only numerical studies have been conducted with Non-

Newtonian fluids in both 2D and 3D domains [12-15]. The 

authors, Anwar-Hossain and Reddy-Gorla [16], studied the 

flow of a power law Non-Newtonian fluid past an isothermal 

vertical slotted surface. They found that as the behavior index 

increase, both the friction factor and the Nusselt number 

increased. Also with a power law Non-Newtonian fluid, a 

study of the Rayleigh-Bénard problem confirmed the previous 

observation respect the behavior index of shear-thinning fluids 

(0<n<1). Nevertheless, for shear-thickening fluids (n>1), the 

opposite effect was observed by Lamsaadi and Naïmi [17]. 

An analytical and numerical study by the finite difference 

method was performed in a differentially heated sided walls of 

a rectangular enclosure filled with a power law fluid [18]. It 

was found that at high Prandtl numbers natural convection is 

mainly controlled by the flow behavior index and the Rayleigh 

number. The same physical situation was studied by Vola et al. 

[19] and Turan et al. [13] with a square enclosure filled with a 

yield stress fluid obeying the Bingham model. In the former 

work, through domain discretization by low order finite 

elements, the yield stress effect on temperature and velocity 

distribution was studied. The obtained results show that at 

higher yield stress values the apparition of rigid zones 

modified the vortices position and the temperature distribution 

turns out to be controlled by thermal diffusion. Meanwhile, in 

the latter work, the Fluent v.6 commercial software was used 

to solve the coupled conservation equation of mass, 

momentum, and energy.   

Respect to the rheological properties of the non-Newtonian 

fluid, for high values of the Bingham number, no significant 

flow is induced within the enclosure. It is known that in most 

buoyancy-driven motions, the flow is slow due to moderate 

temperature gradients [20]. Kumar and Bhattacharya [21] 

predicted unsteady natural convection and heat transfer during 

sterilization of a temperature dependent power-law Non-

Newtonian fluid using the finite volume method. The authors 

found out that there was not a fixed point, which could be 

called the coldest point at all times. Certainly, the rheological 

properties have a significant influence on the transient 

processes [22]. Dean et al. [23] presented a wide review of 

results and numerical methods concerning with forced 

convection for Bingham plastic fluids. 

The control volume finite-element method (CVFEM) 

developed by Baliga and Patankar [24] holds the topological 

characteristics of the finite element method (FEM) and the 

conservative properties of the finite volume method (FVM). 

The control volumes are made up of several finite elements 
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and each element contributes to three different control 

volumes. The way how the control volumes are built allows 

that the fluxes through the boundaries can be calculated 

through interpolation techniques developed in FEM [25]. Thus, 

CVFEM considers linear orthotropic variations of the 

properties and independent variables within the finite element, 

considering the discrete variable centered on the control 

volume. The numerical approach leads to the formulation of 

linear algebraic equations systems that are solved through 

iterative and direct methods like Gauss-Seidel with SOR and 

Gauss Elimination [26]. The CVFEM method has been 

successfully used in applications with thermofluids [24], 

moving boundary problems [27-28], solid mechanics [25], and 

functionally graded materials [29].  

The main objective of the present work is to examine the 

natural convection heat transfer characteristics of a non-

Newtonian fluid filled in a square cavity based on the 

Herschel-Bulkley fluid model and solved by finite 

element/control volume method (CVFEM), for different Ra, 

Bn and Pr numbers and behavior index. A comparison of the 

behavior of streamlines, pressures, velocity profiles, isotherms, 

Nu numbers in the cavity, caused by the variation in the 

governing parameters, is presented. 

 

 

2. PHYSICAL SITUATION  
 

The natural convection of the non-Newtonian fluid inside a 

square domain considered in this paper is shown in Figure 1. 

The problem is assumed to be two-dimensional. The 

dimensions of the enclosure are equal and denoted by L. The 

left and right vertical walls are differentially heated at 

isothermal temperatures of Tc and Th, respectively, whereas 

the remaining walls are considered adiabatic. 

 

 
 

Figure 1. Physical 2D domain of natural convection heat 

transfer process 

 

 

3. MATHEMATICAL MODEL 

 

3.1. Governing equations 

 

The governing equations are formulated for an 

incompressible non-Newtonian fluid with constant 

thermophysical properties. Density for the gravitational term 

in the y-momentum equation is assumed to have linear 

dependence of temperature changes according to the 

Boussinesq approximation. Therefore, dimensional equations 

for the natural convection of a Non-Newtonian fluid in a two-

dimensional square cavity are described by: 

Mass conservation equation: 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (1) 

 

Momentum conservation equations: 

 
𝜕(𝜌𝑢)

𝜕𝑡
+ 𝑢

𝜕(𝜌𝑢)

𝜕𝑥
+ 𝑣

𝜕(𝜌𝑢)

𝜕𝑦
− 𝛻(𝜂(�̇�)𝛻𝑢) +

𝜕𝑝

𝜕𝑥
= 0 (2) 

 
𝜕(𝜌𝑣)

𝜕𝑡
+ 𝑢

𝜕(𝜌𝑣)

𝜕𝑥
+ 𝑣

𝜕(𝜌𝑣)

𝜕𝑦
− 𝛻(𝜂(�̇�)𝛻𝑣) − 𝜌𝑔𝛽(𝑇 − 𝑇𝑟𝑒𝑓) +

𝜕𝑝

𝜕𝑦
= 0

 (3) 

 

Energy conservation equation: 

 
𝜕(𝜌𝐶𝑝𝑇)

𝜕𝑡
+ 𝑢

𝜕(𝜌𝐶𝑝𝑇)

𝜕𝑥
+ 𝑣

𝜕(𝜌𝐶𝑝𝑇)

𝜕𝑦
− 𝛻(𝐾𝛻𝑇) = 0 (4) 

 

The non-dimensional version of the governing equations is 

achieved according to the following dimensionless 

parameters: 

 

𝑋 =
𝑥

𝐿
;   𝑌 =

𝑦

𝐿
 (5) 

 

𝜃 =
𝑇−𝑇𝐻

𝑇𝐻−𝑇𝐶
; 𝑃 =

𝑝𝐿

𝜂0√𝑔𝛽∆𝑇𝐿
;  𝑈 =

𝑢

√𝑔𝛽∆𝑇𝐿
;   𝑉 =

𝑣

√𝑔𝛽∆𝑇𝐿
 (6) 

 

Η =
𝜂

𝜂𝑜
;   Γ̇ =

𝐿

√𝑔𝛽∆𝑇𝐿
�̇� (7) 

 

The non-dimensional governing equations are then 

expressed as: 

Mass conservation equation: 

 
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0 (8) 

 

Momentum conservation equations: 

 

√
𝑅𝑎

𝑃𝑟
(𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
) − 𝛻(Η(Γ̇)𝛻𝑈) +

𝜕𝑃

𝜕𝑋
= 0 (9) 

 

√
𝑅𝑎

𝑃𝑟
(𝑈

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
) − 𝛻(Η(Γ̇)𝛻𝑉) − √

𝑅𝑎

𝑃𝑟
𝜃 +

𝜕𝑃

𝜕𝑌
= 0 (10) 

 

Energy conservation equation: 

 

√𝑅𝑎 ∙ 𝑃𝑟 (𝑈
𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
) − 𝛻(𝛻𝜃) = 0 (11) 

 

The non-dimensional parameters obtained are: 

 

𝑅𝑎 =
𝑔𝛽(𝑇𝐻−𝑇𝑐)𝐿

3

𝜂0𝛼
 (12) 

 

𝑃𝑟 =
𝜂0𝐶𝑝

𝑘
 (13) 

 

3.2. Herschel-Bulkley fluid model 

 

This model is characterized by showing no deformation up 

to a certain level of stress, however above this yield stress the 

material flows readily [30]. Then, Herschel-Bulkley model in 

tensorial form can be expressed as: 

 

𝜏̿ = (
𝜏𝑦

γ̇
+ 𝑘γ̇𝑛−1) �̿̇�;  𝑓𝑜𝑟 |𝜏| > 𝜏𝑦 (14a) 

 

 

 𝜕𝜃
𝜕𝑌  

𝑌=𝐿
= 0 

 

 𝜕𝜃
𝜕𝑌  

𝑌=0
= 0 

 

 

 

g 
Θ=1 

 U=V=0 

Θ=0 

U=V=0 

U=V=0 

U=V=0 

L 

Y 

X 
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�̿̇� = 0;  𝑓𝑜𝑟 |𝜏| ≤ 𝜏𝑦 (14b) 

 

It could be noticed that for n = 1 the Herschel-Bulkley 

model is reduced to the Bingham model and for τy = 0 the 

Ostwald-De Waele power-law model is obtained.  

Papanastasiou [31] proposed an alternative approach to 

overcome the issue that represents yield stress, avoiding the 

discontinuity in the flow curve due to the incorporation of the 

yield criterion. The modification involves the incorporation of 

an exponential term, thereby permitting the use of one 

equation for the entire flow curve, before and after yield. A 

modified Herschel-Bulkley model to approximate the 

rheological behavior is given by: 

 

Η(Γ̇) = Γ̇
𝑛−1

+
𝐵𝑛

Γ̇
[1 − 𝑒𝑥𝑝(−𝑀Γ̇)] (15a) 

 

𝐵𝑛 =
𝜏𝑦

𝜂0
√

𝐿

𝑔𝛽∆𝑇
 (15b) 

 

𝑀 = 𝑚√
𝑔𝛽∆𝑇

𝐿
 (15c) 

 

In addition, the m parameter when increasing the 

Papanastasiou modified Herschel-Bulkley model is 

approached the Herschel-Bulkley model at low shear rates. 

The bi-viscosity models and Papanastasiou’s modification are 

empirical improvements designed primarily to afford a 

convenient viscoplastic constitutive equation for numerical 

simulations [32]. 

 

3.3. Boundary and initial conditions 

 

The governing equations are complemented through the 

implementation of the boundary and initial conditions. No-

slippery boundary conditions for the velocities at the walls are 

settled. Heat transfer boundary conditions include uniform hot 

and cold temperature on the vertical left and right walls, 

respectively, along adiabatic condition on the other walls. In 

addition, the initial condition for velocities, pressure and 

temperature inside the cavity corresponds to null values. 

 

𝜃(0, 𝑌) = 1;  𝜃(1, 𝑌) = 0 (16a) 

 
𝜕𝜃

𝜕𝑌
 
𝑌=0

= 0;   
𝜕𝜃

𝜕𝑌
 
𝑌=1

= 0      (16b) 

 

 

4. CVFEM IMPLEMENTATION  

 

The governing equations could be represented by a general 

expression (17a), which contains the transient, convective, 

diffusive and source terms:  

 
𝜕𝜙

𝜕𝑡
+ ∇�⃑� 𝜙 − ∇(Γ∇𝜙) − F = 0 (17a) 

 

This expression could be represented as well in terms of 

flux divergence 

 

(𝐽): 
𝜕𝜙

𝜕𝑡
+ ∇(J⃗) − F = 0 (17b) 

 

with: 

 

𝐽 = �⃗�𝜙 − 𝛤𝛻𝜙                                                                (17c) 

Depending on the transported quantity, terms in equation 

(17a) are modified according to Table 1. In the same way that 

finite volume method, the starting-point of this method is the 

integration of the generalized transport equation (17b) over a 

control volume Vn with a contour area Sn (n=1,…, N).  

 

Table 1. Coefficients of the generalized transport equation 

(18) for each variable 

 

𝜙 𝜌 Γ S 

𝑈 √
𝑅𝑎

𝑃𝑟
 Η(Γ̇) 𝜕𝑃

𝜕𝑋  

𝑉 √
𝑅𝑎

𝑃𝑟
 Η(Γ̇) 𝜕𝑃

𝜕𝑌 + √
𝑅𝑎

𝑃𝑟
𝜃 

𝜃 √𝑅𝑎 ∙ 𝑃𝑟 1 − 

 

Applying the Green Theorem: 

 

                     (18) 

 

where each Vn is made up by partial contributions of the finite 

elements Ve (e=1,..,E) (Figure 2): 

 

𝑉 = ∑ 𝑉𝑙𝑁
𝑛=1  (19a) 

 

with   

 

𝑉𝑙 = ∑ 𝑉𝑒
𝐸
𝑒=1  and  𝑆𝑛 = ∑ 𝑉𝑛 ∩ 𝑉𝑒⏟    

𝑆𝑒
𝑛

𝐸
𝑒=1  (19b) 

 

 
 

Figure 2. Local system of coordinates Y/Z defined in the center of 

each control volume conformed by finite elements 

 

In the same way each 𝑆𝑒
𝑛 is built by two segments. For the 

control volume CV centered on the local vertex 1 (Figure 2), 

𝑆𝑘
𝑙 = 𝑆𝑘𝑎

𝑙 + 𝑆𝑘𝑐
𝑙 , with normal vectors (𝑛𝑎, 𝑛𝑐) to the segments 

between the medians of the FE (a, c) to the centroid (G). The 

integration of the convective and diffusive terms of the 

equation (17a) requires a function, which represents the 

distribution of ϕ over each FE. Generally, a linear function 

(20a) is adopted for the diffusion term and an exponential 

function based on local coordinates (20b) for the convective 

term: 

 

𝜙(𝑥, 𝑦) = 𝐴𝑥 + 𝐵𝑦 + 𝐶 (20a) 

 

𝜙(𝑍, 𝜁) = 𝐴𝑍 + 𝐵𝜁 + 𝐶 (20b) 

 

In both cases, the coefficients A, B, and C are defined 

( )( ) 0

n n nV S V

dV v ds F dV
t


+  −  − =

  n
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according to the nodal values of the dependent variable 𝜙 and 

the coordinates of the vertices of the FE (local nodes 1,2 and 

3). The non-linear interpolation of the convective term 

requires first the definition of a local system of coordinates 

(Z,ζ) for each FE, where the Z-axis is parallel to the velocity 

vector vi with module U (Figure 2). The new Z-values are 

obtained through an exponential function of the original 

coordinate values X and the Peclet number: 

 

𝑍 =
Γ

𝜌𝑈
[𝑒𝑥𝑝 (

𝑃𝑒(𝑋−𝑋𝑚𝑎𝑥)

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
) − 1] (21) 

 

The approach above along with an implicit backward 

Eulerian scheme for the transient term, allows the 

representation of the equation (17a) in discrete terms for each 

node p of the domain: 

 

𝑎𝑝𝜙𝑝 = ∑ 𝑎𝑛𝑏𝜙𝑛𝑏𝑛𝑏 + 𝑏𝑝 (22) 

 

The obtained system of linear algebraic equations builds up 

sparse matrices with null values distributed randomly. To 

avoid unnecessary operations with null values, the non-null 

values of the sparse matrices and its positions are stored in two 

vectors through the compressed row storage (CRS) scheme. 

The resulting systems of equations are solved through the 

iterative method Gauss-Seidel with SOR (System Over-

Relaxation). For more details about the computational 

implementation see the work of Salinas et al. [27]. The 

calculations were accomplished by using a personal computer 

(Intel Core I7, 3.40GHz; 8 GB memory). The Intel Fortran 

compiler IFORT under Linux platform was used for the 

compilation of the Fortran 90 source codes. All variables were 

defined as double-precision floating-point data types. The 

convergence criteria applied to stop the velocity and 

temperature calculations was based in a maximum value for 

the difference in the calculated value at two successive 

iterations, defined as follows: 

 

|𝜙𝑖,𝑗,𝑘
𝑘 − 𝜙𝑖,𝑗,𝑘

𝑘−1|  ≤  10−6 (23) 

 

 

5. SCALING ANALYSIS 

 

Following the same procedure performed by Turan et al. 

[13] for scaling analysis of natural convection of Bingham 

fluids, the effects of Ra, Pr, Bn and n on the Nusselt number 

for a Herschel-Bulkley fluid are analyzed. The wall heat flux q 

is scaled as: 

 

𝑞~𝑘
∆𝑇

𝛿𝑡ℎ
~ℎ∆𝑇 (24) 

 

which gives rise to the following expression: 

 

𝑁𝑢~
ℎ𝐿

𝑘
~

𝐿

𝛿𝑡ℎ
   𝑜𝑟  𝑁𝑢~

𝐿

𝛿
g(𝑃𝑟, 𝐵𝑛, 𝑛)                                    (25) 

 

where the thermal boundary layer thickness 𝛿𝑡ℎ is related to 

the hydrodynamic boundary layer thickness 𝛿 in the following 

manner: 

 
𝛿

𝛿𝑡ℎ
~g(𝑃𝑟, 𝐵𝑛, 𝑛) (26) 

 

where g(Pr,Bn,n) is a function of Pr, Bn and behavior index 

(n). To estimate the hydrodynamic boundary layer thickness δ, 

a balance of inertial and viscous forces in the vertical direction 

is considered: 

 

𝜌 [
𝓋2

𝐿
] ~

𝜏

𝛿
                                             (27) 

 

where 𝓋 is a characteristic velocity scale (𝓋~√𝑔𝛽∆𝑇𝐿). For 

Herschel-Bulkley fluids the shear stress 𝜏 can be estimated as 

𝜏~𝜏𝑦 + 𝜇 (
𝓋

𝛿
)

2

 which upon substitution in Eq. (27) gives: 

 

𝜌 [
𝓋2

𝐿
] ~ [𝜏𝑦 + 𝜇 (

𝓋

𝛿
)

2

]
1

𝛿
                                       (28) 

 

Using Eq. (27) and (28), the hydrodynamic boundary layer 

thickness can be estimated from the equation: 

 

𝑓(𝛿) = 𝛿𝑛+1 [
1

𝐿
√

𝑅𝑎

𝑃𝑟
] − 𝐵𝑛 ∙ 𝛿𝑛 − 𝐵𝑛 ∙

𝜇

𝜏𝑦
𝓋𝑛~0         (29) 

 

Stoer and Bulirsch [33] proposed a modification of the 

Newton method to estimate the first approximation of a root 

of a polynomial according to:   

 

𝛿~𝛿0 −
𝑓′(𝛿0)±√(𝑓′(𝛿0))

2
−2𝑓(𝛿0)𝑓′′(𝛿0)

𝑓′′(𝛿0)
                                     (30) 

𝛿0  is a proof ordinate value chosen as (𝛿0 = 𝐿 ∙ √
𝑃𝑟

𝑅𝑎
𝐵𝑛) , a 

relatively close value to the minimum (𝛿𝑚𝑖𝑛 = 𝐿
𝑛

𝑛+1
√

𝑃𝑟

𝑅𝑎
𝐵𝑛) 

of the function 𝑓(𝛿) with: 

After evaluating 𝛿0 in the equation (30) and replacing 𝛿 in 

equation (27), the hydrodynamic boundary layer thickness can 

be estimated as: 

 

𝛿~
𝐿

Ω
{
2𝑛−1

2𝑛
𝐵𝑛 +

1

2𝑛
[(2𝑛3 − 2𝑛2 + 1)𝐵𝑛2 + 4𝑛

𝐵𝑛2−𝑛

𝐵𝑛𝐻𝐵
(

𝑅𝑎

𝑃𝑟
)

𝑛
2 
]

1
2 

}       (31) 

 

where 𝐵𝑛𝐻𝐵 is the modified Bingham number for a Herschel-

Bulkley fluid.  

 

𝐵𝑛𝐻𝐵 =
𝜏𝑦

𝜇
(

𝐿

𝓋
)

𝑛

                                                                    (32) 

 

This scaling gives rise to the following expression for the 

thermal boundary: 

 

𝛿𝑡ℎ~𝑚𝑖𝑛 [ 𝐿,
1

𝑔(𝑃𝑟,𝐵𝑛,𝑛)

𝐿

Ω
{
2𝑛−1

2𝑛
𝐵𝑛 +

1

2𝑛
[(2𝑛3 − 2𝑛2 + 1)𝐵𝑛2 + 4𝑛

𝐵𝑛2−𝑛

𝐵𝑛𝐻𝐵
(

𝑅𝑎

𝑃𝑟
)

𝑛
2 

]

1
2 

}]         (33) 

 

Substitution of Eq. (33) into Eq. (25) yields: 

 

𝑁𝑢̅̅ ̅̅ ~𝑚𝑎𝑥

[
 
 
 
 

1.0,
√𝑅𝑎

𝑃𝑟 

{
2𝑛−1

2𝑛
𝐵𝑛+

1

2𝑛
[(2𝑛3−2𝑛2+1)𝐵𝑛2+4𝑛

𝐵𝑛2−𝑛

𝐵𝑛𝐻𝐵
(
𝑅𝑎

𝑃𝑟
)
𝑛

2 
]

1
2 

}

𝑔(𝑃𝑟, 𝐵𝑛, 𝑛)

]
 
 
 
 

 (34) 

 

The expression (34) provides a useful insight into the 

expected behavior of Nu in response to variations of Ra, Pr, 

Bn, and n. The scaling analysis suggests that Nu is expected to 

decrease with increasing Bn for given values of Ra and n, 

whereas Nu increases with increasing Ra for a given value of 

Bn and n. For constant Ra, Pr, and Bn, the effect of n on Nu is 

remarkable for shear-thinning fluids (0<n<1) meanwhile for 

shear thickening fluids the effect is negligible. For n=1, the 

same scaling expression for Nu presented by Turan et al. [13] 
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is obtained: 

 

𝑁𝑢̅̅ ̅̅ ~𝑚𝑎𝑥

[
 
 
 
 

1.0,
𝑅𝑎

1
2 𝑃𝑟

1
2  

{
1

2
𝐵𝑛+

1

2
[𝐵𝑛2+4(

𝑅𝑎

𝑃𝑟
)
1

2 
]

1
2 

}

𝑓(𝑃𝑟, 𝐵𝑛)

]
 
 
 
 

 (35) 

 

 

6. RESULTS AND DISCUSSIONS 

 

6.1. Benchmark comparison and mesh independency study 

 

To verify the implemented numerical code and the 

pressure-velocity coupling algorithm (PRIME), the well-

known de Vahl Davis [34] benchmark problem of Newtonian 

natural convection process is replicated. The verification was 

performed for Rayleigh numbers ranging from 103 to 105 and 

Prandtl number corresponding to air, equal to Pr=0.71 (Table 

2). It should be mentioned here that because of the used 

reference value of velocity (√𝑔𝛽∆𝑇𝐿), the obtained velocity 

values must be multiplied by √𝑅𝑎𝑃𝑟  compare with the 

Benchmark results. For the finer used mesh (81×81), the 

relative errors do not exceed 1% for the Nusselt and the 

maximum velocity values of U(Y=0.5) and V(X=0.5).  

 

Table 2. Comparison of obtained results with the Benchmark 

for Pr=0.71 

 

 𝑁𝑢̅̅ ̅̅  𝑁𝑢𝑚𝑎𝑥 
𝑈𝑚𝑎𝑥 

(Y=0.5) 

𝑉𝑚𝑎𝑥 

(X=0.5) 

Ra=103 

31×31 1.098 1.506 3.627 3.691 

61×61 1.102 1.466 3.650 3.696 

81×81 1.116 1.512 3.650 3.700 

Benchmark  1.118 1.505 3.649 3.697 

Ra=104 

31×31 2.168 3.524 16.033 19.567 

61×61 2.209 3.532 16.130 15.583 

81×81 2.222 3.538 16.172 19.632 

Benchmark  2.243 3.528 16.178 19.617 

Ra=105 

31×31 4.346 7.649 33.614 69.603 

61×61 4.439 7.721 34.682 68.779 

81×81 4.465 7.733 34.740 68.684 

Benchmark  4.519 7.717 34.730 68.590 

 

Table 3. Comparison of corrected obtained results for 

Bingham fluid results with the Vola et al. [19] for Ra=105, 

Pr=1.0 and Bn=0.95 

 

 
𝑁𝑢̅̅ ̅̅  𝑁𝑢𝑚𝑎𝑥 

𝑈𝑚𝑎𝑥 

(Y=0.5) 

𝑉𝑚𝑎𝑥 

(X=0.5) 

Vola et al. 

(13) 

4.0127 6.937 26.375 52.350 

21×21 3.638 7.289 24.035 49.919 

41×41 3.835 7.097 24.018 50.402 

81×81 3.919 7.199 24.000 50.688 

 

The mesh independency study was performed for constant 

Rayleigh number and Prandtl number values (Pr=1.0; 

Ra=105) considering a non-Newtonian Bingham fluid 

(Bn=0.95). According to the definition of the Bingham number 

(15b), this situation is equivalent to that made by Vola et al. 

[19] for a constant yield stress (τy=300 Pa). A comparison of 

the obtained values for the Nusselt number and maximum 

values of U(Y=0.5) and V (X=0.5) is shown in Table 3.  

For a non-uniform mesh of 81×81 nodes, the absolute error 

does not exceed 3%. Then, according to this and to the 

deviation of the obtained results respect to the benchmark 

results, a mesh of 81×81 nodes is used during the calculations 

with Ra=105, and a mesh of 61×61 (Figure 3) nodes is used. 

Non-uniform meshes with a higher density of elements near to 

the enclosure walls are used since the larger velocity, and 

temperature gradients take place in these zones. 

 

 
 

Figure 3. Non-uniform mesh used with 3721 nodes and 7200 

elements for cases with Ra<105 

 

6.2. Natural convection heat transfer behavior 

 

The natural convection heat transfer process of a Herschel-

Bulkley fluid is studied by varying the dimensionless 

parameters: Pr, Ra, Bn and n. Table 4 shows the Nusselt 

numbers obtained for Ra=103, Ra=104 and Ra=105 as a 

function of the Bingham and Prandtl numbers for a constant 

behavior index (n=0.7).  

 

Table 4. Nusselt numbers for a Herschel-Bulkley fluid 

(n=0.7) 

 

Bn 0.01 0.1 1 

Pr/Ra 103 104 103 104 105 103 104 

0.1 1.16 2.31 1.11 2.29 - - 2.02 

1 1.06 2.30 1.03 2.21 4.99 1.01 1.41 

2 - - - - 4.87 - - 

5 - - - - 4.59 - - 

10 1.02 1.96 1.00 1.72 4.35 1.00 1.01 

 

According to these results, the Nusselt number is a strong 

function of the Ra (see values in bold), while Nu is a weaker 

function of the Pr (see values in cursive) and Bn (see 

underlined values). As predicted by the scaling analysis, the 

Nu number increases with the Ra number, and it decreases as 

the Pr and Bn numbers increases. When the Bn number rises 

the fluid has higher yield stress; therefore the convection is 

depleted, and heat transfer by conduction becomes more 

important. In Figure 4 can be seen how the numerical 

experiment conducted at a low Rayleigh number (Ra=103). It 

allows observing the effect of the Bn and Pr numbers in the 

diffusion heat transfer mode. When the Bn and Pr numbers are 

lower than 0.01 and 0.1, respectively, the effect of the 

convective heat transfer starts to be noticeable since the 

isotherms adopt a sigmoidal shape. When the Pr, therefore the 

Gr number becomes lower, and Bingham numbers become 

higher, conduction is the more important heat transfer 

mechanism, and the isotherms are almost parallel to the 

isothermal surfaces, as expected. The distribution of isotherms 

in Figure 5 shows the importance of the buoyancy forces on 

the heat transfer process when the Rayleigh number is 

increased (Ra=104). In this set of results, it can be seen the 

effect of heat transfer by conduction when the Prandtl and 

Bingham numbers increase (Pr=10 and Bn=1.0), that is when 

the fluid transfers momentum at a higher rate than energy and 
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the yield strength becomes higher than the viscosity of the 

fluid, or when the fluid tends to be a solid material. 

 

 
 

Figure 4. Effect of Pr and Bn numbers on isotherms for 

Ra=103 and n=0.7 

 

 
 

Figure 5. Effect of Pr and Bn numbers on isotherms for 

Ra=104 and n=0.7 

 

In order to increase the comprehension of the behavior of 

the Herschel-Bulkley fluids, an analysis of the behavior of the 

fluid as a function of the dimensionless numbers Ra, Pr and 

Bn is performed. When the Rayleigh number is low (Ra=103), 

the streamlines are concentric, adopting a rounded shape near 

to the center of the cavity, and taking the form of the walls as 

they move away from the center (Figure 6). In this case, only 

one central vortex can be seen without the presence of 

secondary flows, which in two-dimensional domains are 

evidenced by the presence of smaller vortices near to the lower 

corners of the cavity. The absence of these vortices is 

explained by zones of high viscosity (Η>10), where the yield 

value is not exceeded (unyielded zone demarcated in red in the 

same figure). When the Bingham number increases, from 0.01 

to 0.1, the unyielded zones appear close the center of the 

cavity, breaking the "natural convection motor" and promoting 

the heat conduction. It is evident that the unyielded zones have 

a symmetrical distribution around the center of the vortex 

when the conduction is the more important heat transfer 

regime (Pr=10, Bn=0.1, and Pr=1.0, Bn=1). 

In Figure 7, the streamlines that describe the behavior of the 

fluid mechanics for a higher Rayleigh number (Ra=104) are 

shown. In general, the streamlines are similar to those 

observed for Ra=103. However, when the Pr and Bn numbers 

are increased, the concentric fluid trajectories appear more 

flattened and squared, respectively. The higher viscosity 

regions, demarcated in red in the same figure, that occupy a 

broader region in the cavity are found when Bn=0.1 and 

Bn=1.0, for Pr=10 and Pr=1.0; respectively. However, the 

effect of conduction on heat transfer becomes important only 

in the latter case (Figure 5). 

 

 
 

Figure 6. Effect of Pr and Bn numbers on streamlines for 

Ra=103 and n=0.7. The red zones correspond to unyielded 

regions in the cavity 

 

 
 

Figure 7. Effect of Pr and Bn numbers on streamlines for 

Ra=104 and n=0.7. The red zones correspond to unyielded 

regions in the cavity 

 

A study of the vertical component of the velocity V along 

the axis X for Y = 0.5 (Figure 8) is added to the previous 

descriptive analysis. When the Prandtl number is increased by 

one order of magnitude, from Pr=0.1 to Pr=1 for a constant 

Bingham number, the velocity decreases by the same order of 

magnitude. However, this depletion is more pronounced when 

the Rayleigh number is lower (Ra=103), and the Prandtl 

number is higher (Pr=10). For Ra=104, when the Prandtl 
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number is increased from 0.1 to 1.0, the velocity is decreased 

about one order of magnitude, but a further increase from 1.0 

to 10 does not change the velocity profile substantially. The 

Bingham number has not an important effect on the velocity 

distribution, when Pr is constant. This observation is more 

evident when the yield strength becomes as important as the 

viscous forces (Bn=1), and the number Rayleigh is lower 

(Ra=103). 
 

 
 

Figure 8. Vertical component of velocity V along the 

horizontal axis X (Y=0.5) for a) Ra=103 and b) Ra=104 with 

n=0.7 

 

For a constant Bingham number, the increasing of the 

Rayleigh number to Ra=105 (Pr=0.1) makes the heat 

convection more important than the heat conduction. In Figure 

9, this effect is noticed by observing the sigmoidal shape of the 

isotherms. From the qualitative point of view, the effect of the 

Prandtl number on the isotherms distribution is not important, 

except in those points where the velocity gradient has a 

pronounce change, some of them are highlighted in Figure 9, 

especially those close to the wall at a lower temperature 

(X=L). The behavior of the streamlines predicts the existence 

of two vortices in the center of the cavity, slightly displaced 

when Pr=1, which tend to be flattened and fused when the 

Prandtl number rises. The areas of high viscosity (Η>10) 

appear in a region of high intensity of the streamlines and in 

the upper left and lower right of the cavity. 

 

 
 

Figure 9. Effect of the Pr number on isotherm and 

streamlines for Ra=105, Bn=0.1 and n=0.7 

 

 
 

Figure 10. Vertical component of velocity along the 

horizontal axis X (Y=0.5) for Ra=105, Bn=0.1 and n=0.7 

In Figure 10, the effect of the Prandtl number on the Y-

component of velocity profile along the X-axis (Y=0.5) is 

shown. The observed shape of the velocity profile is typical of 

the natural convection processes with a high Grashof number. 

When the Prandtl number becomes higher the maximum 

velocity value close to the walls drops as well as the velocity 

gradient, since a decrease of the shear stress on the walls is 

expected. The Herschel-Bulkley model is characterized by an 

exponential term called the behavior index (n).  When n=1 the 

Hershel-Bulkley models becomes the Bingham model. The 

effect of the behavior index is studied in the range of 0.7 to 

1.5. 

Figure 11 shows the distribution of isotherms within the 

cavity for different behavior index values. From the qualitative 

point of view, no significant differences are observed. A 

deeper insight into the effect of the behavior index is given by 

observing the Nusselt number. The analysis of the variation of 

the Nusselt number with the behavior index (Figure 12) 

confirms the prediction made by the scaling analysis. With Ra, 

Pr and Bn as parameters, the increase of the behavior index 

causes a decrease of the effect of convection in the heat 

transfer process (lower Nusselt number), being this effect 

more important when the behavior is in the range 0<n<1. 

 

 
 

Figure 11. Effect of the behavior index (n) on streamlines and 

isotherms for Ra=105 and Bn=0.1 

 

 
 

Figure 12. Nusselt number variation as a function of the 

behavior index (n) for Ra=105 and Bn=0.1 

 

The effect of the behavior index in the streamlines is not 

relevant from the qualitative point of view (Figure 11). The 

positions of the vortex in the center of the cavity are equally 

displaced from the central axis (Y=0.5). In the Figure 13, the 

effect of the behavior index in the Y-velocity profile along the 

axis X is shown. A detailed view allows distinguishing the 

larger variation of the velocity profile near to the isothermal 

walls of the cavity. It is observed that there is no a single trend. 

Higher Y-velocities near to the wall are observed when n<1 
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and after certain critical position (X ̴ 0.1) the Y-velocities 

values are higher for n>1. 

The behavior index n has an important effect on the 

computational time. For the smallest studied value (n=0.7) the 

CPU time is higher (360 h) than for n=1 (270 h). For 

intermediate values 0.8<n<1.5 the CPU times are of the same 

order (270 h) when n=1. If the behavior index is higher (n=2), 

the CPU time is significantly lower (100 h) than for n=1. These 

differences can be explained by the relative weight of the 

diffusive term with respect to the convective term in the 

Navier-Stokes equation. When the strain rate is more 

significant than one and n<1, the relative weight given to the 

diffusive term is lower, and therefore the convective term 

becomes more important. The opposite occurs when n>1. 

 

 
 

Figure 13. Effect of the behavior index (n) in the Y-velocity 

profile along the horizontal axis (Y=0.5) for Ra=105 and 

Bn=0.1 

 

 

7. CONCLUSIONS 

 

A developed code based on CVFEM was implemented to 

solve natural convection heat transfer in a cavity for a 

Herschel-Bulkley non-Newtonian fluid. The performed 

scaling analysis allowed a preliminary identification of the 

importance of Ra, Pr, Bn, n, and Nu numbers. The Ra number 

had a sigificant effect on both heat transfer and fluid 

mechanics. The effect of the Pr and Bn is more important when 

the Ra number is low (103). When the Pr (10) and Bn (1.0) 

numbers are increased, the heat transfer becomes a diffusive 

process, because of the reduced effect of convection and the 

increased influence of the yield stress, respectively. 

Also, the increasing of the behavior index causes a decrease 

in the Nu number. This effect was more important when n<1. 

The analysis of the vertical component of the velocity (V) 

along the horizontal axis (X) allows identifying a change in the 

trend of the velocity profiles. Close to the isothermal walls, V 

decreases when the behavior index was increased, and this 

trend was reversed after a critical point, located around X=0.1 

and X=0.95. 

The behavior index had an effect on the CPU time. For one 

of the studied cases (Ra=105, Bn=0.1, Pr=1), when the 

behavior index is the lower (n=0.7) the computation time is 33% 

greater than for the Bingham fluid (n=1). For intermediate 

values 0.8<n<1.5 the CPU time was of the same order of 

magnitude than when the fluid was of the Bingham type (n=1). 

When the performance index was larger, n=2, the CPU time 

was much lower (63% over n=1). These differences were 

explained by the different relative weight of the diffusion 

concerning to the convective terms in the Navier-Stokes 

equations. 
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NOMENCLATURE 

 

A, B, C 

Bn 

Cp     

F 

g 

Gr 

h 

 𝐽 

K 

k 

L  

m 

M 

n 

�̂�  

Nu            

p 

P 

Pe 

Linear interpolation coefficients 

Bingham number, Bn= τy/μ (L/(gβΔT))0.5 

heat capacity, J kg-1K-1 

source term 

gravitational acceleration, m s-2 

Grashof number, Gr = gβ∆TL3/ηo
2 

convective coefficient, W m-2 K-1 

interfacial flux 

consistency index, Pa s-n 

thermal conductivity, W m-1K-1 

characteristic dimensionless length 

exponential growth parameter, s 

exponential growth parameter 

behavior index 

normal unitary vector 

Nusselt number, Nu = hL/K 

Pressure, Pa 

dimensionless pressure, P=pLηo/uo 

Peclet number, Pe = ρUl/µ 
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Pr 

q  

Ra 

S 

t 

T 

u, v 

U, V 

 

V 

�̅�  

x, y 

X, Y 

Z 

 

 

Prandtl number, Pr = ηoCp/k 

heat flux, W m-2 

Rayleigh number, Ra = gβ ΔT L3/ηoα 

contour area of a control volume, m2 

time, s 

temperature, K 

velocity components, m s-1 

dimensionless velocity components, 

U=u/uo; V=v/uo 

volume of a control volume, m3 

velocity vector 

lengths, m 

dimensionless lengths, X=x/L; Y=y/L 

local coordinate parallel to the velocity 

vector 

 

Greek symbols 

 

α 

β 

�̇� 

�̿̇� 

Γ̇ 

δ 

Δ  

ζ  

 

η 

Η 

θ 

 

thermal diffusivity, m2 s-1 

thermal expansion coefficient, K-1 

deformation rate, s-1 

deformation rate tensor 

dimensionless deformation rate, Γ=L/uoγ 

boundary layer thickness, m 

difference between values 

local coordinate perpendicular to the 

velocity vector 

apparent viscosity, Pa s 

dimensionless apparent viscosity, H=η/ηo 

dimensionless temperature, θ = (T-TC)/(TH-

TC)) 

 

ρ 

τy 

𝜏̿ 
ϕ 

 

Subscripts 

 

a, b, c 

C 

e 

H 

k 

i, j 

max 

min 

nb 

p 

ref 

th 

o  

 

Superscripts 

 

E 

k 

l 
n 

N 

density, kg/m-3 

yield stress, N m-2 

shear stress tensor 

dependent variable, u, v, T 

 

 

 

vertices of a finite element 

cold 

corresponding value of a finite element 

hot 

contour of a control volume 

Cartesian coordinate component 

maximum value 

minimum value 

neighbor nodes 

reference node 

reference 

thermal 

reference value 

 

 

 

total number of finite elements 

iteration number 

value of a control volume 

value of a control volume 

total number of control volumes 
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